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To treat the model (2.3) separately is in general legal up to the ABJ
anomalies.

The use of a straightforward perturbation theory means that we
a priori decide what the particles corresponding to the flelds Y and
C will be not asking the dynamics whether it likes it or not. To do
better (still having a particle interpretation of the corresponding
fields)*) we offer the system a choice:
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L) = Py - ) -40,G-%C T +#76C, (2.5)

Ly = PTGt Ty (2.6)

i%’ , €q. (2.5) will be a starting point of a bona fide better, self-
consistent perturbation theory. Self-consistency means that > 1is
determined from the condition that the new interaction (2.6) gives
zero contribution to &g in the lowest order using the propagator
defined by it. In the Landau gauge (d =0), standard manipulations
with the Feynman rules yield the self-conslstency condition formu-
lated avuve Lu vhe Juiw
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For a nontrivial solution to exlst the coupling constant

s= Syyeh’ (2.8)

must be positive. It 1s readily verified that the parameters
and (3 in (2.2) can be chosen so that At b= FYW)YE) >0 for
all fermion species 7 . The quantities A and M entering into egq.
(2.7) are assumed to be renormalized 1/
scheme

Performing in (2.7) the angular integration after Wick's rota-
tion we obtain

according to the Weinberg's

*) Another possibility is to require confinement: no particle
corresponding to a field.
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Ve argue that the linearization of eq. (2.7) or (2.9) cannot be a
good approximastion, since by doing it we surely loose the nonanaly-
tic dependence of the result upon the coupling constant which we
suspect to take place, according to the renormalization group argu-
ments 13 « Instead, we replace the true kernel '

K(Pik2)= {{('z,pz) = //(f‘Lszf-Mg £ /(/,l* /(ﬁ*Ma)l_ 4,0-%2 )

by an approximate one,

F(p k2) = (K2 p2) = M2/ 2(p% m2) (K24 M2) (2.10)

It has the properties {(D,kf)?/:m, k?) and at k> {(,b)‘ke)" //Zk:z '
while F(p%42)~ Mz/(Plf—M 2/-(1/2&2). The approximation is not good for
P% 4% simultaneously »oa0 . Equation (2.9) with the approximate ker-
nel (2.10) is immediately solved:

o

V= iz (2.11)

where the dimensionless constant ¢ 1ig determined from the condition
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The electron mass Mg 1is defined as
) ce™M3 .
Me = Z(me)=_mesz2 ® Ce ™. (2.13)

It follows immediately from (2.12) that mg>0O (i.e. (¢ > O ) for

o = R¥4n —)4E/j-y{¢l,_)y{€R) from the above, or, that the fermion mass
is generated starting from some critical, large value of the coupling
conatant. Renormalization group analysis of the dynamical mass gene-

ration /13 enables us to conclude that Hepy () = 47l/fyr'¢i)y/€,e)
is the nontrivial UV fixed point. For q;<< 4 we find explicitly
from (2.12)

Ao = Aoy / [1+ 2 (tncE-1)] .
According to this picture generation of different fermion masses
(or fermion condensates) due to the strong C - boson interaction
proceeds on different scales ("f depending upon the numerical values



.

of their C -hypercharges quy@k). Congequently, to compare diffe-
rent fermion maseeg, we must first compare the corresponding mass
scales on which different fermions condense. The only tool we have
at our disposal 1is the renormalization groups &(f1y)= 4/3(11.'(%5_

Here 3< O and A is the renormalization group invariant para-
meter of the ( - boson-fermion interaction.
Hence
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In order to compare the numerical values of different fermion masses
within one family using the formulas (2.13) and (2.12), we need to
renormalize explicitly our theory following ref. +» This is not
done yet. We suspect that small differences in C -hypercharges will
lead to large amplifications of fermion masses similar to those shown
by eq. (2.14).

Je find it quite interesting that the fermion mass ratios can
be expressed in terms of the C -hypercharges, i.e. mere numbers,
which do not undergo renormalizations and may be even quantized.

2b, Gauge hoson masses

Up to now we have treated the ( - boson interaction separately.
Now we take into account the SU(2) x U(), electroweak symmetry toge-
ther with its ¥ard-Takahashi ideﬁiitieé. It is important that these
identities are cbnsequences of the symmetr$ of the Lagrangian rather
than of the symmetry of solution of the theory. Since we have dyna-
mically generated the fermion maesses, we have simultaneously sponta-
neously broken the SU(2) x UU%,eymmetry down to U1)g,, « According to
the Goldstone theorem three massless spinless bosons should exist
as physical particles provided that the»SUm%_X U(”Y symmetry is
considered global. In reality the "would be Goldstone bosons" are
visualized as masgless poles in the proper vertex functions f;f and
Gf due to the WT identities , which we assume renormalizably

maintained /11’13/:
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The indices U and D in(2,15) sbbreviate the upper (U) and down (D) fer-
mion in an SLHZ) doublet and the index F stands for U and D of the sa-
me doublet,

From the pole term of/

ween the fer?ion-7ntifermion up pair and the charged dynamical Gold-
1,14

we extract the effective vertex bet-

stone boson
(/Ié"_.,')’fnu - (/td"g)/mp

2 : 2
'\/”nu IU,D + ’771_‘9 [D,"J

; ' (2.16)

where the dimensionless quantities-[u’D and [DIU will be found ex-
plicitly in the following. The pole term of{? can be split accord-
ing to Fig. 1. The only thing to be calculated is the loop integral

g (4% /
Uy p @) = 272——5 ary 7 S, WeTl-5) S, (k-9)

Z_ (214 fom? (2.17)
g/ 2 .
2\/2—( vy )»/”"J[U,D*/”‘D [p,u /
wiwsie Ly p  is ilie slemsubasy Iubegeal
0 (g e mE
= — \xly ————— X .
2,5 262 (mf2-m2)x + MG (2.18)
p+q
E;: w
mek .-
j5iq A g 9 Fig. 1. The effective coupling

of the charged Goldstone bosons

with fermione and ¥ boson.
uN" e W
q
- — YN
(7]

('iq‘) 5?3 \lm% Iu’.n*mnIDiU

#e should not be surprised that the integral (2.17) is finite. This
{ is because the dynamically generated self-energy (2.11) acts as an
ultraviolet (as well as infrared) regulator. In evaluating the in-
g tegral (2.17) we have used the fermion propagator in the form

Sep=LpeIop) J/(p2-mZ )
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The polarization tensor of the W boson is found easily in accor-

dance with Fig, 2:
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Pig. 2. Pole term in the vacuum

polarization tensor of the ¥ boson.

This means 115/ that the charged vector boson acquires a mass,

/mh‘n/ = fgz(ﬁnj [U,D +’7"02 Zp/u) . The generation of the Z boson mass
proceeds quite analogously. Since both lepton and quark doublets
operate in this mechanism incoherently, we can write down the finite

¥ and Z boson masses in the form of sum rules:

P UZI; Syt mily ), (2.19)

m2 = Hg* 9D (mi Ly g+ 5 Do), (2.20)

Thus we predict the definite deviation from the canonical GVS rela-
tion

ﬂn‘f/ /mi(,oszé)w = 1. (2.21)

Je obviously get the GJS relation (2.21) by setting my = mpy in
(2.19) and (2.20).

3. Conclusions

¥e have shown how to dynamically calculate the fermion masses
within one family as resulting from the strong attraction between
left- and right-handed components of the originally massless fermion
fields due to exchange of the heavy neutral vector boson C.Fermion
mass ratios can be expressed in terms of the C-hypercharges, i.e.
mere numbers which do not undergo renormalizations and may be even
quantized. To complete this program, it remains to check the quality
of the separable approximation (2.10), to perform the explicit renor-
malization of (2.3) following ref. and to analyze the fermion
mixing (more families).

‘z

Masgses of ¥ and Z bosons are generated by the Schwinger mecha-
nism and are expressed in terms of fermion masses and fermion- Gold-
stone boson coupling constants in the form of sum rules (2.19) and
(2.20). Saturation of these sum rules necessitates the existence of
heavy fermions in the model. In order to obtain m,,~ (%ygmzu ﬁ’wyg(""/’fy)
~ 80 GeV, it 1s pufficient to have one U-type fermlon with m, =
a 500 GeV and M = 1O5 GeV., The large value of M is dictated by the
fact that the neutral current coupled to the C-boson changes fla-
vour when more families are taken into account (see eq. (3.3)).

This estimate serves simultaneously as an upper bound on the fer-
mion masses in the electroweak model.

Withm, = 500 GeV and ~ = 10° GeV we have (I, ,~ 7z 1(™/mu),
Ly vz [t (Mmg) -3 ] ) m% fm? ees’Ou, = 1. 104.

"¥ho ordered" the like fermions (¥, 4, ¢, J, (€&, T, ... )
(u,c,t,,.) and @ﬁs,bp. ) organized into famillies or generations,
is not understood at pregent. The like fermions behave differently

only in the sector that is responsible for their masses. In the stan-
dard model the like fermions differ in their Yukawa couplings, in

the present approach they differ in C-hypercharges. We have analyzed
also the dynamical mass generation with the fermion mlxing, includ-
ing the possible generation of the Majorana masses of the neutrinos.

It is easy to derive the matrix "gap equations" analogous to eq. (2.7),
hut wa hawae wnat cnnnesdad +n anlwe them evnlisisdsr

For My and An the following sum rules hold:

/mw_,g22_ /('muurq?)u/o)) (m,, Uy )U(D)) l 0 + UHD] (3.1)
7
[U + U'-’D]. (3.2)

= K% g2 [y /%)U/W) (m, U /%)U/U)
'Y
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Here LV%VR) and U/Q,R) are the unitary matrices which dlagonalilze
the general mass matrices of the upper (U) and lower (D) fermions.
These matrices enter also into the neutral current coupled to the

C boson:

236 = UL Y, + RV B Y UL, Vg + - (3.3)

%vR , ee. abbreviate columns of the left- and right-handed compo-
nents of the mass eigenstates of neutrinos, ... and Y(¥;) .yﬂk), .os
are diagonal nondegenerate matrices of the left- and right-handed C-
hypercharges of the neutrinos,... Thus the neutral current (3.3) is






