


1. INTRODUCTION

In the last few years there has been a considerable progress
in understanding the behaviour of the pion form factor at asym-
ptotically large momentum transfer/!—4%/. In particular, it was
shown that in perturbative QCD one can factorize the contribu-
tions corresponding to short and long distances. For the form
factor F,(Q?) this leads to the relation
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(see fig.1). Here E/Q2 is the hard scattering amplitude, in
leading order in as(u)=§2(u)/4n given by /1-3/:
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(Cy= 4/3 and N, =C= 3 are the usual color factors), whereas
¢ (x, u2) is the pion wave function. Its evolution with 2 is
.determined by the equation/3/
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The leading order contribution to the perturbative expansion of
the kernel V

Vg g = V0 e 22 vy v (4)
2w 2n

was presented in ref./3.
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q,p'_p It is well known, however,
that perturbation theory only
allows reliable predictions
when higher order corrections

P p’ are taken into account. This
is especially important in
x P xP’ cases where already the Born
term is proportional to a,(u):
Fig.1. The factorized represen- 1leading order calculations say
tation for the pion form factor. nothing about how to choose
the parameter u. Therefore,
to get quantitative predic-~
tions for the asymptotic pion form factor, we have to calculate
both the amplitude E and the kernel V at least up to second
order in a,- The first step of this program was performed in
refs./5/ and/6/ where the O (a2) -correction to E was presented.
The second step is the evaluation of the O (a2) -contribution
to the evolution kernel V. The function V(”(x, y) 1is expected to
cancel the renormalization and factorization scheme dependence
of E in order ag. Moreover, calculating V{!)(x,y), we can study
beyond the leading order how the renormalization machinery for
composite QCD operators works, In particular, it is of great
interest whether the close connection between the eigenfunc-
tions of the kernel V and the conformal-invariant operators,
known from leading order/1.2/, is broken by radiative correc-
tions.

In this note we briefly describe the method_and present the
result of the calculation of V(I)(x,y) in the MS -scheme used
already in ref./53/ to calculate the O (ag) -correction to the
amplitude E. Furthermore, we describe the connection between
the obtained results and the two-loop calculations in deep ine-
lastic scattering and discuss some new peculiarities of the
lightlike axial gauge.

2. METHOD AND RESULT

Our method is based on the technique developed by Curci et
al./7/ to calculate the evolution of parton densities beyond
the leading order. The approach of ref./?/ can be extended in
a straightforward way to handle exclusive processes/8/. Its
main ingredients are:

- the choice of a lightlike gauge n-A =.0, n? = 0;

- the decomposition of the perturbative expansion in generali-
zed ladders;

- the use of dimensional regularization, both for ultra-violet
(UV) and for collinear singularities;
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Fig.2. Diagrams contributing to vi(x, y).

- the use of the M8 -subtraction scheme for UV-divergences
(including spurious ones) and of renormalization group
invariance.

The diagrams contributing to vi)(x,y) are shown in fig.2 Sdia-
grams renormalizing external legs should be added). A detailed
description of their calculation (using the algebraic computer
programme ''SCHOONSCHIP" /9/ ) was given.by one of the authors )
in ref./8/ where also some partial results were presented. Whi-
le completing this work we obtained the paper by Sarmadi /10/ in
which an analogous calculation was performed. To compare our
result with that of ref./10/, we present it in a similar form
and use also Sarmadi's notation (interchanging, however, xey).
Our final result for the two-loop contribution to the evolution
kernel V (x,y) is: :
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where
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and Liz(x) is the Spence function

Li, (x) = } P“(l =ac. (13)

We have found that our result (7)-(12) does not agree with
that one obtained bv Sarmadi for two reasons: first. instead
of the "+" - form (7) Sarmadi presents the relation V() (x,y) =

= ¥ @x,y) 4 zW 5 - y), where the expression for z(l1) given
in ref./1%/ g4oes not depend on y. This seems to contradict some
general arguments leading to the representation (7). Moreover,
explicitly calculating the simplest diagrams renormalizing
external legs, one can easily show that in the axial gauge the
Z ~factors essentially depend on y- Second, there is some mini-
mal discrepancy in the function V()(x,y) itself: to get the
result of Sarmadi from our one, one has to change the coef-

ficient of the m2(x/y) term in eq. (11) from (F + .2_’;,::) to (F‘+-2’-;--).

y
. This difference is evidently due to a misprint in ref./10/. A

detailed description of our calculation will be presented else-
where. In a subsequent publication we plan to discuss also the
"diagonalization of the two-loop anomalous dimension matrix and

the influence of the obtained result on the asymptotic behaviour

of the pion form factor. Here we want to mention only that at
the two-loop level the diagonality of the anomalous dimension
matrix in the conformal basis is broken. This breakdown is
caused by the f (x/y) terms in the functions GN and VG and the
t? -terms in Vg, .
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3. CORRESPONDENCE TO THE DEEP INELASTIC SCATTERING RESULTS

The fact that our result for the function v (x,y) is (al-
most) identical- to that one presented by Sarmadi provides a
strong evidence for its correctness.

As a further independent test, we have checked that the eigen-
values of the kernel V() (x,y) coincide with the two- loop anoma-
lous dimensions y(l) of the non-singlet operators in deep ine-
lastic scattering "/11,12/, Such an agreement is expected because
of the trlangular form of the anomalous dimension matrix cor-
responding to v (x, y).

The n -th eigenvalue of the kernel V(”(x y) can be computed
numerically and compared with ynl, in principle, for any
givenll We have done this for the first ten values of n. There
is, however, another possibility that- allows us to compare the
eigenvalues of ALY (2,y) with the yi) analytically for all n.
It makes use of the fact that the yél) are moments of the
two-loop contribution to the Altarelli-Parisi kernel P(D(t)/7/,
This leads to the relation

-0+ i> l-
P(t)=-dv.[ ¢t ldn Ll (G v n 14
®) 2”1_2_”” nln! (dy) ly=00f (x, y)x"dx}, (14)

connecting the kernels V (x,v) and P (t). (The svmbol "AC" deno-
tes analytic continuation in the complex n -plane).

Equatlon (14) permits us to find the corresponding counter-
parts in the kermel P (t) for most of the terms contained in
eqs. (9)-(11), For example, we get

1 y(0) - -
—E-F-‘V (x,y)-=-{0(y—x)F(x,y)+0(x—y)F‘(x,y)}+-. (15)
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E?uatlons (15)-(17) allow us to obtain the contribution to
0) proportional to N FCF and to establish that it coincides
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with the result presented in ref./?/. However, up to now we did

not succeed in convoluting in an analogous way some of the terms
contained in the function G (x,y). Therefore, we limited ourselves
to the consideration of the sum Vg)(x,y)+-vg)(x,y) (free of
G ); we have shown that after applying eq. (14) to this fund®
tion, we exactly arrive at the sum Pg(t)+ Pp(t) of Curci

et al./?/. :

4, PECULIARITIES OF THE LIGHTLIKE GAUGE

Performing the calculation of V(”(x,y) we have been confron-
ted with some new peculiarities of the lightlike gauge. It is
well-known/13,14/ that the "axial denominator"1/f-n of the
gluon propagator

ab ) ‘i.lb Eny"'en )
DL 0= drs™ig,, + Uz Ly ) (18)
gives rise to extra divergences, both of ultra-violet and of
infrared type. In the framework of ref.’” the former ones must
be subtracted by hand" whereas the latter ones should cancel
among themselves after adding up all diagrams of the given order
in a, . Moreover, the presence of the 1/f-n-term in eq. (18)
breaks the multiplicative renormalization of the nronagatare
and vertex functions of the theory. In general, this leads to
a spoiling of the usual structure of the R-operation. To our
knowledge, however, in all calculations done so far the R -ope-
ration seems to work as usual. For example, in the two-loop
calculation for deep inelastic scattering all terms breaking the
multiplicative renormalization of subdiagrams can be converted
into some effective renormalization constants/?/. We found.

that for some of the diagrams contributing to Vil)(x,y) this

is already not the case: in the results for the diagrams c) and
d) of fig.2 besides terms preserving the structure of the
R -operation there remain some additional terms even after in-
tegration over the second loop is performed.

Furthermore, we found a second kind of unexpected spurious
objects: The diagrams a) and b) (see fig.2) turn out to contain
ultra-violet double pole terms. This indicates that in the
light-like gauge, in general, even diagrams (subdiagrams) with
more than three external legs are UV-divergent. Again, there
are no effects of this kind in deep-inelastic scattering (at
least, at the two-loop level). Probably, this is due to a
greater symmetry of the corresponding diagrams in that case. It
can be considered as a further independent check of our calecu-
lations that, after summing up all diagrams of fig.2, all these
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spurious pole terms cancel among themselves. Nevertheless, in

v%sw of the mentioned pecularities it seems worth calculating
Vil v

in a more regular (say, Feynman) gauge, too.

The authors indebted to S.V.Mikhailov for stimulating dis-
L 4 cussions and to A.V.Efremov for his interest in this work.
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