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I . INTRODUCTION 

This paper is a sequel to our work 1 11 (further referred to 
as I) on a systematic consideration in the standard model 
SU(2)L x U(l) x SU(3) c of parity nonconserving (PNC) MNN vertices 
(M = rr, p, cu) which determine the PNC NN potential. We calculate 
here constants h~,1,2 and h~· 1 (see I, sect. I). The invariant 
amplitude of the PNC transition N .. N'V (V = p,w) with the change 
of isospin by i = 0, I ,2 has the form 

* , PNC l ll I 
< VN I.H i iN> = - Mil (k). 

J(2rr)3 2k 0 (I) 

where Ell is the polarization vector of V. The constants we are 
interested in are related to the form factors h(k2 ) as follows 

hO,l=hO,l (0). 
w wpp (2) 

First estimates of the constants hv121 were based on the 
phenomenological VA form of the effective Hamiltonian and on 
the assumption of factorization of the amplitude (I): 

< VN'I J{ PNC IN > = !2 a I c b < v IVa IO> < N'l A bj.L IN> . 
a,b a ll (3) 

In ref. 131 this approximation was substantiated in the fra
mework of current algebra. In refs. 14•5/ it has been observed 
that within quark models the right-hand side of the expression 
(3) is not invariant under the Fierz transformation and determi
nes not all contributions to the factorizable (F) part of the 
amplitude (I). This shortcoming of the approximation (3) was 
eliminated in a modified factorization approach 15•61 based on 
the field theoretical consideration of the PNC VNN vertices. 
However, as the analysis performed in a number of papers (see, 
e.g. ,refs. 16 • 11 ) has shown, even with gluon corrections the 
constants h~ do not provide the agreement of theoretical and 
experimental results. 

l 



Another approach to the calculation of the constants hv 
in the Cabibbo weak interaction model has been proposed in 
ref.

181
. There the amplitudes (I) were expanded over irreducible 

representations of the group SU(6) w and were related to S -wave 
amplitudes of nonleptonic decays of hyperons. Values obtained 
within this approach for hv turn out to be very different from 
values of h~ calculated in the Cabibbo model. This situation 
was explained in ref. 191 

, in which SU(6) w results of ref./8/ 
were interpreted in terms of quark diagrams:values of h obtained 
. /8/ d . v 1n correspon to a nonfactor1zable (NF) parts of matrix 
elements <VN'JJ{PNCIN>and should be summed with hF.To calculate 
the NF contributions to the constants hv in the s~andard model 
in 

191 
the SU(6) w was completed by a nonrelativistic quark tech~i

que. In this approach, the NF parts of the constants were ex
pressed in terms of three parameters (b t• bv, ~ v) which were 
determined from the known S-wave amplitudes of nonleptonic 
decays (the parametercv was interpreted as a contribution of 
the quark sea to matrix elements). Besides, to get agreement 
with experimental data, further factors were introduced to hNF 
Values of h M obtained in 191 are known as the "best values" v ' 
(hb.v. ), 

MA direct calculation of hPF was attempted in refs.ll0,111. 
In these papers the NF contr1butions to h were approximated 
by pole contributions of P -odd nucleon r~sonances N* (1/2-), and 
matrix elements of PNC transitions N* ~N were calculated in 
the HIT bill> mnrlP1 ·U,1 ,a~ ~~ "NF <=--- , • 1111 • .. - -- a•p ...,.....,.._..uu ..1..1.1 HdVt:! Lfie Same 

signs as (h~F)b.v. , but in absolute value they are - 1.5 times 
as small as the latter. As a result, the constant h0 in 11 11 
practically disappears because the F and NF contribGtions cancel 
out. Results o£ 1111, however, should not be considered comple
tive: the MIT bag model may be inadequate for the calculation 
of nonstatic matrix elements < N I J{ PNCJ N*>. 

In this paper we shall find the NF contributions to constants 
hv in the scheme in which the matrix elements of the operator 
part of the effective Hamiltonian are defined by only valence 
quarks (see I, sects. 2,3) using the approximate SU(6) symmetry 
of the matrix elements <MB'JJ{PNCJB>NF (B,B' are baryons). hNFwill 
be connected with the know NF contributions to the S-wavevampli
tudes B-+ B' rr and calculated in the MIT bag model. This approach 
gives for h v values close to h tvv·, and at our value h rr"' 

- 1 hboV• - 3 TT (see I, sect. 3) allows us to come up to the experi-

mental results on PNC low-energy NN interactions without arbit
rary (fitting) parameters. 

In sect.2, we shall consider the overall structure of PNC 
VNN vertices and calculate the F parts of the constants h , 
In sect.3 we shall present the calculation of NF contribut~on 
to hv, and in sect. 4 the results will be discussed. 
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2. OVERALL STRUCTURE OF PNC VNN VERTICES. THE F PARTS 
OF CONSTANTS h v 

Like in I, sect. 3, we shall write the effective Hamiltonian 
J{PNC in the form 

J{PNC = V2 'C I CMN~MN' 
M,N 

1(\MN - -u = :qMqqNq: , 

and consider the partial amplitude 

(4) 

(5) 

(6) 

According to the accepted picture of PNC hadron-hadron interac
tions (see I) the matrix elements (6) are determined by the 
valence quarks, whereas contributions to the total amplitude 

M, = y 2 C I CMN M MN 
,.. M,N l.l (7) 

of the nonvalence quarks are taken into account in the coef
ficient functions of the effective Hamiltonian - cMN, 

~c~ u~ dppiy LU v 1n ~b) the reduction formula. Using then 
the standard representation for the interpolating field of p
and w -mesons 

fp _ ra 
Va 

II =-q.y -qj ,.. 2 I j.l 2 
mp 

(8) 

-+ ~ 

(a =0,1,2,3, vl.l"'Pj.l, V~=wj.l, T
0 = I, fp = 5.1 is the p 0 ... e+e

decay constant; a sum over the colour index i = 1,2,3 is car
ried out) and the Wick theorem, we come to tr~ following ex
pressions /5,6/ 

(9) 

iCIMN F - -
< VN' I v I N > = < v I q Mq I 0 > < N' I q Nq I N > -

(I O) 

- <Viii Qq I 0> < N 'I qRq I N > + l M --. N, Q ._. R I , 

MN NF 
<VN'Ie IN> (I I) 
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x <N'IT91L (x,O) + T61L(x,O)jN>. 

Here 

(I 2) 

(13) 

for other notation see I, sec. 3. 
We see that the amplitude <VN'IfMNIN>is represented by 

the sum of the F and NF parts invariant with respect to the 
Fierz transformations and defined by the expressions (10) and 
(II) and has the same quark structure as the amplitude 
<rrN'j()MNIN> (I, sect. 3). Diagrams for the expressions (10) and 
(II) are completely analogous to the diagrams for the PNC rrNN 
vertex (Fig. I in I). From comparison of (9)-(11) with (3) it 
is also seen that the approximation of factorization (3), and 
consequently approaches based on current algebra take into 
account only "separable" parts of matrix elements <VN'jf MN j N >F 
corresponding to the diagram (e) of Fig. I in I (with the change 
.. , • I' 

The expression (10) allows us to find the F parts of con
stants h v without any model constructions. Indeed, for valence 
quark nonzero matrix elements in the r.h.s. of (10) are reduced 
straighforward to the experimentally known matrix elements of 
hadron currents 

( 14) 

<N'jqy y5 i_qjN> 
IL 2 (I 5) 

(16) 

In the expressions (15), (16) gA = 1.25 is the axial constant 
of the neutron .B -decay, <; = (-D + 3F)/ g A ; from the experimental 
data on lepton decays of I f2+-baryons D .:: 0. 80, F = 0.45 /l2/ , 
hence <:.., 0.44. 

Using the explicit form of the operators of J{ PNC (see Ap
pendix in I), the Fierz identity (!.30) and formulae (10), 
(14)-(16), we get 

( bo)F =~G (2c27 _J_CS + 2CtS+_l_CA +ClA), 
p av.o+ -o -o y3 y3 

(h2 ) F = _ Js !_ G c 27 
p 3 v 2 • 

(hl ) F 
w 

where 

G v = ..;2·a rn 2 ~ = 2.5x 10-6 
• 

p f 
p 

..... A 'P .......... .,. o ,...... ..,... .....,. ~ ~ 

J• ~n~~u~n~LV~ vr 
. NF 
11 v 

( 17) 

(18) 

(19) 

(20) 

(21) 

As can be seen from the derivation of the expressions (11)
(13), the amplitudes <VN'jJ{PNCjN>NFare not reduced to one
particle matrix elements of local operators, and therefore, the 
NF contributions to constants hv cannot be calculated directly, 
for instance, with the use of the MIT bag model. In I, sect.3 
we have shown that to such matrix elements the amplitudes 
<rrB'j J{PNCjB>NFare reduced. Therefore we shall achieve O\lr aim 
if we shall determine the functional structure of both the 
amplitudes in terms of the same parameters*. Indeed, then the 
parameters will be fixed by the structure of matrix elements 
<rrB 'j}{PN9 B> NF known in the MIT bag model, and therefore the 
NF parts of all the constants hM will be determined through 
the overlapping integral of the bag quark wave functions. 

The functional structure of the amplitudes A:~ 'B = 
I 3 PNC NF 

= v (2rr) 2k 0 <MB'j}{ jB:> may be obtained by using the recipe 

*By the functional structure of an amplitude we mean its re
presentation by a linear combination of the coefficient func
tions c~. 
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proposed in 191 (see also ref. 1131 ). In the picture we have 
accepted for hadron-hadron interactions it is reduced to the 
following two approximations: 

· NF I. The representat~on of the amplitudes AMB'B via the quark 
transition amplitudes 

NF - PNC NF 
AMB'B=bMB'B(<(qq)M(qqq)B,IJ{ l(qqq)B> + (22) 

PNC _ · NF 
+Tic (M) <(qqq)B, IJ1 I (qqq)B C(qq)N > ], 

where bMB'Bare parameters; l(qVM> and l(qqq) 8 > are normalized 
states with quantum numbers of the meson M and baryon B construc
ted from the quark and antiquark and three quarks, respective
ly, with momenta p = p- = 0; 7Jc(M) is the charge phase of 
the isotopic multip'\et ~hich includes M[7Jc(") = I, Tlc(p) = 
= T/c(w) = -1], C is the charge-conjugation operator. 

2. The SU(6) symmetry of the amplitudes A NF, 
MB B 

Let us comment in brief points I and 2. According to I the 
spin, flavour and colour structure of the amplitudes are deter
mined by the quark matrix elements of the effective Hamiltonian 
J{ PNQ Diagrams of the quark transitions are shown in the Figure. 
Diagrams a), b) and c) correspond to the NF amplitudes b), c) 
and d) of Fig. I in I. The contribution of diagram a) to 
A~~'Ris described by the first term in (22). The transitions 

b) and c) include the creation of a quark-antiquark pair cor
related with the PNC 4q-interaction, and that is why they 
cannot be calculated straightforward. Therefore the contribu
tion of the diagram b) .int~ A~~'B is rep}aced, owing to.crossing 
symmetry, by the contr~but~on from the M -meson absorpt~on 
diagram d) that does not contain the qq vertex. This contribu
tion corresponds to the second term in (22). As to the diagram 
c), according to the relations (I. 15), (I.26) and (11)-(13) it 
may be neglected at all. Indeed, this diagram corresponds to 
the matrix elements of operators T9 • The amplitude A778 • 8 (T9), 

as is shown in I, sect.3, disappears as k ~o, and the amplitu
de AvN 'N (Tg) can be neglected because of the vector current 
conservation that may be verified by considering the longitu
dinal part of that amplitude. It then follows that the dominant 
contribution to A~~ 'B comes from diagrams a) and b). 

Parameters bMB'B in (22) mean the corresponding to diagram 
a) overlapping integrals of spatial parts of the hadron wave 

and 

Owing to approximation 2 these inte-

6 

8' B 

+ + 

(a) ( b) (C) 

:~ ~ M·CM (d) 

The PNC trans~twns (qqq)B ~ (qq)M + (qqq) B' • The black 
. 'l . uPNC (d) · circle denotes the effect~ve Ham~ ton~an ~ 1 ~s 

the diagram corresponding to the absorption of the 
meson M = CM. 

grals for all mesons M from the 35-ple~ and all baryons B,B' 
from the 56-plet have the same value, 1.e., bMB'B =b. N~te that 
the "integral" approximation 2 is weaker than t~e ap;rox~ma
tion of SU(6) symmetry of the hadron wave funct7ons · NF 

Thus, in the approximations I and 2 the amphtudes AMB'lfre 
determined by the quark amplitudes a), d) and one parameter 

b 'To control the accuracy with which the expression(22)determi
nes the functional structure of A:i•s• and consequently,t~e para
meter b , we shall consider as a benchmark the three ampl~tudes 

ANF ANF and A
77
N.,!'A'=I- (they enter into the sum rule (!.40)). 

77- pn ' 77-pA '""' 

Th Stants hNF and A(B 0 ·- )NFwe are interested in are 
e con M - (I 1 2) ) . 

defined by the matrix elements (see Eqs. (1), (2) and · · 

*So, the well-known violation of SU(6) symmetry of ;\~7 
meson wc.ve functions 11/IM(O)I 2 /11/IM'(O)I 2

- mM/mM' (see-+ ) 
in 2 is smoothed by integration of the functions 1/1 M (x 1- x2) 
with functions 'l'a· '1' 8 •• 
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(23) 

(24) 

where V{:,) ~s either p0
- or w- meson with the spin projection 

s 3 = O, Bt ~s the baryon with the spin projection s 3 = 1/2; in 
this notation h = A(n°). The results o~ calculations (see Ap-

** 1T -pendix) are as follows 

(25) 

(26) 

(27) 

(28) 

0 
NF r;;:: A ,.-;:- 6 6 .--

A(A_) =-v12G[c112 2b/v6 + (c 112 -c112 ) b/..j6], 
(29) 

- NF r;;:: A r;;-
A(S_) =-4..;12Gc 112 b/..;6. 

(30) 

As is seen from (25)-(30), the symmetric operators ~ 2 7, ~s and 
(.')lS (see I, sect.2) do not contribute to the NF parts of the 
amplitudes that is a consequence of the antisymmetry of the 
quark wave functions in the baryons (the so-called Pati-Woo 
argument/14/; see also Appendix). For this reason the constant 
h2 determined by the operator (.')~7 has only the F part. The 
c~nstants (h£•1) NF vanish since the contributions of uu and 
dd components of the vector meson wave functions to the matrix 
elements (23) are equal in absolute value and opposite in sign. 
Note that expressions (28-30) satisfy the sum rule (I.40), 
and from (26) and (28) the relation 

* For i = 2 
i -

hv/ v 6. 
**Note that the expressions for matrix elements <MB'IeMNIB>NF 

obtained in Appendix and in work/9/ coincide if in the latter we 
set bt =-hv = 4/3b and Cv = 0. (Besides, in Table III o£1 91 

one should change the sigh of the NF part of the matrix element 
<rr-pJ(.') 5 Jn>). 

8 

(h 1 )N F = _ y:I h N F 
p 3 1T 

(31) 

follows. 
According to Eq. (I.41) and 1151 the NF parts of the ampli

tudes h" and A(A~,E()in the MIT bag model have the following 
structure* 

(32) 

where the overlapping inte~rals of the quark wave functions of 
the MIT bag model I a= Ia['G , F 21 and lb"' lb [C2 ,F2 ] are determined 
after Eq. (I.41). This structure remains valid in any other mo
del of independent quarks, only values of Ia and Ib being chan
ged. With increasing mass of quarks the ratio !b/Ia decreases** 
and in the nonrelativistic limit it tends to zero. 

From comparison of (28)-(30) with (32)-(34) it is seen that 
the representation (22) reproduces exactly the functional struc
ture of AN~,8 in the nonrelativistic limit ( Ib = 0) with 
b/Js = 1 J'c. H I. .J o wP h,:mp 

"' .. u 

b/JS = (I+ Ib)/f , a TT (35) 

while the deviation -of (28)-(30) from (32)-(34) agpears only 
in the matrix elements of the mixed opeFators 0 5• • Therefore 
for the calculation of (h~)NF we make use of b given by the 
formula (35) whereas for (hl)NFwe keep the formula (31). In 
this way, we arrive at the following expressions for the 
constants 

(36) 

*In the limit of SU(3) symmetry mu = md= ID 8 = 0. 

**Of course the normalization Ia[G,.F] + Ib[G,F] 
conserved. 

(37) 

(38) 

is 
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4. RESULTS' 

So, we have found all the contributions to the constants 
h , According to (9) the total values of these constants are 
de~ermined by the sum hv = h \. + h~F. Their numerical values 

for the coefficient functions c~ obtained in I, sect.2 are pre
sented in Table I. In the last column for comparison the 
"best values" of hv /9/ are listed. As is seen from the table, 
our values of hv agree with h~v •• The ni/tative sign of the 
constant hp is due to its NF part, (hR) , that testifies the 
arguments given in/9/, Note that h0 differs from its bare 
value (h 0

) 0 by a factor of -15', and h 1P and h: even change 
p as"' 

their signes when quark-gluon interactions switched on. 

ho 
p 

hl 
p 

h2 
p 

ho 
w 

hl 
w 

Constants h v in the model SU(2)L x U(1) x SU(3) c • 
In brackets their values at a 8 = 0 are given 

Table I 

F 
hv x 10'7 h~F x 10 7 hv x 10 

7 h~'v'x 107 

12.9 -21.2 -8.3 -11.4 
(8.3) (-8.8) (-0.55) 

v.L4 V, l.J U,.J':I -v. 1':1 

(-0. IS) (-0. II) (-0, 26) 

-6.7 0 -6.7 -9.5 
(-II. I) (-II. I) 

-3.9 0 -3.9 -1.9 
(+2.2) (+2.2) 

-2.2 0 -2.2 -1.1 
(-2.2) (-2.2) 

It is interesting to find partial contributions to hv from 
charged and neutral currents (Table 2). Here hv (C.C.) is the 
parts of h v defined by charged currents; whereas hv (N.C.), by 
neutral currents (see formula (1.4)). 

From Table 2 it is seen that the neutral currents, in fact 
completely, determine the constants ht (like h", see (I.44)), 
increase by a factor of I. 3 lh v I and decrease by a factor of 
2.3 lh~l. As we shall show in part III of our work the 
values obtained for hv testify to the standard model SU(2)L x 
x U(1) x SU(3)c • 

10 

Table 2 

Contributions of charged (h v (C.C.)) and neutral 
(hv (N.C.)) currents to hv 

hy(C.C.) X 10 7 hv (N.C.) x 10 7 h vx 10 7 

ho 
p 6.2 - 2.1 - 8.3 

hl 
p 0.00 0.39 0.39 

h2 
p -15.5 8.8 - 6.7 

ho 
w 2.9 - 1.0 - 3.9 

hl 0.0 - 2.2 - 2.2 w 

To conclude, we will summarize main points and results of 
our calculation of h" and hv· 

The starting point of our scheme is the choice of a low 
point of renormalization of the operators of the effective 
Hamiltonian J{ PNC (see I, sect. 2). As a result, (in the lega-
L .:.i..~tut.:.c appLuximacion) naaron matr1.x elements ot these operators 
are determined only by valence quarks, whereas the contributions 
from all loops, including those of the sea quarks

0 
are taken 

into account in the coefficient functions of J{PN. Then PNC MNN 
vertices are represented by sums of contributions of two types 
different in the quark structure: hu= h~ + h:F, 

The calculation of the F parts of h" and h v does not require 
any model of confinement. Here, of the most interest is bF 
since it is proportional to such a fundamental quantity of the 
theory as <OjqqiO>.The F parts of hv are determined by the 
dominance of vector mesons in vector currents and are expressed 
only in terms of the experimentally known constants. 

To calculate NF parts of hu one should apply to a certain 
model of confinement (we make use of the MIT bag model). Unlike 
h~F the NF parts of hv cannot be calculated directly. For 
their calculation it is crucial that the matrix elements 
<VN' I.H PNCIN>NFand <"B'IJ< PNC I B>NF have the same quark structure. 
It is just this fact that has allowed us, by using an ap~roxima
te SU(6) symmetry of these matrix elements, to express h VF' 
like h:F, through the quark wave functions of the MIT bag model. 
The NF contributions are the most important in h 0 , the NF con
tributions to the constants h~ and h~·l turn outpto be zero. 

ll 



Our calculation of the constants h17 and h v does not contain 
arbitrary (fitting) parameters and artificial assumptions and 
is self-consistent. 

Experimental consequences to which the obtained set of the 
constants hM leads will be discussed in part III. 

We are grateful to S.B.Gerasimov for useful discussions. 

APPENDIX. Components of the matrix elements (23), (24). 

We shall present here results of the calculation of the 
matrix elements 

b < (qq)M (qqq)B' I(\ I (qqq) 8 >NF , 

b77 c(M) < (qqq)B, I<\ I (qqq)B c (q(i) M > NF, 

{ 

- b - d - • - lb - IJ. jd • q&q qcq -.ql&yiJ.y6q qjcY q ·• 

- b - d - jb - IJ. id (q&q qcq )'= :qi&yiJ.y6q qjcY q 

(A. I) 

(A.2) 

(A.3) 

(see (22)) corresponsing to the amplitudes (25)-(30). In (AI)
~A3) a,b,c,d =U,d,s, a s~mover colour indices i,J-=1,2,3 
1s assumed. The states l(qq)M> and l(qqq) ,> have the following 
form B 

(A.4) 

(A.5) 

(A. 6) 

+ +lA 
where b 1~(d ) are operators of creation of a quark (an anti-
quark) wlth the momentum p = 0; A, B, C = I, 2, .•. , 6 are SU(6) 
indi7es:l=AuBt<ut),2=u.<u.) , •.• , 6=s.<s.); 9ABC are sym
metrlc 1n , ,C. The phases of baryon states are taken accor
ding to 1 181. The phases of l1r-> and I Vt)> are fixed by the 
matrix elements (see (14) and (I. 14)): 

0 

(A. 7) 

(A.8) 

12 

where (VI!)~= :q1ayllqib:; (AIL)~= :ii1ayi-Ly5 q1b:.Now we shall 
list nonzero components of the functions BABCof the baryons 
p , n ' A ' s-; and functions M A of the mesons p 

0 
' w IT t t t B ~) (oY 

8 114 = -28123 - _1_ 
p t: - 9..;2' 

=-1': 

0 .• 
p (o) . 

IT : 

8 233 = _ 28 134 

8
145 = _ 

8 
235 

1 
g.Jf' 
1 

i 

.!Z ' 

1 ---
2/3 

-2 -1 i 
[ M 3 = - M 4 = - -=-' 11 C (IT) = l J ; 

y6 

the isotriplets lpl and l"l have the form 

lp I 

11
0

(p) = -1], 

11 (w) =-1], c 

(A. 9) 

(A. 10) 

(A. II) 

Contributions of the operators q qbq qd to the amplitudes 
(25)-(30) are presented in Tables Af, At. Matrix elements of 
the operators (q qbq qd)', due to the antisymmetry of the sta-

a c · 1 · te l(qqq)
8

> in colour indices, obey the follow1ng re at1on 

(A. 12) 

Then it follows that the matrix elements of the symmetric opera
tors as~ <faqbqcqd +(<faqbqcqd)vanish (see 1141 ). 
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Table A2. 

"15 
~ ~ ~ 

~ 
~ ~ 

1,3 ~~ -;rl~ N~~ "' ·-~~ -... ~ 0 

I~ 
-1~ -u~ o 

Contributions of the matrix elements A -(0) 

...:: I I I I 

M,M q 

to the amplitudes (24) with ~S = 1 (continued on the next page) 
QJ .... 

..0 
t1l ,....... '3 ~ E-< ~ ~ ~ ~ I I N ~ ~ ~ ~ I uuas "Jsuu 

'-"' "15 ~I~~~~ N~ -1~-~0 --~- ... ~ 0 
;;; rJ'f tJ suild usilu 

~ I:S ,....... I ttl I,., I I I 
("") 

N ,·A 
'-"' -\ 0 0 0 -i.' 2 
til 
QJ :l 

NF 

"' ~ ~ ~ 
~ <n-p,l 0~ lA,) A- _£g it ::s I::S ~ ~ 0 0 -i:.l 

.1-J Nl~ N~~~~ ·-1~ ·-~ ·N1~ 
M 

•.-l "15 0 c 0 2 2 2 
.... ns 
~ I AM+ AM -i. 6 3c.' g 0 0 _,;~ 

2 2 
QJ 

.s:: 
.1-J ;:: 

I 
qo 

0 
qo ~ ~ 

~ ~ AM i.l 3il 0 -~t 
.1-J :s 

.;rj~ "t~ oa\~ 0 0 -.. ~- .. ~ ·c;;~ 0 

13 
0 2 2 

I I I N~ 
2 

........ 
0' 

,., 1\') l't'l (n-A,I o, I=:;> A- 0 0 0 0 
0 

0 
M 

'-"' 

I::& 

~ AM+ A~ I ~8 
::::& 

i.l 0 0 - 3t. t 
< ..... -

2 2 
;:, ~ ;:, 

.., 
I~~' 

.... ..... I ..... ..... I ..... ..... I I I 
til 
.1-J 
~ 
QJ s 

::s I 
QJ I I I I .... I iluus (/rJ(J s ([~(] d 
QJ 

a~~s. s~ds 
:< 13 

•.-l ::s 0 0 0 0 

'"' 
0 0 0 0 0 

.1-J 13 

~ AM -il 0 0 0 0 
2 

QJ 
.s:: <n-P.I 0 II\ ~F .1-J AN i.t i..l -.i.~ 0 
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Ay6oBHK B.M., 3eHKHH C.B. E2-83-615 
CaMocornacoeaHH~H pac4eT cna6~x KOHCTaHT a HecoxpaH~~~Hx 4eTHOCTb 
~AepH~X CHnax. H4 B pNN H wNN eepWHHaX 

Ha ocHoee 3$$eKTHBHoro HecoxpaH~~~ero 4eTHOCTb /H4/ raMHnbTOHHaHa cTaH
AaPTHOH MOAenH SU(2) L x U(l) x SU(3) c. nony4eHHoro a HaweH npeA~Ay~e~ pa6oTe, 
paCCMOTpeHa KBapKOBa~ CTPYKTypa H4 pNN H wNN BepwHH. 6e3 CB060AH~X 
/nOArOH04H~X/ napaMeTpOB paCC4HTaH~ BCe BKnaA~ B KOHCTaHT~ h~,l,2 H h~l , 

BXOA~~He B H4 NN noTeH4Han. He$aKTOPH3yeM~e /H$/ BKnaA~ B 3TH KOHcTaHT~ 
pacC4HTaH~,Hc~oA~ H3 npH6nH*eHHO~ SU(6) CHMMeTpHH MaTpH4H~x 3neMeHTOB 
< MB'I}( H'l l B>H,!pB MOAenH Macca4yCeTCKoro MewKa. nony4eHH~e 3Ha4eHH~ hp,w Haxo
A~TC~ B cor nacHH c "ny4WHMH 3Ha4eHH~MH" h p, <u Desplanques, Donoghue H Holstein. 

Pa6oTa B~nonHeHa B na6opaTOPHH TeopeTH4eCKO~ ¢H3HKH 0~~~-

Dubovik V.M., Zenkin S.V. E2-83-615 
Self-Consistent Calculation of the Weak Constants in the Parity 
Nonconserving Nuclear Forces. PNC in the pNN and <uNN Vertices 

The quark structure of the parity nonconserving (PNC) pNN and <uNN ver
tices is considered for the effective PNC Hamiltonian of the standard model 
SU(2h xU(l) x SU(3) c obtained in our previous paper. Without arbitrary 
(fitting) parameters all the contributions to the constants hO.l,2 and 
h~ 1 of the PNC NN potential are calculated. NonfactorizableP(NF) contribu
tions to the constants are calculated proceeding from the approximate SU(6) 
symmetry of matrix elements <MB' r }(PNc i B >N~in the f~IT baq model.The obtained 
values of h

0
•
1

•
2 and h 

0
•
1 agree with the "best values" of h of p w p,<u Desplanques, Donoghue and Holstein. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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