





1 E(w)

K kx

é (=) R
p

Fig.2

normalization group equation/IO/,which reflects the independence

of Wilson expansion (1,3) of the normalization parameter.

The symmetry of ®(X{,X,) allows one to transform the contrlbu—
tion of Fig.lb to the form gM®(x,y) (xp +q) = gM® (x, y)/(yp+ 0)®
By making use of the equation of motion 9y =gay it isn’t hard
to obtain the sum rules for ®(x,y)

xf(x) =g [dy®(x,y) = g [ dy &(y,x). (4)

As a result the sum of contribution of Figs.la and |b gives
a parton result of Fig.lc with a hadron mass in the numerator
of the quark propagator.

T.et us pass to the account af the fartnrizatrinn Iw-rmarhn-a/lz/
in QCD for the density matrix in scattering on a polarized tar-
get. We will limit ourselves to terms proportional to the cova-
riant polarization of the target. Let us write in the form*
(Fig.2):

W= kDM E® + [ atk 'k, T, (k) k)DE Ky, ky). (5)

Here I' “s are the hadron-parton amplitudes, the latter being
quarks and gluons,

Fag® = f (;? exp(ikz) <p, 14, (0 v (@) 9. 5>, (6a)
dz1d22
B(k ,k ) = f—— Y explikpzy — i(k{ —kjp)z,] x (6b)

x <, sw?a © A" (2,) vz )Ip, >,

*We omitted here the normalization parameter dependence (just
as 1n the scalar case) and the colour one (it leads to a factor
included in the distribution function).
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E and E* are the subprocess coefficient functions, the first
having quark legs and the second also the gluon one. In expres—
sion (5) the terms are omitted, which make no contribution to
the leading term of twist 3 in axial gauge DA =0. The light-
like vector n is normalized by the condition np =1. Note also
that p =0, this means to neglect kinematical gower corrections
to polarlzation. The key moment of the method

is expansion
of the 4-vector k in (5) in light-cone variables:

K =2xp+an +kp, where (7)
kyP = kpn =n2 =p2=0. (8)
It follows that (9)
X = kn.

The factorization procedure is reduced now to the following
formal substitution

a*k > d%*%k dxd(x ~ kn). (10)

Taking into account the terms of twists 3 only we have

[Ax [E, g (xp) + OE 45 (xp) /3k , (k — xp)* 1T, (%) +

(n
+ rdxldeEZB(xlpl'x2p2)FzB(x1'x2)’ where
da . -
Fa@®) = [ — exp(iAx) <p, S¥ (0)v..(Am)IDp. S>. (12a)
: i u I8
u 13
" (x ,x ) = -—exp[i)\(x—x)+1/\x]x
af3 1t 2 (2”)
(12b)

X< P 816, (0 A" (A, m g n)p, 5>

The region, in which I'(x,,%x,)is defined, was discussed in /12%/
The use of the Ward”s iden-

tities
E
_ - - . M = E“(xp_ xp) (13)
- AN ak“
/ a/f‘ PO
C\ X, - .
?-‘t P+9 ) permits us to unite the se-

cond and the third terms in
(11) into the single, gauge-
invariant expression

[ dx dx QE:B(X P+ %o P) w‘:l F:B (x,%,),
Fig.3 (14)
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where wﬁ ‘is a projector onto the transversal to Py direction
uo_sn’ L w
@ = n »
w ~%% “Pu (15)
the gauge condition An =0 is taken into account; and the ampli-
tude rgt has the form

-]
m Ay drg . .
Faﬁ = [ Y exp[l)tlx2 + 1/\2(x1—x2)] x 16
«<p, 814, @©D"Am g & Wi, 5>,
D n) = 134+ gA*(n) =—13" +ga¥On). (a7

The next stage is the standard usage of the Fiertz identity
with respect to indices e and B. 1f the quarks are massless,
only vector and axial projections will give a nonzero contri-
bution

W= al[E&p)yPITV(® + [E(xp)y ByP IT 4 ®)} +
g P (18)

v
o [ axdx, (LEX (x,p, %, )y 7 DT, (a2 + [EX(x,p. %,0)7" 7 1T 5 (2, %5)-

[Al = %—SpA, (19)
rVw = [ -B-exp@n <4 @y yn>, (20a)
p (2m)
rA® - r;‘—*«-expmx) <P ©) yPy PP >, (20b)
v
ddd -
Ty = (2;) 2 explih | (x - X,) sy x, 1< @y DAY AL, (200)
A drgdr . . -
o r?é;_ggexv[“ﬂxf"z) +‘)‘2X2]<‘/’(O)”p”snuo‘ﬂ‘/’o‘z))'
We use the following notation
AQ) = AQn), (21a)
<A> = <p, S|Alp., 5>. (21b)

(Note, that usage of the Fiertz identity for SUB)¢ leads to the
redefinition of D* sia‘k+gAtta and to the appearance of co-
lour-averaging factors 1/3 in E(xp) and 1/4 in E(x{Py; XgB)) «
It is convenient to single out the invariant Lorentz struc-
ture with scalar coefficients in the coordinate representation

< 0 yPe N> = ¢ YW PSP, (22a)
GO Py %0 =ctws? « ctwp® o, (22b)
6

T @yPDE A hg)> = BYgApP HP « BaL O, ag)pte PP, (220

@@ yPySDE A DYy = Bl Sp + BAp#s? + B P p¥ G,

22d

where . ( )

(Psen _ paBY g pon (23a)
a*B Ty’

s? - sP-p ). (23b)

T

The choice of this structures was made to simplify the determi-
nation of the latter by projecting the matrix element. Terms
with (Sn) correspond to the longitudinal polarization, whereas
with Sg,to the transversal one.

Note that all these coefficients have a dimension of mass,
the latter being that of the order of polarized hadron as fol-
lows from the angular momentum conservation/e/. The three struc-
tures can be present in the expansion of the matrix element
<@y D¥y> which obey the following equation

p pusp Il( pSpn pp( #Spn . (24)

=P
It can be obtained starting with the obvious identity
y®y? Spnpy =2 °y78pr” @3

by calculating traces of both sides and also from formula (51)
in /12b/

(VTP P PP gV (VPNP QR BPP (26)

p
Let us choose the structures in r.h.s. of (24) as independent,
because they are eigenvectors (in the index p ) of projector
(15) with eigenvalues O and 1, respectively. Analogously,when
the projector is acting on the matrix element (22d), only the
lst term in r.h.s. survives (and doesn”t change). Let us come
to the above-mentioned determination of coefficients in- (22).
We 1l put 82 =-1 (the polarization or asymmetsy is the coef-
ficient of S independent of its normalization 18/ We have

V) = —<i @) y e >, (27a)

cd = —<ySy®y>, (27b)

cto 1 _<ynyby>, (27¢)
L (sm)

BV A g) = ~<# @y P @G )Y y> € PSPR (27d)
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BY p=-<énD¥y>c M50 (27e)

By = —<¢ny "@8)y >, ‘ (27£)

B - —<ySy Onyy>, (27g)

Bh - Locuiy’ one>. (27h)
(Sn)

Moreover, the correlators B:L , B¥L s BﬁL don“t depend on their
first argument. This dependence enters through the gluon field
only and vanishes in axual gauge. The gauge condition and de-
finition (15a) give )

 dAAg)
DA DA =i (28)
g
that makes possible to obtain the following relations:
BY, (A,,A,) = idCY(A,)/dx (29a)
TL Y172 2 2 :
A san A
BriA,A,) = 1CT(Ag)/dA,, (29b)
A LA
B (Ay,A,) = idCp(Ag)/dA, . (29¢)

Let us turn now to the rectrictinne nrovided hy the equa-
tions of motion:

By () =y © Do) -0. (30)
For this purpose let us explore the relations

<U©) y*SRDWY N> =0, (31a)
<y ©) D8y Sy )> =0, (31b)

expand here the matrices sandwiched between the quark fields
into vector and axial projection

—i<!;(0)pr#(A)!/I(A) > ¢ PHSe
- (32a)
—<g © Py D*PMy )> (sn) g"° + 8P n ¥ - nfs*) = 0,
-1<y (0) ¥ (@) y 1) > € 7"
(32b)

+ <B @D @y "y W> (sn) g® + 870" —n’s*) -0,

and use the formula obtained from (25) under the change p « n

pPMSPR _ ok _pSpn _ pusn

(33)

Using once more equations of motion (that leads to vanishing
terms ~(Sn)) and (29a,b), we transform (26) to the form

v A

oV dc "\ ,dCp(A) A

1B\, A) + W :\ -B, A\ =0, (34a)
v A

. ac¥e) . dCh0)

B/, 00+ S0 T Bl @M o0, (34b)

After the Fourier transformation we obtain the following sum
rules for distribution functions

fdx dxyo(x )Y (x . x,) ~ B %)) = [ axxo() (€ V(%) ~ CAa)

(35a)
[dx, dty o (xg) (B (x, +%,) + Bp(x %)) = [dx xo(0) (G (®) + Cp()),

(35b)

where o¢(x) is an arbitrarv test function.

Let us revert to the factorized formula for polarized con-
tribution in the hard process cross section, writing explicitly
the fractions of parton momenta connected with a polarized had-
ron only. The formula obtained therefore is directly related to
deep inelastic scattering

W= - faxfca’ -C:a: - C’?a{\r] * fd"1d"2[BlYTb"1Y - Blf'rb’TA]('%)
where
ad 0 = [Ep) §»°l, (37a)
caf @ - [Eap py’IGN), (37b)
aV(x) = [EQp)yPlePSP" (37¢)
by x,) = IE¥(xpp, x2p)ﬁy5]]ST#. (374d)
b Vx .x,) =[E(x p, x,0) pFeSP"
(37e)
(recall that [[...] means %—Sp(_“))‘
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The gauge invariance demands the cancellation of all the
terms, explicitly depending on the gauge vector /12%/ To single
them out, let us beforehand transform (37e), making use of (24)

.V A\
by =M E¥y PP e pgpu~b ", where (38)
v S 1
bp®px) =B xp x,0)yTe o . (39)

Now we”1ll substitute (38) into (36) and use the collinear Ward
identities/12Y everywhere it is possible:

E(x,p) - E(x,p)
p#E# (x P x2p) = ! 2 . (40)
Xy~ Xg

We obtain
W=- [dxCha® - fax dx [B b2+ B'b Y +

A BL&p —ap(xg)

A A
+ de[CT—Cé]aL+,[dx1dsz —— + (41)
. 1 2
v A"/
a¥(xy) -a‘(xg)
+ [dvaav+ [dxldszv ! 2 , where
X~ x2
a’ = [E(xp) §71, (42a)
A n ~ B
b™ = [E (x;p, x,p) Py 1S, , (42b)

and the indices L, T of the remaining two-argument functions
BA and BY are omitted. Note that all but first three terms in
(41) contain the explicit gauge vector dependence. Therefore
the terms with a3 and aV must turn to zero separately with
arbitrary aﬁ and” aV, This leads to the following sum rules

o(xy) —a(xz)

A
fax(Crx) —C,:'(x))a(x) - [dxldszA(xl,xQ-———;-:Tz—-———, (43a)
F oot ax =~ raxax,s (x,x,) 2ol 7E8) (43b)
X1—-Xp

where o() is the test function as before. The final expression
for the polarized contribution has the form

W=~ fdfo;‘(x)aA ~ [dx dx, (B x ,x)b* +BVx ,x )bY) . (44)

It is remarkably simplified in the case of longitudinal polari-
zation SM-=p#/M, The last term turns to zero and the second is
transformed with the help of (40) and (43a) to the form
- [axa’dcPr-ch.

10 (43)

As a result, the longitudinal-polarization contribution to the
cross section takes the form

WL=—[dxC‘£(x)aA(x). (46)

Therefore, for the longitudinal polarization the simple parton
picture is justified; for the transversal one, as it is seen
from (44), the situation is more complicated: the standard par-
ton model’!% is not true.

The sum rules (43) by which the parton formula (44) was ob-
tained have another application. The second of them permits
us to eliminate the distribution function C ' not entering in-
to (44) from the sum rules (35) also. It is convenient to in-
sert (43b) into the sum of equations (35a) and (35b).

x10’1 (xl) —xza(xg) _

i fax dx, (B V(x;,x,) o(x ) +o(xy) + 2 ey
(47)

- Bhay, % )oxy) ~a(x)) =0.

Subtracting (35a) from (35b) it is possible to obtain another
(as we"ll see, the most important) sum rule that contains only
physical (i.e., included in (44)) distribution functions.

[ ax dxgllo (x,) - (x,) BAG ,xp) ~iGo(x,) +0(x))B @ x )} = (48)
= 2 [ dxxo(x) C:‘}(x) .

The T -invariance, which is convenient to take into account
just now, provides further simplifications. Note that in T -
invariant theories the phase of hadron-parton amplitudes is
fully determined by the Born approximation, because the coup-
ling constant is real (and the cuts providing the imaginary
part are %Psent after taking the discontinuity in Mi). By this
reason, B  is real and BV is pure imaginary. (This fact also
provides the absence of single asymmetries in Born approxima-
tion’/1%/), On the other hand, making use of translational in-
variance it is easy to obtain for the complex conjugated matrix
element

<G @ y®y *DHA DY N g)> * =<y (0) 1Py SDEQ (= A )¢ (A g)>, (49a)

<P 0 yPDHF (A DY g)>* =< (0) yPD P = A gy (Ap)> (49b)

that after calculating the Fourier-transform gives

BA(x,,x,) = BAayx), BY (x.x) =B G, x), (50)

consequently

BA@px2)=BAuwa, Bv@px2)=~BwaxQ- (51)
11



Note that (51) transforms the sum rule (47) into the identi-
ty. Thus sum rule provides gauge invariance of the T-noninva-
riant contribution, and this simplification is quite natural.
As to the sum rule (40), it takes the form

faxgdxgo(x ) (BAx,x0) = BV (x,x,) =
A v A (52)
= [dxydxpo(xp) (B (X1,Xxg) + iB (X1,Xg))= [dxxo(x) Cq(x),

and provides gauge-invariance of the T-invariant contribution.
Let us turn to the applications of the parton formula (44)
and to the analysis of simplifications of the answer, resulting
from the sum rules. We limit ourselves here to the simplest
ddagram of deep inelastic scattering. Coefficient functions of
"nonparton" (or, more exactly, nonprimitive-parton) contribu-
tions of distribution functions with two arguments ("correla-
tors") differ from the usual ones by the following propagator
(that one interacting) with an external gluon, see Fig.3):

P+ Q)y, (P + Q)

EX x,.x,) : (53)

. +D20p + @)

where ¢ is the photon momentum in deep inelastic scattering
(and the integration momentum in general hard subprocess). It
is convenient to write out the axial and vector terms of (53)

ovnlinitlare.

E¥= v¥ i A", where (54)
VE(x,xp) = l=y*(pax + x5 + 4 + a¥Bx +x,) +3 ) x
(55a)

x (2x,pa + q2)"1 @x,pq +q2)"1 = VE VS,

A% - e uBpq yBy 5(x1_ x ) 1x pg + q2)(2x2pq r 5t (55b)

We omitted in (55a) terms proportional to p* turning into zero .

after the multiplication by Su (see (39), (42b), (44)), and in-
troduced a special notation for remaining two terms. Only the
first of them will survive in the case of deep inelastic scat-
tering on a transversely polarized proton. For a further ana-
lysis the following nominator expansion is useful

1

Vi, x) =-y" ! + b, (56a)
2x2pq+q2 2x1pq+q2

A (x,,2,) = ~iyBy 5 1 1 1 ;. (56b)

Bupa pq  2xgpa+qf  2x,Pq +q2

As is seen from (56), the vector term is symmetric, while the
axial is antisymmetric in arguments. Therefore in the simplest
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QCcD (T -invariant theory) diagram the axial distribution functi-
on is convoluted only with the vector part of the dressed propa-
gator, and vice versa. ) ]

The .non-parton contribution is transformed in the following
way :

w‘(}:PL %  ax ax | BAx ,x ) [(2x, pq + ®H s (22509 + ™ * (57)

It is possible, by making use of (48) with the following test
function
a(x) = (2xpg + a7 (58)

to combine vector and axial contributions:

A

dxxC N -~ ) .

WP g T _Ipy%yY§yD. ‘ (59)
ad (xp + q) 2 .

The parton contribution, in turn, has the form

A .
wE _fax — 2 [ §y5 Y (x + 0)yL. (60)

(xp +q)?

So, (59) coincides with the parton formula for the contribution
of the quark mass, equal to that of the hadron, and cancels with
the non-gauge~invariant part (the first term in parentheses)

of the parton contribution. The final result appears to be
gauge—-invariant and parton-like:

A 2y ; or (60a)
wua = fdxCT(x)[2qu +4a )levoSq ’ :

M2G (%) + GDC,(x) = Cpx)/2pa. (60b)

As the calculation of anomalous dimension of nonsinglet struc-—
ture functions shows /1% in higher orders of perturbation theo-
ry such cancellations of the two-argument distribution func-
tions do not occur. )

For completeness consider the contribution of the second
term in (55a), which discriminates between the longitudinal
and transversal polarization (and results in the form factor
G,(x))

WL —oifdxdx, BAG 5 )[(2xpa +aD)@xpa+ N e 61
2pqG, = fﬁ_‘;&ﬂ, ) (62)
X -
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