


I . INTRODUCTION 

In the literature devoted to spectroscopy of new ( ~c, J/0 , 
T ) and old (IT, p, r/>) mesons a good deal of attention is paid to 
the decays of quark-antiquark systems into the real and virtual 
photons /l-3 /. In a number of papers 14- 61 these processes are 
calculated with the use of wave functions of bound states of 
a quark-antiquark system. As has been noted in/6/, the wave 
functions of light mesons are not yet well studied for the fol­
lowing two reasons: I) this region requires the use of the 
relativistic methods less elaborated then methods of the nonre­
lativistic quantum mechanics, and 2) the levels of radial and 
orbital excited states of light mesons are known experimentally 
much worse than those of excited states of 0-particles. There­
fore, in the case of light mesons it is difficult to study the 
long-distance behaviour of the wave function determined by sol­
ving an equation with a phenomenological confinement potential 
which describes the mass spectrum of experimentally known me­
son excitations. 

For this reason it would be interesting to study, whithin 
the same method used for the description of comoosite mesons, 
main properties of the behaviour of the decay cross sections 
of composite electrodynamic systems, as in this case we would 
be free of the problem of how to take into account the influence 
of the confinement potentials at long distances. 

The aim of this paper is to study the dependence of the cross 
section of the decay (11+11-) _, ye+ e- of a bound state of the 
muon-antimuon pair 11+11- into free electron e-, positron e+, and 
a y -quantum (Fig. I) on the invariant mass of a lepton pair 
squared q~ = (p+ + p_) 2 . To this end we shall use the same 
method of the covariant simultaneous description of composite 
systems within a quasipotential approach in quantum field theo­
ry proposed by Logunov and Tavkhelidze 171 which has been emplo­
yed earlier in/4-6/ to describe an analogous dependence on 
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11+11--+ y e+e- decay has been studied 
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been made of the single-time Bethe-
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A formula obtained in 12/ for the dependence of the ll+ll--+ 

... y e +e- decay width on qi = (p+ + p_ )2 was derived only 
for 4m2"" M 2 ( m is the muon mass, M is the mass of a bound 
state ll + ll- ) , i.e. , in the limit of a vanishing binding energy 
(f ... 0). As is noted by the authors 121, the formula they have 
fo~nd for a fictitious width f'(q~) of the decay of ll+ll- into 
a virtual photon with 4-momentum q 2 and a real y -quantum* 

(I) 

(a- is the fine structure constant, q, 1 (0) is a wave function 
of the P-state at the origin of coordinates) is valid in the 
range of maximal values of the invariant mass squared of the 
e+ e--pair q 2,. (p + p ) 2 ... 4m2 -::. M 2 and possesses there a pole 
singularity ~rod~cing, in turn, a logarithmic singularity for 
the decay width r ((ll+ ll- >J++ ... y e+ e-). An analogous result was 
then obtained by the same method by the authors of/2/ for the 
decay of P -wave 1 +--states of the quarkonium into three 
crluons and got a wide popularity (see, e. g. ,/8/). 
o In the course of description of the decay of a muon-antimuon 
bound state (ll+ll-) ... y e+e- we shall try to go beyond the scope 
of the static limit. We shall derive a formula for the decay 
fornt factor valid throughout the whole kinematically allowed 
range of qi: 4m;_sq~<M 2 (me is the electron mass) and 
calculate the probablllty ot decay ll' ll--+ ~y. 

2. CALCULATION OF THE (ll+ll--+ y e+e-) DECAY AMPLITUDE WITH 
THE USE OF THE BETHE-SALPETER AND QUASIPOTENTIAL 
WAVE FUNCTIONS 

According to the formalism of quantum field theory19/, the 
amplitude of the decay shown in Fig. I is of the following 
form 

(ll + ll-) 
where ra/3 (k1 • q1 + q2 - k1 I P) is the vertex function for 
the transition of a composite particle of a bound state (ll+ll-) 

with 4-momentum P into a muon-antimuon pair, and 

*In the notation of 121 q~ =a. 
2 
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(k m ) .. 1 (k, + mil) {3p 
P I • II 1' (217) 4 2 2 ,.. m ll - k1 - if 

(3) 

is a propagator of a muon with momentum k1 and.mass mil. 
Since we are interested in the decay of a s1nglet state 

(ll+ll-) which is a pseudoscalar and has zero total spin, we shall 

· r<ll+il>(k ~ k 1 m) 1·n the form/ 10• 11 1: represent the vertex funct1on af3 1 • 2 J 

r<llf3+1l->(k
1
,k21P)=y

5 
f'(k

1
,k2 1P), (4) 

a af3 

where the function r (k1 • k21 P) is a scalar. 
The wave function 1JI (k 1 , k21 P) is expressed in terms of the 

vertex function r<ll+ll->(k 1 • k2 I P) as follows 

(5) 

and the amplitude (2) in terms of the wave function (5) 1s given 
by 

.-nllV _ ff9-\4;rl.f_ rn41r Rn lQI ~fir 1r l'l'\ MllV(Ir lr In n \I ft:..\ 
' 1 • ap' 1· <:' • pa' I' ~2''1' '2'" ll+ll- • 

where 

M~(k 1 , k21q 1 , q2) = (k 1 + mll)f3p r; SK¢ (') - q1 ; mil) x 

X yV (k -m ) ~ . cU 2 ll c,a 

(7) 

Let us pass now to the wave function given in the space of 
polarization indices a 1 and a 2 , spin projections of ~ fermion 
and an antifermion with 4-momenta k1 and k2 , respect1vely, 
onto the z -axis: 

where u(k 1 ) and v(k 2 ) are fermion and antifermion 
malized by the invariant conditions: u(k,)u(k,) = 
v(k2)· v(k 2) =-2mll. According to (4) and (5), the 
may be represented in the form 

a1 a2 m _a1 '" a 2 1J1 (k1 • k2 1 J) = u (k1 ) y 5 '1' (k 1 , k2 1 J ) v (k2 ), 

(8) 

bispinors nor-
2m1,, 
function (8) 

(9) 
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where the scalar part of the wave function 'P (k1 ,k 2 \P) is rela­
ted with the scalar part of the vertex function f' (k1,k2\P) by 

'I' (k 1 , k 2 jP)"' (m~- ki- i£)-1 (m~- k~- i£)- 1 f' (k 1 , k2 jP). (10) 

Taking into account the formula (7) we rewrite (6) in the form 

where 

T~v = ii 
al u 2 ul 

(12) 

or, taking into account (9), 

(13) 

where 

If we now represent the (J.l+ J.l-)-+ y e+e- decay amplitude in a 
standard form 

T ~v = F f~va{3 q q ( ) J.L+~- .... ye+e- ~+11-... yy* Ia 2{3' 15 

where F f + 
11
- ... Y.Y* is the form factor of the decay of the bound 

state ~ ~-) into a virtual (y*) and a real (y) photon and in 
(15) allow for the conservation law 

p = k I + k2 = q I + q 2 

specific for the Feynman-diagram technique, we get for 
F 

11
+ 

11
--+ y e+e- the following expression 

!ilk) 1 
F+ _ + _ =l611m a f--'P(k 1,k2\P)------
~~-+yee ~ (277)4 (kl-ql)2-m2 

J.l 

(16) 

( 17) 

The formula (17) contains the scalar part of the wave function 
(5) which is a solution of the Bethe-Salpeter equation with 

a kernel constructed out of the Feynman matrix elements of elec­
tromagnetic interaction of the system (~+~-). 

To study and solve the Bethe-Salpeter equation is a diffi­
cult problem. More convenient is a three-dimensional equation 
for the Bethe-Salpeter wave function depending on one time pa­
rameter,which has first been found by Logunov and Tavkhelidze/

7
/. 

The single-time wave function (in what follows denoted 
by- ) was introduced in /13/. In refs. /l3,l4/ it was defined 1n 
terms of the Bethe-Salpeter wave function 

-+ 

'P (x
1

, x2 ) < 0\ T ('P (x 1 ) 'P (x2 )) \M, K> 
(18) 

in the following way 

ipl x l + ip2 x2 
'fMK (p

1 
,p

2 
) = (d4x I d4 x

2 
e o(ApX l - r) o(Ap x2 - r) 'I'MK(X. ,x 2), (19) 

where Ap=P!(P2 ) 112 , P= p 1 +P 2 , P2
>0, and the invariant 

proper time r defines the space-like plane in the Minkowski 
space-time of proper times of particles r 1 "'Ap x 1 , r 2 =A p x2 
and a pr2per time of the system as a whole rc =APX • In formula 
( 18) \ M, K > is a state vector for a bound state as a single 
particle with mass M and momentum~. Due to translational inva-

iKX X X 
'PMK (xI • X2) = e 'I' ( 2'-jf), (X =XI + X2) that allows riance 

us to single out of '~'MK(PJ.P2) the wave function of relative 
motion of two particles 

----
Ko= V M2 + K 2 • 

and 

(2 I) 

and x = x
1 

- x
2

. By using the transformation law for fermion fie­
lds one can show that because of the o -function in (21) the 
wave fJnction of relative motion is a function only of a three­
dimensional covariant momentum of relative motion in the 
c.m. s/15/ 

0 ----+ 
P "' : (A~1 q) = (A-K

1 
p 1 }, A-~= (M,O), (22) 
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. /14/ 
~.e. 

(23) 

where 

(24) 

81-,2 (A K) are transformation matrices for bispinors in the 
"0 0 0 0 0 0 
-'0 -+ =t -+ -+ ;t d t' 1 c.m.s., x = x1 -x 2 , p 1 = -p 2 = 11 an, respec ~ve y, p 10 = 

0 0 

= P2o "'Po • 
In the momentum representation the single-time and Bethe-

Salpeter wave functions are related by 

(25) 

K-q ~ 
where q 0=""M.Since in the c.m.s. :r = O, i.e.q0• q0 , the 

relation (25) turns inte the definition of the single-time wave 
function given in ref,/12/, 

In refs.l 16 / for the wave function of two spinor particles 
(25) a quasipotential equation has been obtained which is pro-
~--.a--..1 ___ .._ ___ _! ___ ..__ ...... __ -C.._,__ ,_ _____ ..1 ----.&..--. 
J"-'-'-'-U. \JLL'-V "'"'P.J..&.I• ~'-""''-'-~ .....,.£.. 1-LI.'- LIV ...... LL\.ol. LliJoJI-'-LU. 

-3 
z (2rr) 

0 

( ~k 
2k0 

0 

(k). 

0 0 

(26) 

where the kernel V(p .~) is a quasipotential constructed, accor­
ding to the developed in/7,17/ recipe, from matrix elements of 
the relativistic scattering amplitude describing the interaction 
in (11 + 11-) -system. 

A formula for the decay amplitude of the bound state into 
two virtual y -quanta within the single-time description of 
two-particle bound states is derived in analogy with that for 
the amplitude, e.g., of the decay rr0 ->y*y* given in refs./4/ 
and /5,6/, As a result, in the single-time description we have, 
instead of (II) 

(27) 

6 

AtA2 -
where Ta -a2 (k1 • k 2 I q 1 • q2 ) is the Feynman amplitude of annihi la-
tion of the 11+ -meson with polarization a1 and 11- -meson with 
polarization a2 into two virtual Y -quanta with polarizations 
,\1 and ~. respectively. 

In what follows we shall make use of the single-time wave 
function with the spin structure/51: 

0 

(28) 

0 

where ¢BM(k) is a scalar function of the covariant vector of 
a particle momentum in the c.m.s. (22). The normalization con­
dition for the wave function W (p) that for the energy-indepen­
dent quasipotential reads 

(29) 

for the scalar function :imJP) is given by 

-3 -+ 

1
- -+ I 2 

(2rr) (d p c/JBM (p), = M, (30) 

where M is the bound state mass. 
Note that in/2/ for the descriotion of the decav width of 

the (11+11-) -system in a state with the total momentum J. its 
projection M, orbital moment L and total spin S the wave func­
tion ~JMLs(k) was chosen in the case of a state with S = 0 
in the form (the notation corresponds to Fig. 1): 

(31) 

and 

(32) 

where the wave function ¢LM(k) is a solution of the nonrelati­
vistic Schrodinger equation with orbital moment L. And the amp­
litude T AI ,\2 was taken in the form 

T ,\1,\ 2=, ,\1 ,\2. A11v 
• ,11 fv 

where 

(33) 

(34) 
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and 

N llll = y IL S (k l - q 1-; m) y v + y v S (k 2 - q2 ; m) y IL • (35) 

The constants Ct and C2 are defined by the normalization of 
wave functions and amplitudes. The factor t<1+y4) in (31) 
was introduced in/2/ because of the use of the approximation 
(32), and in this case the relativistic wave functions were 
expressed in terms of the nonrelativistic ones with large com­
ponents only (for details see /I/). 

It is evident that the expression (6) coincides with the 
formula (34) (taken from ref. 121 ) up to the factor L (1 + y4 ) 
which is not present in (6) because we are working witb the rela­
tivistic wave functions. In this way we observe that the sub­
stitution of (31) into (34) leads to the same formula (27) as 
calculations within the single-time formalism*. In what fol­
lows, as the wave function, we will use, instead of the Schro­
dinger nonrelativistic wave function like in /I,2/ an approxima­
te solution of the relativistic single-time equation (26) with 
a quasipotential corresponding to the one-photon exchange/IS/. 

3. CALCULATION OF THE DEPENDENCE OF THE FOID1 FACTOR 
FIL+IL--*Ye+e- ON THE SQUARED INVARIANT MASS OF AN e+e--PAIR 

• • • • It:. I • • • • • , --, • 
.tu; '-" ::;uuwu J.u· ·' Lilt:! ::;uu::;LJ.LULJ.Uil Ul. \l'J ana \'OJ J.IlLU 

(27), calculation of the Spur, and integration over angular 
variables in (27) result in the following expression for the 
IL+IL-.. y e+e- decay form factor 

- -I -I 
FIL+IL-->yy*(x) =(1-X) [1 + (4JN) J (x)]. 

This form factor is normalized to 

where f IL+IL- _, 2y is a _constant of .. the decay of the 
into two y -quanta, (FIL+IL-... yY'(x),. F (x)) 

and 

(36) 

(37) 

(38) 

0 

*The factor (2k0 )-I in (27) is due to different normalizations 
of nonrelativistic and relativistic wave functions. 
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41TI/>BM (xk)=k 1-¢8M (k 1-), k1 =lk 1 1, X=(p+ +P_)
2

/M!+IL-, 

k~=mllchxk' k 1 .. mllshxk' )(tr.=ln[(k'[+k1)/mll], 

(39) 

the rapidity Xlr. is conjugate to the muon relative momentum. 
The integral JN in (36) defines the decay constant 

f +- 2 .. 32·m ·M +,,.:a .JN 
ILIL->Y IL /L,... 

(40) 

and given by 

(41) 

To get a better understanding of the physical meaning of the 
decay constant fll+IL--. 2y (40), we represent the wave function 
in the form/19/ 

4> BM ()(Jr. ) = J dr • r • 4> BM (r) • sin (miL r x Jr.), (42) 

where the wave function 4>oM(r) is defined, instead of the usual 
Fourier transformation, by the expansion over unitary infinite­
dimensional representations of the Lorentz group, the group of 
motions in the Lobachevsky space/1 9/ 

0 

(1~ ~ .. ~ 2m, 

(2 11) 3 I 
--- ~ (k, r) • ¢ BM (k) 

21to 
(43) 

where the functions 

~-- 0 -1-irm -. ->2 
~ (~ ,r) = (k· n/mll) 1L (0 .::.; r <"" , n = (1, n), n = 1 ) (44) 

/20/ 
realize a unitary representation of the Lorentz group o • As-. -. 

I I 1 • • • 1' • ( ) t:(""k ~r eilr. •r is noted in 19 , in the nonre at~v~st~c ~m~t m_...., ., ,t)-> 

and the transformation (43) turns into the threedimen­
sional Fourier transformation from the momentum to three­
dimensional coordinate space. By substituting (42) into (41) we 
calculate the integral 

JN• = -"-. 4> (0), (45) 
2m2 BM 

IL 

where 4>oM(O) is the wave function in the relativistic configu­
rational representation at r = 0. Then, for the IL+IL--.2y decay 
constant (40) we get/5/: 
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two y-quanta including the radiation corrections was estimated 
to be 

r (e+e- ... 2y) = (0.7984 ± 0.0001)x 101%ec-1. (56) 

If r (11+11- ... 2y) is calculated by (54) with the new wave function 

1 
--- ·¢BM(r) 
yM +-

11 11 

(57) 

(instead of ¢BM(O)), which in the nonrelativistic limit is nor­
malized as follows 

(58) 

then, taking into account (54), the formula (55) becomes 

(59) 

where me is the electron mass. 

Using the function (e+e-),0) X BM \ · that describes the width of 
decav of hound (e+e-) l'lt:ltP into 

(59) by 

(60) 

+-
The wave function x<oMe >cr), the Fourier transform of a solu-
tion of the nonrelativistic Schrodinger equation with a Coulomb 
potential in the momentum space, is of the following form for 
the S -state at r = 0/22/ 

(61) 

Inserting (61) into (60) we arrive at the known expression for 
the width of the parapositronium decay into two photons (see, 
e. g. /22/) 

r (e+ e- ... 2y) = 1 . m . 5 2 e a • 
(62) 
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5. MODEL WAVE FUNCTION 

To calculate the form factor of the decay (11+/L-)-. ye+e- (36) 
and the probability of the decay 11+11--. 2y (53), we shall make 
use of the following relation for the relativistic wave func­
tion /IB/: 

¢BM (xk) = 
( ch xk - M + _ /2m ) 2 

ll ll 11 

that is an approximate solution to the quasipotential equa­
tion/IS/: 

ch xP (M11+11-!2m11 - ch x P) ¢ BM (x P) = 

2 
mil 

2• (271)2 
"" ( d Xk lch ()( - )(k) + Ch ()( + )(k) - 11 X 
0 p p 

X P + Xk 
x ( dy shyV0 (2mllshy/2)¢8 M(xk) 
lx,-xkl 

(63) 

(64) 

and has a correct nonrelativistic limit and asymptotics as 
v, ... oo /18/. In the expression (63) the normalization constant 
c; is defined by the condition (see the formula (30)) 

(65) 

In the equation (64) we make use of the following parametriza­
tion of the momentum transfer in the quasipotential/18/: 

(66) 

and 

chy .. ch )( p • ch )( k - <ii.; nk) sh )( p, sh )( k (67) 

and the following expression for the quasipotential 

V0 (2m11 sh(y /2)) = - :~a 1TU (68) 
m~sh2(y/2) 

corresponding to the one-photon exchange in electrodynamics /18/. 
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6. RESULTS OF THE NUMERICAL CALCULATION 

An analytic calculation of the form factor of the decay 
~+~-~ye+e- (36) with the wave function (63) is rather ~ifficult 
because of the composite integrand of (38), therefore F(x) has 
been calculated numerically. Before discussing the calculated 
F(x) we consider the function 

.. -1 
f(x, Xk) =(4 fd xk c/>BM (xk) xk) ln IX (x, x k)! c/>BM <x k) 

0 

entering into the expression (36) as follows 

F (x) = (1 - x)-
1 

[1 + j d xk f (x, xk )] • 

(69) 

(70) 

Due to the weak coupling in the(~+~-) -system, in the course 
of calculation of f(x, xk) we made use of the quantity M~+~- = 
: 2m as a mass of the (~+~-) bound state. In Fig. 2 we have drawn 
the ~dependence of f(x, Xk) on the muon rapidity Xk for some 
values of the squared invariant mass of a lepton pair x. It is 
seen that the function f(x.xk) is negative and its absolute 
values in the range 0 ~ Xk ~8 are smaller than unity. Co~se­
quently, the value of the integral 1 d Xk f (x, Xk) =-5 ·10- for 
0,01 ~ x $.0, IS being a negative addfltional term to unity in brac­
kets of (70), does not influence the behaviour of the form 
factor F(x) defined by the pole term (1- x)-1• 

Calculating r (u+ll- ... 2v) bv the formula (53) with the liSP of 

the function (63) we get the following value for the probability 
of the paramuonium decay into two y-quanta: 

+ - 12 -1 r (JL ~ ... 2y) = 1.648x10 sec . (71) 

Substituting (71) into (55) we obtain the value of the probabi­
lity of the decay e+e- ... 2y: 

that is in good agreement with experiment/241: 

rexp(e+e- -o 2y) = (0.799 ± 0.011)x10 10 sec-l . 

7. CONCLUSION 

In this paper we have shown that the form factor of the 

(72) 

(73) 

decay of the bound state of a (~+JL-) -pair into the e+e- -Dalitz 
pair and a y -quantum smoothly increases with the invariant mass 
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I. 

of the e+e--pair from a m1n1-
mal kinematically allowed to 
a maximal value. It is just 
the difference from a theoreti­
cally possible behaviour of 

~ 3 
the form factor of the decay 
17° ~ y e+e-/6/. The reason is. as 
follows: the Coulomb electro­
magnetic interaction in the 
~+~--system results in a weak 
coupling in that system, whe­
reas the pion, quark-antiquark 
system, is characterized by 

X 

-:;: 2 
~2 
X -I 

1 

a strong coupling. The total 
I. 6 x=Q01 decay width is calculated for 

xk the bound state of a ~+~--pair 
0 2 

Fig. 2 into two y -quanta. It is shown 
that the 
bability 

method as applied to the parapositronium gives the pro:: 
of the decay (e+ e-) ... 2y in agreement with experiment. 

The authors are grateful to A.V.Sidorov, V.N.Kapshay, 
M.A.Smondyrev for interest in the work and usefull comments. 
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