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At present Monte-Carlo simulations in lattice gauge theories 
represent the most efficient tool for calculating various non
perturbative numbers such as the string tension, low-lying 
glueball and meson masses, the deconfinement phase transition 

111 Of ' 1 . ' h . temperature, etc. • spec1a 1nterest 1s t e extract1on 
of vacuum expectation values for composite gluon and quark ope
rators. Their direct computation provides an independent check 
of the consistency of phenomenological approaches- as,for in
stance,the ITEP QCD sum rule scheme/2/- as well as of our idea 
of the vacuum structure. As a step in this direction the SU(~ 
gluon condensate <a 8 0:va:v> has been obtained recently from 
Wilson loop data/3/ in a good agreement with the phenomenolo
gical value 121• 

In this letter we want to discuss the "topological suscepti
bility" X of the vacuum state in the pure SU(3) Yang-Mills 
theory 

X=-d
2
Pln =fd

4
x<Q(x)Q(O)>no lilht quarks ' 

d02 -o 
where 

Q(x) 
g2 

~ --Oa (x) £ ·a a (x) 
84tr 2 IJ.V IJ.Vpa pa 

(I) 

represents the topological charge density, P and 8 denote the 
vacuum pressure and the phase, respectively. 

The quantity x f.laY.S a fundamental role in the solution of 
the UA(1) problem 4•5•81 . The latter consists in the absence 
of a light pseudoscalar meson in the nature, which could be 
interpreted as a Goldstone boson corresponding to the sponta
neously broken axial U(1) synmetry. The only candidate for it 
would be the T/' meson having a significantly larger mass than 
the pseudoscalar octet mesons. On the basis of anomalous Ward 
identities and the U A(l) current anomaly it has been argu~d 141 

that the existence of topologically non-trivial field excita
tions (instantons, etc.), for which x ~ 0, may provide a solu
tion to the problem. Witten has demonstrated how in the large 
N 0 limit a relation between x and the T/' mass can be establi
shed/&~ A more quantitative analysis within the framework of 
effective Lagrangians yields/8/ 
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(Nt = 3 represents the number of light flavors, F
17 
~ 95 MeV 

is the pion decay constant). 

(2) 

For SU(2) )( has been computed recently by Monte-Carlo lat
tice simulations 171• It could be shown to be non-zero; however, 
the numerical estimate failed approximately by two orders of 
magnitude. 

X SU(2) = (55.:!:_10 MeV) 4 . (3) 

The calculations have been carried out by employing two dif
ferent lattice definitions for the topological charge density, 
both of them having the same naive continuum limit Q(x). The 
corresponding results agreed very well. The main criticism 
of these lattice comyutations might be that the lattice defini
tions used in Ref. 17 are topologically not relevant. This is 
related to the existence of a perturbative tail to be subtrac
ted in order to isolate the under-lying non-perturbative, re
normalization group invariant quantity. Since such a procedure 
has proved a success in the gluon condensate case 181, we shall 
not disregard the proposed definitions for the time being. 
Rather we would like to ask, whether the relation between )( 
and the phenomenological value will improve in the real SU(3) 
case. 

l.f=lt" 11Q l""~O'!ll""A ho't"'o t-hn. 1 ..., ....... .: ........ A .... ~~-~~!~- -C ~L- ~--_, __ ! 

cal charge d~n~it;-~~ ~i~e~-b;/7/ 
_._....._ .._,_.._.._ .,_.._....,~... ............ "-1.1.'- t,..upV.1.V5.1. 

1 ±4 
Q L (n) = - - 9- I £ IJ.vpa tr (U (n) llY U(n) pa ) 

2 TT
2 p.vpa =± 1 
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4 D 
-+ a Q(xn) + O(a ) , 
&-+0 

where 'f 1234 = - £21a~ "'- £_123 - ... = 1 and a being the 
lattice spacing. U(n)IJ.v is he usual plaquette operator placed 
at site Xn within the ~v plane. 

X can be extracted by means of the Monte-Carlo simulation 
for a finite lattice (here with size of 4 4 and 64 lattice 
points, respectively, and with periodic boundary conditions) 
by "measuring" the correlator 

a4xL - ~ <QL(n)QL(O) > • (5) 
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At sufficiently small (bare) coupling)( L should behave as 

4 2 18 4 a s 42 1&. (g )A )4 _ _X 
" a )(L .. 0 tlo + 02 go+ ••· +" \& o L --:-r • (6) 

AL 
where for SU(3) and a 4 4 lattice c 1 - 400.9 171• The lattice 
spacing is expected to behave as dictated by the renormaliza
tion group 

-2 2 f3t/ 13~ exp ( - 1-) (aAL) ... (f3ogo) f3orb (7) 

with f3o .. ll/16" 2 and /3 1 =102/256"4· For the scale parameter 
ALwe take AL = (.007+.00lhlu 181and the accepted value of the 
string tension ...[U.: 420 MeV, although, strictly speaking, the 
latter corresponds to a world with light quarks included. At 
strong coupling one finds 

"4218 a •)(L .. 788(1 + : g~2 + fg~" + O(g~e)). (8) 

Our data shown in the Figure have been produced applying Pie
tarinen' s SU(3) heat bath procedure /9/ with a random upgrading 
(in the 4 4 case) of the lattice links. Typically, for any gi
ven go we average over 180 and 130 sweeps through a 44 and 6 4 

lattice, respectively. We have checked at small g02 that the 
MC calculation really reproduces the hi&h temperature behaviour 
(8). 

une ttnds a d1st1nct non-perturbative signal in the region 
where a scaling behaviour is usually expected (0. 9 ~ g 02 ) • 
The perturbative tail is rather well described already by the 
lowest order contribution O(gg). Thus, a )(2 fit of the second 
coefficient yields a relatively small number C2 • 42±20 
(cf. Curve A). From Eq. (6) we determine (Curve B) 

XSU(S) .. (1.0±0.2) ·10 6 At .:-(52±8 MeV)". (9) 

The agreement with XsU(I!) supports the view that Xsu(N ) is of 
order Q(N~) provided u does not depend on N

0
• The disagreement 

with the phenomenologically expected value (2) is obvious 
(compare with Curve C). It is not an artifact of 1 too small 
lattice as one might argue. Our data taken on a 6 lattice 
in a coupling region, where the departure from the perturba
tive behaviour is seen, show this clearly. 

We conclude with the following remarks. 
(i) Before one is justified in rejecting the solution of the 
U A(l) problem mentioned above, one should check as a next step, 
wliether the value (9) survives a calculation with a lattice to
pological charge definition avoiding a perturbative tail (see 

flO/ Ref. , e.g.). 
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TT4i8a4xL t Topological susceptibility 

·s from MC simulation for the SU(3) 
gauge group. Crosses and dots 
correspond to lattice sizes 6 4 

1400 r 1 f 
and 44 , respectively, their 
bars to the mean-square errors. 
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(ii) For a further test it is interesting to evaluate the to
pological susceptibility (I) within lattice QCD, i.e., taking 
virtual quark loops into account. The latter quantity should 
be related to m~F! (without relying on any 1/N 0 arguments in 
contrast to Eq. (2)) and therefore has to vanish in the chiral 
limit. 
(iii) Unfortunately continuum calculations based on instanton 
contributions so far give no hint, whether the estimate (9) 
is reliable or not. On the one hand, the instanton gas model 
with hard core and dipole-like interactions was shown /11/ to 
provide reasonable numbers for low-dimensional gluon condensa
tion parameters; however, it yields only an approximate upper 
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bound for 'x SUJfd being somewhat smaller than (2). On the other 
hand, LUscher I has argued for a lower bound satisfied by our 
lattice result (9), as well. In contrast to a conclusion drawn 
' f I lSI h 1 ' 1 1 . h d. 1n Re . we expect t at att1ce ca cu at1ons - sue as 1s-
cussed in this letter - involve implicitly the effect of instan
tons. Within the scaling region their typical scale size p 
is slightly larger than the lattice unit a and small enough to 
"put" one instanton into a 4 4 lattice volume. 
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MaxanAHaHH H.B., MEnnep-llpoHcKep M. E2-83-69 
BhNHCJ'leHHe TononorH'leCKOH socnpHHM'IHBOCTH SU(3) KanH6poso'lHOH 
TeopHH Ha pemeTKe 

Bhl'lHCJ'leH KoppennTop AflH nnoTHOCTH Tononoi'H'lecKoro 3apHAa 
npH HynesoM HMnynbce B cny'lae KanH6poBO'lHOH rpynnhl SU(~ Ha 
pemeTKe MeTOAOM MoHTe-Kapno. CooTBeTCTB~~ee KOHTHHYaJibHOMY 
npeAeny 3Ha'leHHe TOnonOI'H'leCKOll BOCnpHHM'IHBOCTH HaxOAHTCH B 
cornacHH c paHee HaHAemll>IM pesynbTaToM AJlH rpynm1 SU(ll). HO 
OTnH'laeTCH OT 3Ha'l8HHH, KOTOpoe O~AaeTCH H3 npHHHTOI'O pemeHHH 
UA(1) npo6neMhl, Ha ABa nopHAKa. 

Pa60Ta BhlnOnHeHa B Tia6opaTOPHH Bhl'lHCJlHTenbHOH TeXHHKH 
H asToMaTH3a~H OHHH. 
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The SU(3) topological susceptibility is extracted from 
lattice Monte-Carlo data. Our result agrees with the value 
found recently in the SU(2) case and is approximately by two 
orders of magnitude smaller than it is expected from the 
widely accepted solution of the U A (1) problem. 

The investigation has been performed at the Laboratory 
of Computing Technique and Automation, JINR. 
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