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for the wave function.

However, to prove the spectral const-
raints (3), (5) one should know the analy-
ticity properties of the amplitudes
™ del; Py, T® @L); P,-P). In an ideali-
zed situation one should extract necessary
information concerning the analytic proper-
ties of the Green functions from the most
general principles of the local quantum -
field theory, such as unitarity and causa-

Fig.l lity 4/, In the real case, however, the pro-

motion of such a program for amplitudes

depending on large (and not fixed) number of momentum variables
faces serious problems. In fact, the only way out is the analy-
sis of the Green functions within the framework of perturbation
theory (PT). In such an approach it is implied, of course, that
if the constraint (3) (or (5)) is valid for any Feynman diagram
contributing to F(ix}) (or &(ix}), then the same constraint
holds for the total function ¥ ({x}) (¢(x})).

In ref.’3/ information about the perturbative analyticity
of some N -point Green function‘QNakl) (all momenta k are
treated as incoming. Xk. =0 ) was extracted with the halpn nf
the Nakanishi representation /5/
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(proved in ref.”® for an arbitrary Feynman diagram contributing

into ‘Gy({k})). The parameters By, sy in eq. (9) correspond to
all possible separations of the momenta {k_,..,k } into two com-
ponents f{k, ,..,k; }, {k{ ,.,kyl. By definition

1 r r+1

s, = (% & )f. (10)

Existence of the representation (9) means that Q_ (l{k}) is an ana-
lytic function of the parameters s, (treated as independent
variables) with singularities in the corresponding lower half-
planes of the complex variables g _, .

Substituting the representation (9) for T(gkl!l;P.-P) into
eq. (7) one can calculate the {; -integrals in the standard way
by the Wick rotation. To do this it is convenient to represent
the denominator of the integrand of eq. (9) in the following
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and get rid of linear in {; terms by the shift li= 0+ 14P.
where the vector r,(a) is the solution of the linear equation

2 Aikrk = Bl' (12)
k=1

As a result
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where H is some function of the @ -parameters. '

In each particular case one can solve eq. (12) énd obtain
r;{B) as a function of the p-parameters. In the simplest
case, e.g., one has
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whence it follows that r, =B, —Bg - Using now t@e fact that'
0<B< and B, +B,+Bg <1 ome gets the desired constraint
-1<xg1l.

ﬁowever, in more complicated cases (N >3) the use 9f the
Nakanishi representation allows one to get the constFalnts much
weaker than it is required in egs. (3), (5). In particular, for
the 3-parton correlation function .F(xl,x?.—xl-—?z? the authors
of ref.3 succeeded to derive only the 1?§?ual1t1es.‘x1|, lx2|,
[x+ % | <2 As it was emphasized in ref. , t@e failure of
the approach is due to the fact that for a particular Feynman
diagram there exist some correlatiQns between tbe values of the
B -parameters that are not taken into account in eq. (ll): ?he
existence of such correlations can be check?d, e.g., by writing
the contribution of the diagram considered in the -Feynman pa-—
rametric representation (in this case B, are functions of the
: n paramefers).
Fey?ﬁathz nextpsection we shall analyze the spectral proper-
ties of the multiparton function directly within the'framework
of the exponential analog of the Feynman representation (alpha-
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representation, /48,77y for the corresponding PT diagrams. The
alpha-representation is well known to be a very powerful tool
to analyze the most general properties of the Feynman diagrams.
It is especially effective to analyze scalar theories. In the
latter case the complications are absent due to numerators of
spinor propagators, derivatives in some vertices, etc. Note,
that in the Nakanishi representation (9) the specifics of the
field theory model considered is reflected by the pl(y, B) ~fac-
tor, which as we have seen, has no influence on the spectral
properties of F({x}) and &(ix}). This means that to analyze the
spectral properties of the multiparton functions F(x}), &(ix})
it is sufficient to consider a scalar field theory™ This observa-
tion essentially simplifies the a-representation analysis.

II. ANALYSIS OF SPECTRAL PROPERTIES IN THE a —-REPRESENTATION

2.1, Alpha-Representation. To prove the validity of eqs. (3),
(5) we shall incorporate the well-known parametric representa-
tion of Feynman amplitudes based on the following simple formula
for the propagator 8/

(m® -p?-ie)”l = [ da exp liap® -m2iie)t. (15)
0

After taking the Gaussian integrals over the virtual momenta
one can write the contribution of any Feynman diagram as an in-
tegral over the a, -parameters of all lines o belonging to the
diagram considered. In particular, the matrix element (1) has
the following a-representation

. N
nd nd , k
Pil(— oo [ (me =
< l[(np é, | [(np) b, P>
- (16)
® E  B}(a)-BT(a)
= 3 md it Rsdnted Rl
diagr. g o aa[j_l__]l( D(a) ) 10,

* This observation is eventually due to the fact that any
Feynman integral corresponding to some QCD diagram can be, in
principle,represented as a sum of scalar Feynman integrals.To
arrive at such a decomposition one should (after calculating the
relevant trace) expand the scalar products of various momenta
present in the numerator over the denominator structures neg-
lecting on so doing the quantities that are odd in the integra-,
tion momentum considered.This procedure, by the way, is the star-
ting point of all most effective modern approaches to calculate
multiloop Feynman diagrams in QCD (see, e.g., refs. /8 9/ ),
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where ®la) is some function of the a —parameters, the explicit
form of which is not essential for our purposes,

+

B @@= X b,), a7
P g

Bj@= T by, (18)

and bjl (@) >0, D(a) 20 are also functions of the a -parameters
(to be specified below) satisfying the relation

k
D@ = = X b, (a) +Cla), 1
ek I, (19)

where C(a) > 0. Using eqs. (1) and (16) one can derive the a<
representation for 3(x1,...,xk)':

= Kk Br(a) - B'-(a)
F(xl,...,xk) = X f Dda { I 8(x, = o) B(a). (20)
0 o o i

diagr. i=1 D(a

Now, incorporating eqs. (17)-(20) one can easily obtain the
spectral inequality (3) and the energy-momentum conservation
relation (2). Note. that in the a -renresentation the latter
is nontrivial, in contrast to the momentum representationm.

Analogously, one can derive the a -representation for the
multiparton wave function:

b (x )= % [ I da 8¢ B, (@ 5( By @ W), (21
reesX ) = X, o —— 0 - ,
1 k dlagr. o @ %o 1" D(a) K D) @, 21

where Bj(a)z 0, D(a) > 0 are functions obeying the equality
k
Di@) = X B (a) (22)
i=1

from which one can easily derive egs. (5), (6).

2.2. Alpha—-Representation Functions and Topology of the

Diagram. The functions Bf (a), vBJ(a) s D(a) can be connected

in a simple way with the topological properties of the corres-
ponding Feynman graph. Recall that a k -tree of the graph G

is a subgraph.of QG which (a) contains all its vertices; (b)
has k connected components, and (c) each component has a tree
structure (i.e., has no loops). Any k-tree Uy is determined
in a unique way by the set of lines fol which one should remove
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from the initial graph G to get Gy.
The product of ag-parameters related
to these lines ¢ will be referred to
as an (@) -k -~ tree. The function Dfla)
is the sum of all (a)- 1 -trees (or,
simply, ({(a) -trees) of the graph
Next, denote by B(iy, «cimlltsecesi a)

the sum of all its (a) -2-trees pos-—
sessing the property that the vertices
if{seee,ipmp belong to one compenent;

a) b) 11----.1,, ~ to the other, while the
vertices not indicated explicitly may
belong to any component.

Fig.2 In the. a~representation each deri-
vative (na)¢>l related to the' O-ver-
tex (fig.2a) results in a factor Ri{a). To construct this faetor,
it is convenient to consider an auxiliary diagram (fl% .2b) in
which the O-vertex is splitted into two ones: O » O i 0(2‘)
so as to separate the line corresponding to the ¢, -f1e1d.
Then 710,11/

1 ¢V 1)
B np.), 23
R,(@ = D(a)lz ©F . 110 P)@e)) (23)
eshavn i 16 tho vartay inta which thae avtarnal momentum n. en=

wiiea = g

ters. A trivial but crucial observation is that the (a)—i -trees
of the graph 2b present in B(O(ll),jlo(i)) may be treated also
as the (a)-l-trees of the graph 2a.
We are interested only in the simplest cases N=1 and N=2.
a) N=1, p,=P (fig.3a). In this case (23) reduces to

,B.(a)
1 =1B<1)10<1>_:
o 119 = 5By 0 = 55

(24)

Consider an arbitrary tree of the graph 3a. According to the
definition of a tree it should contain a continuous chain ef
lines joining the vertices O and 1. Furthermore such a chain
is unique (otherwise we would have a loop graph rather than
a tree). Now, if the line of this chain adjacent to the (Q-ver-
tex corresponds.to the ¢; -field, then the relevant (a) —tree
is a part of B {(a). Hence, each (a) ~tree present in D{(a) has
its unlque counterpart in some of Bi(a) s. The reversed state—
ment is also true: joining (by O“ 0(‘2) » 0 ) the components
of a 2-tree contributing to some Bl(“) one obtains a tree con-
tributing to D{a). This gives eq. (22). ) )

b) N=2, py=P, pp=-P (fig.4a). In such a configuration

R, (@ = Dt)[a(o‘” 110 -8, 2109). (25)

(P)
8

Oh) 0() ‘) 0(‘\

BB AL

a) b)

Fig.3 Fig.4

Note that according to the definition of B(...}...) one can write

B, 108”) - B, 110°,2) +BO®, 12108 -

(26)
= Bi (a) + C, (a).
BOY . 2009 =B0P, 21087, 1) + BOP, 1.210( )=
= B'T (@) + C (a). (27)
Hence the ?2-tramc far which "l"\o ‘rav-"1nne ! ') kc'lnnn tn O-L_n

same component give the zero total contribution into R, ;(@). How-
ever, they give a non-zero contribution

Cla) = £ C; (a)

into Dfa).

To proceed further, consider a particular 2-tree of the
graph 4b contributing into B+(a) Due to absence of loops there
exists only a 31ng1e line (related say to the ¢p-— f1e1d) g01ng
out of the Oé —vertex that starts a continuous chain joining
0(1) with the vertex 2. Define now b;¢ to be the sum of all such
(a) —2-trees of the graph 3b. Furthermore, it is easy to realize
that by may be treated also as the sum of all (a)-trees of the
graph 4a for which the continuous chain joining the vertices

| and 21looks like § , $;+0+4p » 2. The trivial consequence of
this observation are eqs. (18), (19).

III. CONCLUSION AND ACKNOWLEDGEMENTS

Thus, using the a -representation we established that the
functions F(x,..,X;) and D (X100, Xy) defined by eqgs. (1), (4)
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