


momentum carried by each set of partons in the infinite momentum 
frame should not exceed that of the hadron. The fulfillment of 
eq. (3) justifies, in particular, the limits of the x1-integ
rations in eq. (1). 

1.2. Multiparton Wave Functions. Studying higher twist ef
fects in hard exclusive processes one should intrdoce multipar
ton wave functions ¢ (x 1, ... , x W absorbing information about the 
long-distance dynamics. These functions are related to the mat
rix elements of the corresponding local operators 

1 ·1 N 1 N k 
f dx 1 ,., { dx k cP (X 1 , .,,, X k) X 1 "'X k = 
0 0 

na N1 na Nk 
=<OI[(i-) ¢ 1 1...[(1-) <P~~.liP > . 

np nP 

(4) 

Physically, ¢(x·1·, ... ,xk) should be interpreted as a probability 
amplitude to find (in the infinite momentum frame) the initial 
hadron in the state where · the partons ¢ 1 , .•. , ¢k carry the frac
tions x 1, .... ,xll.of its longitudinal momentum. Such an interpre
tation makes sense only if 

for all xJ and, moreover, 

k 
l XJ=l. 

j = 1 

(5) 

(6) 

1.3. Spectral Properties ·of the Multiparton Functions and ' 
Perturbative Analyticity. The constraints (2), (6) related to 
energy-momentum conservation can be trivially proved in momen
tum representation, where one can write 

k (nil) (2) 
x [ n B(x 1 - -->l T <f 1 , ... , fk; P, -P) 

I = 1 (nP) 

(7) 

for the correlation function (see fig.!), and 



(8) 

for the wave function. 
However, to prove the spectral const

raints (3), (5) one should know the analy
ticity properties of the amplitudes 
T(1) ({f}; P), T(2)({f};P,-P).In an ideali
~ed situ~tion one should extract necessary 
1~format1on concerning the analytic proper
t1es of the Gr.een functions from the most 
general principles of the local quantum , 
field theory, such as unitarity and causa-

F. I 1 · /4/ 1g. 1t~ .In the real case, however, the pro-
. mot1on of such a program for amplitudes 

depend1ng on large (and not fixed) number of momentum variables 
f~ces serious problems. In fact, the only way out is the analy
S1S of the Green functions within the framework of perturbation 
~heory (PT). I~ such an approach it is implied, of course, that 
1f the constra1nt (3) (or (5)) is valid for any Feynman diagram 
contributing to 5 (I x}) (or cf>(l x l), then the same constraint 
holds for the total function j((xl) (cf>({xl)) 

In ref. 181 ~nformation abo~t the perturb~tive .analyticity 
of some N -:-po1n~ Green funct10n Q N(l k}) (all momenta k are 
treated as 1ncom1ng. Ik ... o) was extracted with thP hPln nf 

the Nakanishi representation /6/ 

00 1 
GN(Ikl>-= f dy[ f (9) 

0 0 

( d . /5/ .prove 1n ref. for an arbitrary Feynman diagram contributing 
mto 'Oitlkl)).·The parameters f3t, Sf in eq. (9) correspond to 
all possible separations of the momenta {k

1
, ••• ,kNI into two com-

ponents lk
11

, ... ,k 1 I, lk 1 , ... ,kNI. By definition 
r r+ 1 

sr "' ( ~ ki )2 • 
t .. 1 t 

( 10) 

Exi~tence o~ the representation (9) means that ON (l k}) is an ana
lyt1c funct1on of the parameters s (treated as independent 
variables) with singularities in th~ corresponding lower half
planes of the complex variables s , 

Substituting the representatio~ (9) for T(
2
)(1tl; P,-P) into 

eq. (7) ?ne can c~lculate the t 1 -integrals in the standard way 
by the W17k rotat1on. T? do this it is convenient to represent 
the denom1nator of the 1ntegrand of eq. (9) in the following 

4 

form 

D(f) 
(II) 

and get rid of linear in f1 terms by the shift f 1,f1 +r 1P. 
where the vector r

1 
~) is the solution of the linear equation 

(I 2) 

As a result 

1 

f 
0 

k 
n df31 8 (1- If3 J)[ n 8 (x C r e<f3))] H(f3}, 
i f"' 1 

(I 3) 

where H is some function of the f3 -parameters. 
In each particular case one can solve eq. (I2) and obtain 

r
1

({3} as a function of the {3-parameters. In the simplest 
case, e.g., one has 

C) - ·~ . '9 . '2 
UlkJ "' p 1 k - + p 2 ~r - K) + Pg ~JC T ... , - y T 

(14) 

whence it follows that ra "'f3 2 - {38 • Using now the fact that 
0 ~ f3k:::; 1 and {3

1
.+{3

2
+{3

8 
:5_1 one gets the desired constraint 

-1 < X < 1 , 
How~er, in more complicated cases (N ~ 3) the use of the 

Nakanishi representation allows one to get the constraints much 
weaker than it is required in eqs. (3), (5). In particular, for 
the 3-parton correlation function .F(x 1, xl<!,-x 1 -x2) the authors 
of ref/31 succeeded to derive only the 1ne?ualities \x 1 1, \x 2 1 
jx

1 
+ x

2
\ ~2. As it was emphasized in ref. 13 , the failure of 

the approach is due to the fact that for a particular Feynman 
diagram .there exist some correlations between the values of the 
f3t-parameters that are not taken into account in eq. (II). The 
exist~nce of such correlations can be checked, e.g., by writing 
the contribution of the diagram considered in the Feynman pa
rametric representation (in this case f3 k are functions of the 
Feynman parameters). 

In the next section we shall analyze the spectral proper-
ties of the multiparton function directly within the framework 
of the exponential analog of the Feynman representation (alpha

S 



representation, 14• 6• 11 ) for the corresponding PT diagrams. The 
alpha-representation is well known to be a very powerful tool 
to analyze the most general properties of the Feynman diagrams. 
It is especially effective to analyze scalar theories. In the 
latter case the complications are absent due to numerators of 
spinor propagators, derivatives in some vertices, etc. Note, 
that in the Nakanishi representation (9) the specifics of the 
field theory model considered is reflected by the p(y, {3) -fac
tor, which as we have seen, has no influence on the spectral 
properties of .F(Ix}) and cf><lx}). This means that to analyze the 
spectral properties of the multiparton functions 5'(1 x }), cf>( I x }) 
it is sufficient to consider a scalar field theory~ This observa
tion essentially simplifies the a-representation analysis. 

II. ANALYSIS OF SPECTRAL PROPERTIES IN THE a -REPRESENTATION 

2.1. Alpha-Representation. To prove the validity of eqs. (3), 
(5) we shall incorporate the well-known parametric representa
tion of Feynman amplitudes based on the following simple formula 
for the propagator 16/ 

(m 2 -p 2 -if)-1 =i r da exp liap2 -m 2 +idl. 
0 

(IS) 

After taking the Gaussian integrals over the virtual momenta 
one can write the contribution of any Feynman diagram as an in
tegral over the au -parameters of all lines u belonging to the 
diagram considered. In particular, the matrix element (I) has 
the following a -representation 

. N Nk 
<PI[(.!l!..) 

1 [ na 
cf>1 ] ... (-) cf>k )jP > 

nP nP 

00 k a+ - (16) 

I f II dau[ II 
( J (a) - B J (a) 

] ell (a) , 
diagr. 0 u J=1 D(a) 

*This observation is eventually due to the fact that any 
Feynman integral corresponding to some QCD diagram can be, in 
principle,represented as a sum of scalar Feynman integrals.To 
arrive at such a decomposition one should (after calculating the 
relevant trace) expand the scalar products of various momenta 
presen.t in the numerator over the denominator structures neg
lecting on so doing the quantities that ar~ odd in the integra-• 
tion momentum considered.This procedure, by the way, is the star
ting point of all most effective modern approaches to calculate 
multiloop Feynman diagrams in QCD (see, e.g., refs. /8,9/ ). 
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'j 

where cll(a) is some function of the a -parameters, the explicit 
form of which is not essential for our purposes, 

+ B (a) 
j 

(17) 

s-:- (a) = 
J (18) 

and b ·f (a)~ 0, D(a) ~ 0 are also functions of the a -parameters 
(to beJ specified below) satisfying the relation 

where C(a) ~ 0. Using eqs. (I) and ( 16) one can derive the a-{ 

representation for j=(x 1, ••• ,xk): 

+ -
I 

dlagr. 

oo k B 1(a)-B 1 (a) 
(II da [ II 8(x

1
- ))cll(a). 

o u u i = 1 D(a) 
(20) 

Now, incorporating eqs. (17)-(20) one can easily obtain the 
spectral inequality (3) and the energy-momentum conservation 
relation (2). Note, that in the n -re~resent~tion the l~tter 
is nontrivial, in contrast to the momentum representation. 

Analogously, one can derive the a -representation for the 
multiparton wave function: 

oo B1 (a) Bk (a) 
( II da 8 (x 

1 
- -- ••• 8 (x k ---)'I' (a), ( 21 ) 

0 
u u D(a) D(a) 

where B J (a)~ 0, D(a) ~ 0 are functions obeying the equality 

k 
D(a) = I BJ (a) (22) 

J -=1 

from which one can easily derive eqs. (5), (6). 

2.2. Alpha-Representation Functions and Topology of the 
Diagt;am. The functions B} (a), B1(a) , D(a) can be connected 
in a simple way with the topological properties of the corres
ponding Feynman graph. Recall that a k -tree of the graph ·a 
is a subgraph .of a which (a) contains all its vertices; (b) 
has k connected components, and (c) each component has a tree 
structure (i.e., has no loops). Any k-tree ·ak is determined 
in a unique way by the set of lines lui which one should remove 
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0 

a) b) 

Fig.2 

from the initial graph 'G to get Gk' 
The product of au-parameters related 
to these lines u will be referred to 
as an (a) -k- -tree. The function D(a) 
is the sum of all (a)- 1-t:rees (or, 
simply, (a) -trees) of the graph 
Next, denote by B(i1 , ... ,imiJ1•'"•jn) 
the sum of all its (a) -2-trees pos
sessing the property that the vertices 
i 1• ... , i m belong to one component; 
j 1• ... , J n - to the other, while the 
vertices not indicated explicitly may 
belong to any component. 

In the. a -representation each deri
vative (na)<Pi related to the. a-ver

tex (fig.2a) results in a factor R1 ~). To construct ~h1s fa~tor, 
it is convenient to consider an auxiliary diagram (f1~.2~) 1n 
which the 0 -vertex is spli tted into two ones: 0 -+ 0 ~~ 0 ~) 
so as to separate the line corresponding to the ¢ 1 -field. 
Then 110• 111 

1 N (!) (i) 
R.(a) = -D( ) . I B(O 1 , J\0 2 )(npJ.), 

1 a J= 1 
(23) 

..... 1-.""'_,... i ..:,.. ~'hn ,,.O't""t-ov .;nt-n T.'Y1,.;,....1, t-'h!Po PVf-PTn~l mnmPnf"nm n: en-

ters, A ~;i~i~l·b~~-~r~~i~l observation is that the (a~i-trees 
of the graph 2b p.resent in B(Oi1>,j\0~1>) may be treated also 
as the (a)-1-trees of the grapn 2a. 

We are interested only in the simplest cases N = 1 and N = 2. 
a) N = 1, p 1 = P (fig. 3a). In this case (23) reduces to 

1 (') (i) B· (a) 
_j_ R (a) = - B (0 

1 
, 1\ 0 ) = - 1 

- • 
(nP) i D(a) 1 2 D(a) 

(24) 

Consider an arbitrary tree of the graph 3a. According to the 
definition of a tree it should contain a continuous chain of 
lines joining the vertices 0 and I. Furthermore such a chain 
is unique (otherwise we would have a loop graph rather than 
a tree). Now, if the line of this chain adjacent to the 0 -ver
tex corresponds. to the <P 1 -field, then the relevant (a) -tree 
is a part of B 1 (a). Hence, each (a) -tree present in D(a) has 
its unique counterpart in some of B1(a)'s. The reversed state
ment is also true: joining (by 0~1) o<~ -+ 0 ) the components 
of a 2-tr~ contributing to some B

1
(a) one obtains a tree con

tributing to D(a). This gives eq. (22). 
b) N ""2, p1 = P, Pg =-P (fig.4a). In such a configuration 

- 1-R
1

(a) =_L[B(0(
1
1),1\0(

2

1))-B(0(
1

1>,2IO(t
2
))]. ) 

(nP) D (a) ( 25 
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0 0 

a) b) a) b) 

Fig.3 Fig.4 

Note that according to the definition of B( ... \ ... ) one can write 

B(Oii), 1\0~1)) = B(Oi1>, 1\0~0,2) + B(Oi0 , 1,2\ O~i)) -
(26) 

= B; (a) + C 
1 

(a) • 

B(o<;>.21o~>) =B<o7>,21o~1>,1) + a<oio.1,2\0~1 > >= 

3i a- (a)+ c (a). (27) 
I i 

HPnrP t-hP 7-t-r,:::~~pQ fnr t.T'h; roh t-ho ·uo,.-t-., ,..oco 1 ') 'hnl ,....,....,... +-,... +-l-.,... ------- ----~-o -- ----
same component give the zero total contribution into R

1
(a). How

ever, they give a non-zero contribution 

C(a) = I c1 (a) 

into D(a). 
To proceed further, consider a particular 2-tree of the 

graph 4b contributing into at~).Due to absence of loops there 
exists only a single line (related, say to the <Pt-field) going 
out of the o~!) -vertex that starts a continuous chain joining 
0~1) with the vertex 2. Define now btf to be the sum of all such 
(a) -2-trees of the graph 3b. Furthermore, it is easy to realize 
that b 1r may be treated also as the sum of all (a)-trees of the 
graph 4a for which the continuous chain J01n1ng the vertices 
I and 2 looks 1 ike 1 -+ ¢ 1 ... 0 ... <P f .. 2, The trivial consequence of 
this observation are eqs. (18), (19). 

III. CONCLUSION AND ACKNOWLEDGEMENTS 

Thus, using the a -representation we established that the 
functions F(x1, ... ,xk) and ¢(x: 1, ... ,xk) defined by eqs.(l), (4) 
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do possess the spectral properties necessary for their parton 
interpretation. 

The author is indebted to R.K.Ellis for a discussions that 
stimulated this investigation and to A.V.Efremov for helpful 
connnents. 
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