


2. Dynamical mass generation 

The Lagrangian for one fermion family is given as /?/ 

£ = ~ 1-l(~ -<9-t?-1 -~- .,:/itt_.-~l'?t c~ )Y{_ +iJ? ~tri- ilv:l ~ c, )~ 

-r eR il (1x +iift _J,J'f-t c: )~ f~ i/(~ - iJ}tA.t-ij'J~ -- di>:t~ )k 

f iJ.1/f"'(d.t -if/fB.t -~~~ ~)uR + ckz:t"'(~ +-tJ'.fB,., -tk}~ Cot)dR 

(2.1) 
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It is 5U{31 X: SU'2), x· U(i)v gauge invariant and renormali za ble (off mass t! ._ I 

shell) provi ded that the Adler-Bell-Jackiw anomalies cancel. They are 
absent for those values of the C -hypercharge YH 

)~ = ( 'Jj(Cf,), 'J(UR), 1j(dR); '!JNU /!/f~ ), )fi?R)) I 

for which /S/ 

,_ · _ yr ;; "yr2) 
'H - ot H + f-' t7 (2. 2 ) 

and ~·>-=(V.J, 4/3, ·-2/.3j-I, 0,-2), Y~2)=(o,, , -i)O,I, -i) . The real parameters 

r:i and f3 are arbitrary and intended to be f i xed by experiment. 
I n ·a c , he r e i s no ge nu ine 1·e no ., l i a ion ~ he "" M 191 

Polarization tensor of t he C -field, which must be transverse due to 
the current conservation, contains one logarithmic di vergenc e which 
is removed by th e wave function renormali zation. In this respect the 
Lagrangi an (2.1) closely resemb le s purely massle s s theory , 

2.a. Fermion ma sses 

Consider the region where the renormalizP-1 coupling constant ~ 
i s large, while the other coupling c ons tant s ( ff , j' and ff':;cD ) are 
small, i.e. both the e le ctroweak i nterac t ions and QCD can be treated 
pertur bati ve l y a s "weak e:xterna 1 perturbations", or switched off 
c ompletely. The important fermion - C - boson i nteraction is treated 
as follows. 

As an e:xamJ. e, consider the electron field r 1 

(2.J) 

where 
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(2.4) 

To treat the model (2.3) separately is in general legal up to the ABJ 
anoll!Slies. 

The use of a straightforward perturbation theory means that we 
a priori decide what the particles corresponding to the fields if and 
C will be not asking the dynamics whether it likes it or not. To do 
better (still having a particle interpretation of the corresponding 
fields)*) we offer the system a choice: 

/£ = ~I f .;e,;t t 

where / 10/ 

(2.5) 

(2.6) 

~1 
, eq. (2.5) will be a starting point of a bona fide better, self-

consistent perturbation theory. Self-consistency means that L is 
determined from the condition that the new interaction (2.6) gives 
zero contribution to ~ in the lowest order using the propagator 
defined by it. In the Landau gauge ( d =0), standard manipulations 
with the Feynman rules yield the self-consistency condition formu-

~ . . . ... 
QUUYO Lil ~1J~ ~U~W 

(2.7) 

For a nontrivial solution to exist the coupling constant 

(2.8) 

must be positive. It is readily verified that the parameters ~ 
and (3 in (2.2) can be chosen so that a~ll= :/:'JI'I{)Jjff'R) >O for 
all fermion species 171. The quantities fv and M entering into eq. 
(2. 7) are assumed to be renormalized / 11 / according to the Neinberg's 
scheme / 121. 

Performing in (2.7) the angular integration after Wick's rota­
tion we obtain 

*) Another possibility is to require confinement: no particle 
corresponding to a field. 

(2.9) 

.ve argue that the linearization of eq. (2.7) or (2.9) cannot be a 
good approximation, since by doing it we surely loose the nonanaly­
tic dependence of the result upon the coupling constant which we 
suspect to take place, according to the renormalization group argu­
ments / 131. Instead, we replace the true kernel 

{(p~k2)={f~~p2) =' t/{f~f~~f/VI~ + ./(p'fil+M~Y- 4p"'kQ) 

by an approximate one, 

(2.10) 

It has the pro~erties /(01k1)= F(O, k2) and at k~oo frp;/t:7J7 t/2k.
2 

, 

while F(p':k 2)~[M 2/(lfM~)j.{f/2~t}. The approximation is not good for 
p~ rz simultaneously ~IX). Equation (2.9) with the approximate ker­
nel (2.10) is immediately solved: 

c/'1;3 

where the dimensionless constant 0 is 
oC 

determined from the condition 

.A ( ;ed£ 
161[2 J lR(£+ I ) 2 f c:2 

() 

' I. 

The electron mass ~e is defined as 
C M 3 

me = L'(m.i) = -~' fM2 ~ C'e l'1. (2. 13) 

It follows immediately from (2.12) that 111le~O (i.e. Ce ~ 0 ) for 
ex= 184rr. ~ 4rrj Jytlfl~.Yfjte~) from the above, or, that the fermion mass 
is generated starting from some critical, large value of the coupling 
constant. Renormalization group analysis of the dynamical mass gene­
ration 113/ enables us to conclude that 1Xeu.;(('4e)-= 4rt/fyr;p'-)'YfeR) 
is the nontrivial UV fixed point. For ci<< 1 we find explicitly 
from (2.12) 

e<e = -x'euv / [ 1 + cl ( f1tc/- 1) ] . 

According to this picture generation of different fermion masses 
(or fermion condensates) due to the strong C- boson interaction 
proceeds on different scales C'f depending upon the numerical values 
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uf their C -hypercharges 'Jit)1ji/R) • Consequently, to compare diffe­
rent fermion masses, we must first compare the corresponding mass 
scales on which different fermions condense. The only tool we have 
at our disposal is the renormalization group: ol.((!lt)= 1/B(n,;~t 
Here B< 0 and A is the renormalization group invariant para­
meter of the C - boson-fermion interaction. 
Hence 

(2.14) 

In order to compare the numerical values of different fermion masses 
within one family using the formulas (2.13) and (2.12), we need to 
renormalize explicitly our theory following ref. 1121. This is not 
done yet. 'Ne suspect that small differences in C -hypercharges will 
lead to large amplifications of fermion masses similar to those shown 
by eq. (2.14). 

.ve find it quite interesting that the fermion mass ratios can 
be expressed in terms of the C -hypercharges, i.e. mere numbers, 
which do not undergo renormalizations and may be even quantized. 

2b. Gauge boson masses 

Up to now we have treated the (-boson interaction separately. 
Now we take into account the SUI2l x U(t)':' electroweak symmetry toge­
ther with its Nard-Takahashi identities. It is important that these 
identities are consequences of the symmetr1 of the Lagrangian rather 
than of the symmetry of solution of the theory. Since we have dyna­
mically generated the fermion masses, we have simultaneously sponta­
neously broken the SU/2)L x [}( !)y syo:metry down to U(t)€rn • According to 
the Goldstone theorem three massless spinless bosons should exist 
as physical particles provided that the SUI2{ x U(l)y symmetry is 
considered global. In reality the "would be Goldstone bosons" are 
visualized as massless poles in the proper vertex functions 1--:vC< and 
'z.:x due to the 'NT identities / 5/, which we assume renormalizably 
maintained 111 • 13/: 

"' 
r;/PfrJ') q:o 2[2 t"'lt-&5)- J!i-7frt-r..,.)~ lp+'f)- (i+J;)~ lp;] 

0( 

_L 9- Cf . ] ~ 212 ({1-K;,)- Z.l2 7/0-J5)01.u- (t+6'_,)rmp i 

(2.15) 
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') The indices U and D in (2.15) abbreviate the upper (U) and down (D) fer­
mion in an SU(2) doublet and the index F stands for U and D of the sa­
me doublet. 

-01 
From the pole term of fw _ we extract the effective vertex bet-

ween the fermion-antifermion UD pair and the charged dynamical Gold­
stone boson 11• 14/: 

(1:;: K',;)/fn.o - (I r o,)IJnD 

j/M~ Iu D f I'Jnj 1,... u 
' v, 

(2. 16) 

where the dimensionless quantities fu D and iD u will be found ex-
, I 

plic i tly in the following. The pole term of r:v"' can be split accord-
ing to Fig. 1. The only thing to be calculated is the loop integral 

u:_0 11) = N~ ~ ~~~~4 fr ~ -~ li:)tot(i-Jj) 0) 0:-1) 

@- ( "') I "l ·21 (2 .n > 
= 2./T - t r ..;trn.J !/, D r -ntD P, U 

t• -. I .. 

..L.IO '-'11~ ~.l.CJJIGIIliCI..LJ ..L.UIJGQ.LQ. 

(2.18) 

Fig. 1. The effective coupling 

of the charged Goldstone bosons 

with fermions and N boson. 

He should not be surprised that the integral (2.17) is finite. This 
is because the dynamically generated self-energy (2.11) acts as an 
ultraviolet (as well as infrared) regulator. In evaluating the in­
tegral (2.17) we have used the fermion propagator in the form 
5Fip)=fjfLFip))/(p2-mr.j) • 
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'l'he polarization tensor of the ·,v boson is found easily in accor­
dance with Fig. 2: 

Fig. 2. Pole term in the vacuum 

polarization tensor of the N boson. 

This means 115/ that the charged vector boson acquires a mass, 

tnt~ : ;f;l ( -mj Iu, o + t7n~ lb, u) • The generation of the Z boson mass 
proceeds quite analogously. Since both lepton and quark doublets 

operate in this mechanism incoherently, we can write down the finite 

Y and Z boson masses in the form of sum rules: 

(2.19) 

(2.20) 

Thus we predict the definite deviation from the canonical mrs rela­

tion 

(2.21) 

:re obviously get the G.YS relation (2.21) by setting lntu = !Jn.D in 
(2.19) and (2,20). 

3. Conclusions 

.Ve have shown how to dynamically calculate the fermion masses 
within one family as resulting from the strong attraction between 
left- and right-handed components of the originally massless fermion 
fields due to exchange of the heavy neutral vector boson C,Fermion 
mass ratios can be expressed in terms of the C-hypercharges, i.e. 
mere numbers which do not undergo renormalizations and may be even 
quantized. To complete this program, it remains to check the quality 
of the separable approximation (2.10), to perform the explicit renor­
malization of {2.3) following ref./12/, and to analyze the fermion 

mixing {more families). 
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Masses of N and Z bosons are generated by the Schwinger mecha­
nism and are expressed in terms of fermion masses and fermion- Gold­
stone boson coupling constants in the form of sum rules (2.19) and 
(2.20). Saturation of these sum rules necessitates the existence of 
heavy fermions in the model. In order to obtain '*w"' ( ~ fQmtu fn/2(M/rr'1/) 

N 80 GeV, it is sufficient to have one U-type fermion with nnu = 
.. 500 GeV and M = 105 GeV. The large value of M is dictated by the 
fact that the neutral current coupled to the C-boson changes fla-
vour when more families are taken into account (see eq. (3.3)). 
This estimate serves simultaneously as an upper bound on the fer-
mion masses in the electroweak model. 

With tnt,= 500 GeV and 1'1 = 105 GeV we have ( Iu.o "''J.~Z e11 {t'1/mu) I 

Iu, t-' " :1~2 f t:.(t'1!t7nu) --2 ] ) tnt~~ /ml_ ec/Bw = f_ to4. 
"Nho ordered" the like fermions (vf',~,l)c 1 · .. ), (~(!<,t:, ... ) 

(u,c,t, .. ) and (d,s,b,. ) organized into families or generations, 
is not understood at present. The like fermions behave differently 

only in the sector that is responsible for their masses. In the stan­
dard model the like fermions differ in their Yukawa couplings, in 
the present approach they differ in C-hypercharges. We have analyzed 
also the dynamical mass generation with the fermion mixing, includ­
ing the possible generation of the Majorana masses of the neutrinos. 
It is easy to derive the matrix "gap equations" analogous to eq. (2.7), 
'h11+ 1~10 ,.,elo1:Pft 'P"'I"'\+ n11,...,..ftftrtart +n <"''ln1'fPC +ho,., O'V".,..., .. ,.."' ... ,"r 

---· --- -- ---- -- ---c------o~· 

For mtw and ~z. the following sum rules hold: 

/Y/'1.'2,==fldmuUfLk)l./{DL)).(rrn.uU~UR}U([?_))* I + u~D }I (3.1) 
~-~, 7.J V L(:,cy 

mtg = f(;/1-&~'Q)Lf~ntuufl.f?)U(uj).(-m0 U7uR)U(uj}*Ju u. -t u ...... D). (3.2) 
. ·-z " Ll V V •' :i 

Here U(i1.,R) and U(0_
1
R) are the unitary matrices which diagonalize 

the general mass matrices of the upper (U) and lower (D) fermions. 
These matrices enter also into the neutral current coupled to the 
C boson: 

vL,R) ••• abbreviate columns of the left- and right-handed compo­
nents of the mass eigenstates of neutrinos, ••• and 1}('/ll) , 1JfJ)R) 1 • • • 

are diagonal nondegenerate matrices of the left- and right-handed C­
hypercharges of the neutrinos, ••• Thus the neutral current (J,J) is 
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flavour changing and not universal (the mixing matrices in it are 
not unitary). This imposes severe restriction on r1 , which we take 
t1 = 105 GeV, In contrast with the standard model, the right-handed 

mixing angles are observable in this approach. 
Referring to the experience with QCD, we allow ourselves an 

extrapolat i on tnat at small distances the strong coupling noncon­
fin i ng C-boson-fermion interaction should produce a r i ch spectrum of 
quite new hea vy bound states. In part i cular, the combinations ortho­
gonal to the dynami cal wou ld be Goldstone bos ons are of this sort. 
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