

сОобщвния объединенного
 института ядериых исследований

$6425 / 83$

E2-83-615

V.M.Dubovik, S.V.Zenkin*

SELF-CONSISTENT CALCULATION
OF THE WEAK CONSTANTS
IN THE PARITY NONCONSERVING NUCLEAR FORCES.

PNC in the PNN and ω NN Vertices

[^0]1. INTRODUCTION

This paper is a sequel to our work ${ }^{1 /}$ (further referred to as I) on a systematic consideration in the standard model $S U(2)_{1} \times U(1) \times S U(3)$ of parity nonconserving (PNC) MNN vertices $(M=\pi, \rho, \omega)$ which determine the PNC NN potential. We calculate here constants $h_{\rho}^{0,1,8}$ and $h_{\omega}^{0,1}$ (see I, sect. 1). The invariant amplitude of the PNC transition $N \rightarrow N^{\prime} V(V=\rho, \omega)$ with the change of isospin by $1=0,1,2$ has the form

$$
\begin{equation*}
\left\langle\mathrm{VN}^{\wedge} \mid \mathrm{H}_{\mathrm{i}}^{\text {PNG }} \mathrm{N}_{\mathrm{N}}\right\rangle=\frac{e^{* \mu}}{\sqrt{(2 \pi)^{8} 2 k^{\circ}}} M_{\mu}^{1}(\mathrm{k}) . \tag{1}
\end{equation*}
$$

$$
M_{\mu}^{l}(k)=\tilde{N}^{\prime}\left[h_{V N^{\prime} N^{\prime}}^{1}\left(k^{2}\right) \gamma_{\mu}+i f_{V N^{\prime} N}^{i}\left(k^{2}\right) k_{\mu}+g_{V N^{\prime} N^{\prime}}^{i}\left(k^{2}\right) \sigma_{\mu N} k^{\nu}\right] \gamma_{5} N
$$

where ϵ^{μ} is the polarization vector of V. The constants we are interested in are related to the form factors $h\left(k^{2}\right)$ as follows

$$
\begin{equation*}
h_{\rho}^{0,1}=h_{\rho p p}^{0,1}(0), h_{\rho}^{2}=\sqrt{6} h_{\rho p p}^{2}(0), \quad h_{\omega}^{0,1}=h_{\omega p p}^{0,1}(0) . \tag{2}
\end{equation*}
$$

First estimates of the constants $h^{1 / /}$ were based on the phenomenological VA form of the effective Hamiltonian and on the assumption of factorization of the amplitude (1):

$$
\begin{equation*}
\left\langle V N^{\prime}\right| H^{P N C}|N\rangle=\sqrt{2} G \sum_{a, b} C_{a b}\langle V| V_{\mu}^{a}|O\rangle\left\langle N^{\prime}\right| A^{b \mu}|N\rangle . \tag{3}
\end{equation*}
$$

In ref. ${ }^{/ 3 /}$ this approximation was substantiated in the framework of current algebra. In refs. $14,5 /$ it has been observed that within quark models the right-hand side of the expression (3) is not invariant under the Fierz transformation and determines not all contributions to the factorizable (F) part of the amplitude (1). This shortcoming of the approximation (3) was eliminated in a modified factorization approach $/ 5,8 /$ based on the field theoretical consideration of the PNC VNN vertices. However, as the analysis performed in a number of papers (see, e.g., refs. $/ 6,7 /$) has shown, even with gluon corrections the constants h_{V}^{P} do not provide the agreement of theoretical and experimental results.

Another approach to the calculation of the constants $h y$ in the Cabibbo weak interaction model has been proposed in ref. ${ }^{8 /}$. There the amplitudes (1) were expanded over irreducible representations of the group $\operatorname{SU}(6) w$ and were related to S-wave amplitudes of nonleptonic decays of hyperons. Values obtained within this approach for h_{v} turn out to be very different from values of $\mathrm{h}_{\mathrm{v}}^{\mathrm{F}}$ calculated in the Cabibbo model. This situation was explained in ref. ${ }^{\prime 9 /}$, in which $\mathrm{SU}(6)_{w}$ results of ref. ${ }^{18 /}$ were interpreted in terms of quark diagrams: values of h_{v} obtained in $/ 8 /$ correspond to a nonfactorizable (NF) parts of matrix elements < VN ${ }^{\circ}\left|\mathcal{H}^{P N C}\right| N$, and should be summed with $h \underset{\mathrm{~V}}{\mathrm{~F}}$. To calculate the NF contributions to the constants h_{v} in the standard model, in ${ }^{9 /}$ the $\operatorname{SU}(6)$ was completed by a nonrelativistic quark technique. In this approach, the $N F$ parts of the constants were expressed in terms of three parameters ($\vec{b}_{t}, \vec{b}_{v}, \vec{c}_{v}$) which were determined from the known S-wave amplitudes of nonleptonic decays (the parameter $\overrightarrow{\mathbf{c}}_{\nabla}$ was interpreted as a contribution of the quark sea to matrix elements). Besides, to get agreement with experimental data, further factors were introduced to $h_{V}^{N F}$. Values of h_{M} obtained in ${ }^{\prime \prime /}$ are known as the "best values" (h ${ }_{\mathrm{M}}^{\mathrm{b} \cdot \mathrm{v}_{\mathrm{C}}}$).

A direct calculation of $\mathrm{h}_{\rho}^{\mathrm{NF}}$ was attempted in refs./10,11/. In these papers the $N F$ contributions to h_{ρ} were approximated by pole contributions of P -odd nucleon resonances $\mathrm{N}^{*}\left(1 / 2^{-}\right)$, and matrix elements of PNC transitions $\mathrm{N}^{*} \rightarrow \mathrm{~N}$ were calculated in
 signs as (h_{ρ}^{NF}) b.v., but in absolute value they are -1.5 times as small as the latter. As a result, the constant $h^{\circ}{ }_{\rho}$ in practically disappears because the F and NF contributions cancel out. Results of $/ 11 /$, however, should not be considered completive: the MIT bag model may be inadequate for the calculation of nonstatic matrix elements $\langle N| \mathcal{H}^{\mathrm{PNC}}\left|\mathrm{N}^{*}\right\rangle$.

In this paper we shall find the NF contributions to constants h_{V} in the scheme in which the matrix elements of the operator part of the effective Hamiltonian are defined by only valence quarks (see I, sects. 2,3) using the approximate $\operatorname{SU}(6)$ symmetry of the matrix elements $\left.<\mathrm{MB}^{\prime}\left|\mathcal{H}^{P N C}\right| \mathrm{B}\right\rangle^{N F}$ (BB^{\prime} are baryons). $\mathrm{h}_{\mathrm{V}} \mathrm{F}_{\text {will }}$ be connected with the know NF contributions to the S-wave amplitudes $B \rightarrow B^{\prime} \pi$ and calculated in the MIT bag model. This approach gives for h_{v} values close to $h{ }_{v}^{b_{v}}$, and at our value $h_{\pi}=$ $\simeq \frac{1}{3} h_{\pi}^{\text {b.v. }} \quad$ (see I, sect. 3) allows us to come up to the experimental results on PNC low-energy NN interactions without arbitrary (fitting) parameters.

In sect.2, we shall consider the overall structure of PNC VNN vertices and calculate the F parts of the constants $h y$. In sect. 3 we shall present the calculation of NF contribution to h_{V}, and in sect. 4 the results will be discussed.
2. OVERALL STRUCTURE OF PNC VNN VERTICES. THE F PARTS OF CONSTANTS h_{V}

Like in I, sect. 3, we shall write the effective Hamiltonian $\mathcal{H}^{P N C}$ in the form

$$
\begin{align*}
& \mathcal{H}^{\mathrm{PNC}}=\sqrt{2} \mathrm{G} \underset{\mathrm{M}, \mathrm{~N}}{\Sigma} \mathrm{C}^{\mathrm{MN}} \mathcal{C}^{\mathrm{MN}}, \tag{4}\\
& \mathcal{O}^{\mathrm{MN}}=: \overline{\mathrm{q} M q \overline{\mathrm{q}} \mathrm{Nq}:}, \tag{5}
\end{align*}
$$

and consider the partial amplitude

$$
\begin{equation*}
\left\langle\mathrm{VN}^{\cdot}\right| \mathcal{C}^{\mathrm{MN}}|\mathrm{~N}\rangle=\frac{\epsilon^{* \mu}}{\sqrt{(2 \pi)^{9} 2 \mathbf{k}^{\circ}}} M_{\mu}^{\mathrm{MN}} \tag{6}
\end{equation*}
$$

According to the accepted picture of PNC hadron-hadron interactions (see I) the matrix elements (6) are determined by the valence quarks, whereas contributions to the total amplitude

$$
\begin{equation*}
M_{\mu}=\sqrt{2} \mathrm{G}{\underset{\mathrm{M}, \mathrm{~N}}{ } \mathrm{C}^{\mathrm{MN}} \mathrm{M}_{\mu}^{\mathrm{MN}}, ~}_{\text {N }} \tag{7}
\end{equation*}
$$

of the nonvalence quarks are taken into account in the coefficient functions of the effective Hamiltonian - CMN.

Lei us appiy to v in (0) the reduction formula. Using then the standard representation for the interpolating field of $\rho-$ and ω-mesons

$$
\begin{equation*}
\mathrm{v}_{\mu}^{\mathrm{a}}=\frac{\mathrm{f}_{\rho}}{\mathrm{m}_{\rho}^{2}} \overline{\mathrm{q}}_{\mathrm{i}} y_{\mu} \frac{\gamma^{\mathrm{a}}}{2} \mathrm{q}_{\mathrm{i}} \tag{8}
\end{equation*}
$$

($\mathrm{a}=0,1,2,3, \overrightarrow{\mathrm{~V}}_{\mu}=\vec{\rho}_{\mu}, \mathrm{V}_{\mu}^{\circ}=\omega \mu, r^{\circ}=1, \mathrm{f}_{\rho}=5.1$ is the $\rho^{\circ} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ decay constant; a sum over the colour index $i=1,2,3$ is carried out) and the Wick theorem, we come to tho following expressions ${ }^{\text {/5,6/ }}$

$$
\begin{align*}
& \left\langle\mathrm{VN}^{\prime}\right| \mathcal{C}^{\mathrm{MN}}|\mathrm{~N}\rangle=\left\langle\mathrm{VN}^{\prime}\right| \mathcal{C}^{\mathrm{MN}}|\mathrm{~N}\rangle^{\mathrm{F}}+\left\langle\mathrm{VN}^{\prime}\right| C^{\mathrm{MN}}|\mathrm{~N}\rangle^{\mathrm{NF}}, \tag{9}\\
& \left\langle\mathrm{VN}^{\prime}\right| \mathcal{C}^{\mathrm{MN}}|\mathrm{~N}\rangle=\langle\mathrm{V}| \overline{\mathrm{q}} \mathrm{Mq}|0\rangle\left\langle\mathrm{N}^{-}\right| \overline{\mathrm{q}} \mathrm{Nq}|\mathrm{~N}\rangle- \tag{10}\\
& -\langle V| \bar{q} Q q|0\rangle\left\langle N^{\prime}\right| \bar{q} R q|N\rangle+\{M \leftrightarrow N, Q \leftrightarrow R\},
\end{align*}
$$

$$
\left.x<N^{\prime}\left|T_{9 \mu}(x, 0)+T_{6 \mu}(x, 0)\right| N\right\rangle
$$

Here

$$
\begin{align*}
\mathrm{Q}_{\mathrm{AB}} \times \mathrm{R}_{\mathrm{CD}} & =\mathrm{M}_{\mathrm{AD}} \times \mathrm{N}_{\mathrm{CB}}, \\
\mathrm{~T}_{9 \mu}(\mathrm{x}, 0) & =: \overline{\mathrm{q}}(\mathrm{x}) \gamma_{\mu} \frac{r^{\mathrm{a}}}{2} \overline{\mathrm{q}}(\mathrm{x}) \mathrm{qMq} \overline{\mathrm{q}} \mathrm{Nq}:, \tag{12}\\
\mathrm{T}_{B \mu}(\mathrm{x}, 0) & =-\mathrm{i}:\left[\overline{\mathrm{q}} \mathrm{MS}(-\mathrm{x}) \gamma_{\mu} \frac{r^{\mathrm{a}}}{2} \mathrm{q}(\mathrm{x})+\right. \\
& \left.+\overline{\mathrm{q}}(\mathrm{x}) y_{\mu} \frac{r^{\mathrm{a}}}{2} \mathrm{~S}(\mathrm{x}) \mathrm{Mq}\right] \overline{\mathrm{q} N q}:+\{\mathrm{M} \leftrightarrow \mathrm{~N}\} ; \tag{13}
\end{align*}
$$

for other notation see I, sec. 3 .
We see that the amnlitude $\left\langle V N^{\prime}\right| C^{M N}|N\rangle$ is represented by the sum of the F and $N F$ parts invariant with respect to the Fierz transformations and defined by the expressions (10) and (11) and has the same quark structure as the amplitude $<\pi N^{\prime}\left|O^{M N}\right| N>(I$, sect. 3). Diagrams for the expressions (10) and (II) are completely analogous to the diagrams for the PNC π NN vertex (Fig. 1 in I). From comparison of (9)-(11) with (3) it is also seen that the approximation of factorization (3), and consequently approaches based on current algebra take into account only "separable" parts of matrix elements <VN'|C MN $\mid N>F$ corresponding to the diagram (e) of Fig. 1 in I (with the change $\overline{-}$. \because.

The expression (10) allows us to find the F parts of constants h_{v} without any model constructions. Indeed, for valence quark nonzero matrix elements in the r.h.s. of (10) are reduced straighforward to the experimentally known matrix elements of hadron currents

$$
\begin{align*}
& \left\langle\mathrm{V}^{\mathrm{a}}\right| \overline{\mathrm{q}}_{\mathrm{i}} \gamma_{\mu} \frac{\tau^{\mathrm{b}}}{2} \mathrm{q}_{\mathrm{j}}|0\rangle=\frac{1}{3} \delta_{\mathrm{ij}} \delta^{\mathrm{ab}} \frac{\epsilon^{* \mu}}{\sqrt{(2 \pi)^{g} 2 \mathrm{k}^{0}}} \frac{\mathrm{~m} \frac{2}{\rho}}{\mathrm{f}_{\rho}}, \tag{14}\\
& \left\langle\mathrm{N}^{\prime}\right| \overline{\mathrm{q}} \gamma_{\mu} \gamma_{5} \frac{\vec{t}}{2} \mathrm{q}|\mathrm{~N}\rangle=\mathrm{g}_{\mathrm{A}^{\prime}} \overline{\mathrm{N}}^{\prime} \gamma_{\mu} \gamma_{5} \frac{\vec{r}}{2} \mathrm{~N}, \tag{15}\\
& \left\langle\mathrm{~N}^{\prime}\right| \overline{\mathrm{q}} \gamma_{\mu} \gamma_{5} \frac{\tau^{0}}{2} \mathrm{q}|\mathrm{~N}\rangle=\zeta \mathrm{g}_{\mathrm{A}^{\prime}} \overline{\mathrm{N}}^{\prime} \gamma_{\mu} \gamma_{5} \frac{\tau^{0}}{2} \mathrm{~N} . \tag{16}
\end{align*}
$$

In the expressions (15), (16) $\mathrm{g}_{\mathrm{A}} \approx 1.25$ is the axial constant of the neutron β-decay, $\zeta=(-D+3 F) / g_{A}$; from the experimental data on lepton decays of $1 / 2^{+}$-baryons $D=0.80, F=0.45^{12 /}$ hence $\zeta=0.44$.

Using the explicit form of the operators of $H^{P N C}$ (see Appendix in I), the Fierz identity (I.30) and formulae (10), (14)-(16), we get

$$
\begin{align*}
& \left(h_{\rho}^{o}\right)^{F}=\frac{2}{3} G_{v}\left(2 c_{o}^{27}+\frac{2}{\sqrt{3}} c_{o}^{S}+2 c^{1 S}+\frac{1}{\sqrt{3}} c_{o}^{A}+c^{1 A}\right) \tag{17}\\
& \left(h_{\rho}^{1}\right)^{F}=\frac{1}{3} G_{v} \zeta\left(4 c_{1}^{27}+8 c_{1}^{S}-c_{1}^{5}-3 c_{1}^{6}\right) \tag{18}\\
& \left(h_{\rho}^{2}\right)^{F}=-\sqrt{6} \frac{8}{3} G_{v} c_{2}^{27} \tag{19}\\
& \left(h_{\omega}^{0}\right)^{F}=\frac{2}{3} G_{v} \zeta\left(8 c_{o}^{27}+2 \sqrt{3} c_{o}^{S}+6 c^{1 S}--\frac{1}{\sqrt{3}} c_{o}^{A}-c^{1 A}\right), \tag{20}\\
& \left(h_{\omega}^{1}\right)^{F}=\frac{1}{3} G_{v}\left(4 c_{1}^{27}+8 c_{1}^{S}+c_{1}^{5}+3 c_{1}^{B}\right) \tag{21}
\end{align*}
$$

where

$$
\mathrm{G}_{\mathrm{V}}=\sqrt{2} \mathrm{Gm}_{\rho}^{2} \frac{\mathrm{~g}_{\mathrm{A}}}{\mathrm{f}_{\rho}} \simeq 2.5 \times 10^{-6}
$$

As can be seen from the derivation of the expressions (11)(13), the amplitudes $\left\langle V^{\prime}\right| \mathcal{H}^{P N C}|N\rangle N F$ are not reduced to oneparticle matrix elements of local operators, and therefore, the NF contributions to constants h v cannot be calculated directly, for instance, with the use of the MIT bag model. In I, sect. 3 we have shown that to such matrix elements the amplitudes $\left.<\pi B^{\prime}\left|H^{P N C}\right| B\right\rangle^{N} F$ are reduced. Therefore we shall achieve our aim if we shall determine the functional structure of both the amplitudes in terms of the same parameters*. Indeed, then the parameters will be fixed by the structure of matrix elements $<\pi B^{\prime} \mid H^{P N G B}>^{N F}$ known in the MIT bag model, and therefore the NF parts of all the constants h_{M} will be determined through the overlapping integral of the $b a g$ quark wave functions.

The functional structure of the amplitudes $A_{M B}^{N F}{ }_{M}=$ $\left.=\sqrt{(2 \pi)^{3} 2 k^{\circ}}<M B^{\prime}\left|\mathcal{H}^{P N C}\right| B\right\rangle^{N F}$ may be obtained by using the recipe

[^1]proposed in ${ }^{\text {/ } / /}$ (see also ref. ${ }^{13 /}$). In the picture we have accepted for hadron-hadron interactions it is reduced to the following two approximations:

1. The representation of the amplitudes $A_{M B}^{N F}{ }^{N}$, via the quark transition amplitudes

$$
\begin{align*}
A_{M B^{\prime} B}^{N F} & =b_{M B^{\prime} B}\left[\left\langle(q \bar{q})_{M}(q q q)_{B^{\prime}}\right| \mathcal{H}^{\mathrm{PNC}}\left|(\mathrm{qqq})_{B^{\prime}}\right\rangle^{N F}+\right. \tag{22}\\
& \left.\left.+\eta_{C}(\mathrm{M})<(\mathrm{qqq})_{B^{\prime}} \cdot\left|\mathcal{H}^{\mathrm{PNC}}\right|(\mathrm{qqq})_{B} C(\mathrm{q} \bar{q})_{N^{\prime}}\right\rangle^{N F}\right],
\end{align*}
$$

 states with quantum numbers of the meson M and baryon B constructed from the quark and antiquark and three quarks, respective1 y , with momenta $\overrightarrow{\mathrm{p}}_{\mathrm{q}}=\overrightarrow{\mathrm{p}}_{\overrightarrow{\mathrm{q}}}=0 ; \eta_{\mathrm{C}}(\mathrm{M})$ is the charge phase of the isotopic multiplet which includes $\mathrm{M}\left[\eta_{\mathrm{C}}(\pi)=1, \eta_{\mathrm{C}}(\rho)=\right.$ $=\eta_{\mathrm{C}}(\omega)=-11, \mathrm{C}$ is the charge-conjugation operator.
2. The $\operatorname{SU}(8)$ symmetry of the amplitudes $A N F$,

Let us comment in brief points 1 and 2. According to 1 the spin, flavour and colour structure of the amplitudes are determined by the quark matrix elements of the effective Hamiltonian $\mathcal{H P N C}$. Diagrams of the quark transitions are shown in the Figure Diagrams a), b) and c) correspond to the NF amplitudes b), c) and d) of Fig. 1 in . The contribution of diagram a) to $A_{M B \prime}^{N F}{ }^{N}$ is described by the first term in (22). The transitions b) and c) include the creation of a quark-antiquark pair correlated with the PNC $4 q$-interaction, and that is why they cannot be calculated straightforward. Therefore the contribution of the diagram b) into $A_{M B}^{N F}$, is replaced, owing to crossing symmetry, by the contribution from the $\overline{\mathrm{M}}$-meson absorption diagram d) that does not contain the $q \bar{q}$ vertex. This contribution corresponds to the second term in (22). As to the diagram c), according to the relations (I.15), (I.26) and (11)-(13) it may be neglected at all. Indeed, this diagram corresponds to the matrix elements of operators T_{9}. The amplitude $\mathrm{A}_{\pi \mathrm{B}^{\prime}{ }^{\prime} \mathrm{B}}\left(\mathrm{T}_{9}\right)$, as is shown in I, sect.3, disappears as $k \rightarrow 0$, and the amplitude $A_{\text {vnN }}\left(T_{9}\right)$ can be neglected because of the vector current conservation that may be verified by considering the longitudinal part of that amplitude. It then follows that the dominant contribution to $A_{M B}^{N}{ }^{N}$, comes from diagrams a) and b).

Parameters $\mathrm{b}_{\text {MB' }}$ in (22) mean the corresponding to diagram a) overlapping integrals of spatial parts of the hadron wave functions $\psi_{M}\left(\vec{x}_{1}-\vec{x}_{2}\right), \Psi_{B} \cdot\left(\vec{y}_{1}-\frac{\vec{y}_{2}+\vec{y}_{3}}{2},, \vec{y}_{2}-\vec{y}_{3}\right) \quad$ and $\Psi_{B}\left(\vec{z}_{1}-\frac{\vec{z}_{2}+\vec{z}_{3}}{2}, \vec{z}_{2}-\vec{z}_{8}\right)$. Owing to approximation 2 these inte-

The PNC transitions $(\mathrm{qqq})_{\mathrm{B}} \rightarrow(\mathrm{q} \overline{\mathrm{q}})_{\mathrm{M}}+(\mathrm{qqq})_{\mathrm{B}^{\prime}}$. $_{\mathrm{PNC}}$ The black circle denotes the effective Hamiltonian $H^{P N C}$; (d) is the diagram corresponding to the absorption of the meson $\overline{\mathrm{M}}=\mathbf{C M}$.
grals for all mesons M from the $35-\mathrm{plet}$ and all baryons B, B° from the 56 -plet have the same value, i.e., $b_{M B^{\prime}}=b$. Note that the "integral" approximation 2 is weaker than the approximation of $\operatorname{SU}(6)$ symmetry of the hadron wave functions*.

Thus, in the approximations 1 and 2 the amplitudes $A_{M B}^{N F}{ }^{N} \mathrm{E}^{\text {are }}$ determined by the quark amplitudes a), d) and one parameter b .

To control the accuracy with which the expression(22)determines the functional structure of $A_{\pi B}^{N F} B^{\prime}$, and consequently, the parameter b, we shall consider as a benchmark the three amplitudes $A_{\pi^{-}}^{N F}, A_{\pi^{-}}^{N F} \Lambda^{N}$ and $A_{\pi^{-}}^{N F} \Xi^{-}$(they enter into the sum rule (I.40)).

The constants $h_{M}^{N F}$ and $A\left(B_{-}^{0,-}\right)^{N F}$ we are interested in are defined by the matrix elements (see Eqs. (1), (2) and (I.12)):
*So, the well-known violation of $\operatorname{SU}(6)$ symmetry of the meson wave functions $\left|\psi_{M}(0)\right|^{2} /\left|\psi_{M^{\prime}}(0)\right|^{2} \sim m_{M^{\prime}} / \mathrm{m}_{M^{\prime}}\left(\mathrm{see}^{/ 13 /}\right)$ in 2 is smoothed by integration of the functions $\psi_{M}\left(\overrightarrow{\mathbf{x}}_{1}-\overrightarrow{\mathbf{x}}_{2}\right)$ with functions $\Psi_{B} \cdot \Psi_{B^{\prime}}$.

$$
\begin{align*}
& \left(\mathrm{h}_{\mathrm{v}}^{\mathrm{i}}\right)^{\mathrm{NF}}=\sqrt{\left.(2 \pi)^{3} 2 \mathrm{k}^{\circ}<\mathrm{V}_{(0)}^{o} \mathrm{p}_{\uparrow}\left|H_{i}^{\mathrm{PNC}}\right| \mathrm{p}_{\uparrow}\right\rangle^{\mathrm{NF}}, *} \tag{23}\\
& \mathrm{~A}\left(\mathrm{~B}_{-}^{\mathrm{o},-}\right)^{\mathrm{NF}}=\frac{1}{\mathrm{i}} \sqrt{\left.(2 \pi)^{3} 2 \mathrm{k}^{\circ}<\pi^{-} \mathrm{B}_{\uparrow}^{0}\left|H^{\mathrm{PNC}}\right| \mathrm{B}_{\uparrow}^{\mathrm{o},-}\right\rangle^{\mathrm{NF}},} \tag{24}
\end{align*}
$$

where $V_{(0)}^{0}$ is either ρ° - or ω - meson with the spin projection $s_{3}=0, B_{\uparrow}$ is the baryon with the spin projection $s_{3}=1 / 2$; in this notation $h_{\pi}=A\left(n_{\sim}^{\circ}\right)$. The results of calculations (see Appendix) ${ }^{* *}$ are as follows

$$
\begin{align*}
& \left(h_{\rho}^{\circ}\right)^{N F}=-16 G\left(\frac{1}{\sqrt{3}} c_{o}^{A}+c^{1 A}\right) b / \sqrt{6}, \tag{25}\\
& \left(h_{\rho}^{1}\right)^{N F}=-\frac{8}{3} G\left(c_{1}^{5}-c_{1}^{6}\right) b / \sqrt{6}, \tag{26}\\
& \left(h_{\rho}^{2}\right)^{N F}=\left(h_{\omega}^{0,1}\right)^{N F}=0, \tag{27}\\
& \left(h_{\pi}\right)^{N F}=4 \sqrt{2} G\left(c_{1}^{5}-c_{1}^{6}\right) b / \sqrt{6}, \tag{28}\\
& A\left(\Lambda_{-}^{o}\right)^{N F}=-\sqrt{12} G\left[c_{1 / 2}^{A} 2 b / \sqrt{6}+\left(c_{1 / 2}^{5}-c_{1 / 2}^{B}\right) b / \sqrt{6}\right], \tag{29}\\
& A\left(B_{-}^{-}\right)^{N F}=-4 \sqrt{12} G c_{1 / 2}^{A} b / \sqrt{6} . \tag{30}
\end{align*}
$$

As is seen from (25)-(30), the symmetric operators $\mathcal{C}^{27}, \mathcal{C}^{S}$ and $\mathcal{C}^{1 S}$ (see I , sect.2) do not contribute to the NF parts of the amplitudes that is a consequence of the antisymmetry of the quark wave functions in the baryons (the so-called Pati-Woo argument ${ }^{14 /}$; see also Appendix). For this reason the constant h_{ρ}^{2} determined by the operator \mathcal{C}_{2}^{27} has only the F part. The constants $\left(h_{\omega}^{0,1}\right)^{N F}$ vanish since the contributions of $u \bar{u}$ and d \bar{d} components of the vector meson wave functions to the matrix elements (23) are equal in absolute value and opposite in sign. Note that expressions (28-30) satisfy the sum rule (1.40), and from (26) and (28) the relation

* For $i=2 \quad h_{v}^{i} / \sqrt{6}$.
** Note that the expressions for matrix elements $\left\langle M B^{\prime}\right| \mathcal{C}^{M N}|B\rangle N F$ obtained in Appendix and in work ${ }^{/ 9 /}$ coincide if in the latter we set $\widetilde{b}_{t}=-\widetilde{b}_{v}=4 \sqrt{3} b$ and $\vec{c}_{v}=0$. (Besides, in Table III of $/ 9 /$ one should change the sigh of the NF part of the matrix element $\left\langle\pi^{-} \mathrm{p}\right| \mathrm{C}_{5}|\mathrm{n}\rangle$).

$$
\begin{equation*}
\left(\mathrm{h}_{\rho}^{1}\right)^{\mathrm{NF}}=-\frac{\sqrt{2}}{3} \mathrm{~h}_{\pi}^{\mathrm{NF}} \tag{31}
\end{equation*}
$$

follows.

According to Eq. (I.41) and ${ }^{15 /}$ the NF parts of the amp1itudes h_{π} and $A\left(\Lambda_{0}^{\circ}, E_{0}\right)$ in the MIT bag model have the following structure*

$$
\begin{align*}
& \mathrm{h}_{\pi}^{\mathrm{NF}}=4 \sqrt{2} \mathrm{G}\left(\mathrm{c}_{1}^{5}-\mathrm{c}_{1}^{6}\right)\left(\mathrm{I}_{\mathrm{a}}-\frac{1}{3} \mathrm{I}_{\mathrm{b}}\right) / \mathrm{f}_{\pi}, \tag{32}\\
& \mathrm{A}\left(\Lambda_{-}^{0}\right)^{\mathrm{NF}}=-\sqrt{12} \mathrm{G}\left[\mathrm{c}_{1 / 2}^{\mathrm{A}} 2\left(\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{b}}\right) / \mathrm{f}_{\pi}+\left(\mathrm{c}_{1 / 2}^{5}-\mathrm{c}_{1 / 2}^{6}\right)\left(\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{b}}\right) / \mathrm{f}_{\pi}\right], \tag{33}\\
& \mathrm{A}\left(\underline{E}_{-}^{-}\right)^{\mathrm{NF}}=-4 \sqrt{12} \mathrm{G}\left[\mathrm{c}_{1 / 2}^{\mathrm{A}}\left(\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{b}}\right) / \mathrm{f}_{\pi}+\left(\mathrm{c}_{1 / 2}^{5}-\mathrm{c}_{1 / 2}^{6}\right) \frac{2}{3} \mathrm{I}_{\mathrm{b}} / \mathrm{f}_{\pi}\right], \tag{34}
\end{align*}
$$

where the overlapping integrals of the quark wave functions of the MIT bag model $I_{a}=I_{a}\left[G^{2}, F^{2}\right]$ and $I_{b}=I_{b}\left[G^{2}, F^{2}\right]$ are determined after Eq. (I.41). This structure remains valid in any other model of independent quarks, only values of I_{a} and I_{b} being changed. With increasing mass of quarks the ratio I_{b} / I_{a} decreases** and in the nonrelativistic limit it tends to zero.

From comparison of (28)-(30) with (32)-(34) it is seen that the representation (22) reproduces exactly the functional structure of $A^{N F}$, in the nonrelativistic limit ($I_{b}=0$) with $\mathrm{b} / \sqrt{6}=\mathrm{I}_{\mathrm{a}} \not / \mathrm{F}_{\bar{i}}$ B If $\mathrm{I}_{\mathrm{i}} \neq 0$ we have

$$
\begin{equation*}
b / \sqrt{6}=\left(I_{a}+I_{b}\right) / f_{\pi} \tag{35}
\end{equation*}
$$

while the deviation of (28)-(30) from (32)-(34) appears only in the matrix elements of the mixed operators $\mathcal{O}^{5,6}$. Therefore for the calculation of ($\left.\mathrm{h}_{\rho}^{\circ}\right)^{\mathrm{NF}}$ we make use of b given by the formula (35) whereas for $\left(\mathrm{h}_{\rho}^{1}\right)^{N F}$ we keep the formula (31). In this way, we arrive at the following expressions for the constants

$$
\begin{align*}
& \left(h_{\rho}^{\circ}\right)^{N F}=-16 G\left(\frac{1}{\sqrt{3}} c_{0}^{A}+c^{1 A}\right)\left(I_{a}+I_{b}\right) / f_{\pi}, \tag{36}\\
& \left(h_{\rho}^{1}\right)^{N F}=-\frac{8}{3} G\left(c_{1}^{5}-c_{1}^{6}\right)\left(I_{a}-\frac{1}{3} I_{b}\right) / f_{\pi}, \tag{37}\\
& \left(h_{\rho}^{2}\right)^{N F}=\left(h_{\omega}^{0}\right)^{N F}=\left(h_{\omega}^{1}\right)^{N F}=0 . \tag{38}
\end{align*}
$$

[^2]So, we have found all the contributions to the constants h_{v}. According to (9) the total values of these constants are determined by the sum $h v=h \underset{V}{F}+h_{V}^{N}$. Their numerical values for the coefficient functions c_{i}^{R} obtained in I, sect. 2 are presented in Table 1. In the last column for comparison the "best values" of $\mathrm{h}_{\mathrm{V}} / 9 /$ are listed. As is seen from the table, our values of $h v$ agree with $h \underset{V}{b} v$. The negative sign of the constant h_{ρ}° is due to its NF part, ($\mathrm{h}_{\rho}^{\circ}$) NF, that testifies the arguments given in ${ }^{/ 9 \%}$. Note that h_{ρ}° differs from its bare value ($\left.\mathrm{h}_{\rho}^{0}\right)_{\alpha_{0}}=0$ by a factor of -15 , and h_{ρ}^{1} and h_{ω}^{0} even change their signes when quark-gluon interactions switched on.

Table 1
Constants h_{V} in the model $S U(2)_{L} \times U(1) \times S U(3)_{c}$. In brackets their values at $a_{s}=0$ are given

	$h_{V}^{F} \times 10^{7}$	$\mathrm{h}_{\mathrm{V}}^{\mathrm{N}} \times 10^{7}$	$\mathrm{h}_{\mathrm{v}} \times 10^{7}$	$h_{V}^{\text {b. v. }} \times 10^{7}$
h^{0}	$\begin{aligned} & 12.9 \\ & (8.3) \end{aligned}$	$\begin{gathered} -21.2 \\ (-8.8) \end{gathered}$	$\begin{aligned} & -8.3 \\ & (-0.55) \end{aligned}$	-11.4
h_{ρ}^{1}	$\begin{aligned} & u .24 \\ & (-0.15) \end{aligned}$	$\begin{gathered} u .15 \\ (-0.11) \end{gathered}$	$\begin{gathered} \text { u.3y } \\ (-0.26) \end{gathered}$	-u.1y
h_{ρ}^{2}	$\begin{aligned} & -6.7 \\ & (-11.1) \end{aligned}$	0	$\begin{gathered} -6.7 \\ (-11.1) \end{gathered}$	-9.5
$\mathrm{h}^{\circ}{ }_{\omega}$	$\begin{aligned} & -3.9 \\ & (+2.2) \end{aligned}$	0	$\begin{aligned} & -3.9 \\ & (+2.2) \end{aligned}$	-1.9
$\mathrm{h}_{\omega}^{\mathbf{1}}$	$\begin{aligned} & -2.2 \\ & (-2.2) \end{aligned}$	0	$\begin{aligned} & -2.2 \\ & (-2.2) \end{aligned}$	-1.1

It is interesting to find partial contributions to $h y$ from charged and neutral currents (Table 2). Here h_{v} (C.C.) is the parts of h_{v} defined by charged currents; whereas h_{V} (N.C.),by neutral currents (see formula (1.4)).

From Table 2 it is seen that the neutral currents, in fact completely, determine the constants h_{V}^{1} (like h_{π}, see (I.44)), increase by a factor of $1.3\left|h_{V}^{\circ}\right|$ and decrease by a factor of $2.3\left|h_{\rho}^{2}\right|$. As we shall show in part III of our work the values obtained for h_{v} testify to the standard model $\operatorname{SU}(2)_{L} \times$ $\times \mathrm{U}(1) \times \mathrm{SU}(3)_{\mathrm{c}}$.

Contributions of charged (h_{V} (C.C.)) and neutral (h_{V} (N.C.)) currents to h_{V}

	$\mathrm{h}_{\mathrm{v}}($ C.C. $) \times 10^{7}$	$\mathrm{~h}_{\mathrm{V}}(\mathrm{N} . \mathrm{C}.) \times 10^{7}$	$\mathrm{~h}_{\mathrm{V}} \times 10^{7}$
$\mathrm{~h}_{\rho}^{\circ}$	-6.2	-2.1	-8.3
$\mathrm{~h}_{\rho}^{1}$	0.00	0.39	0.39
$\mathrm{~h}_{\rho}^{2}$	-15.5	8.8	-6.7
$\mathrm{~h}_{\omega}^{\circ}$	-2.9	-1.0	-3.9
$\mathrm{~h}_{\omega}^{1}$	0.0	-2.2	-2.2

To conclude, we will summarize main points and results of our calculation of h_{π} and h_{V}.

The starting point of our scheme is the choice of a low point of renormalization of the operators of the effective Hamiltonian $\mathcal{K P N C}$ (see I, sect. 2). As a result, (in the logaifimil appouximationj naaron matrix elements of these operators are determined only by valence quarks, whereas the contributions from all loops, including those of the sea quarks, are taken into account in the coefficient functions of $\mathrm{H}^{\mathrm{PNS}}$. Then PNC MNN vertices are represented by sums of contributions of two types different in the quark structure: $h_{M}=h_{M}^{F}+h_{M}^{N}$.

The calculation of the F parts of h_{π} and h_{V} does not require any model of confinement. Here, of the most interest is $h \frac{F}{\pi}$, since it is proportional to such a fundamental quantity of the theory as $\langle 0| \bar{q} q|0\rangle$ The F parts of $h v$ are determined by the dominance of vector mesons in vector currents and are expressed only in terms of the experimentally known constants.

To calculate $N F$ parts of h_{M} one should apply to a certain model of confinement (we make use of the MIT bag model). Unlike h_{π}^{N}, the $N F$ parts of $h v$ cannot be calculated directly. For their calculation it is crucial that the matrix elements
 It is just this fact that has allowed us, by using an approximate $\operatorname{SU}(6)$ symmetry of these matrix elements, to express $h \underset{V}{N}$, like $h_{\pi}^{N F}$, through the quark wave functions of the MIT bag model. The NF contributions are the most important in h_{ρ}°, the NF contributions to the constants h_{ρ}^{2} and $\mathrm{h}_{\omega}^{0,1}$ turn out to be zero.

Our calculation of the constants h_{π} and $h v$ does not contain arbitrary (fitting) parameters and artificial assumptions and is self-consistent.

Experimental consequences to which the obtained set of the constants h_{M} leads will be discussed in part III.

We are grateful to S.B.Gerasimov for useful discussions.

APPENDIX. Components of the matrix elements (23), (24).
We shall present here results of the calculation of the matrix elements

$$
\begin{align*}
& A_{M}\left(\mathcal{C}_{q}\right)=b\left\langle(q \bar{q})_{M}(q q q)_{B} \cdot\right| \mathcal{C}_{q}\left|(q q q)_{B}\right\rangle^{N F}, \tag{A.1}\\
& \left.A_{\bar{M}}\left(\mathcal{C}_{q}\right)=b \eta_{C}(M)<(q q q)_{B} \cdot\left|\mathcal{C}_{q}\right|(q q q)_{B} C(q \bar{q})_{M}\right\rangle^{N F}, \tag{A.2}\\
& \mathcal{O}_{q}=\left\{\begin{array}{l}
\bar{q}_{a} q^{b} \bar{q}_{c} q^{d}=: \bar{q}_{i a} y_{\mu} y_{5} q^{i b} \bar{q}_{j c} \gamma^{\mu} q^{j d}:, \\
\left(\bar{q}_{a} q^{b} \bar{q}_{c} q^{d}\right)^{\prime}=: \bar{q}_{i a} \gamma_{\mu} \gamma_{5} q^{j b} \bar{q}_{j c} \gamma^{\mu} q^{i d}:
\end{array}\right. \tag{A.3}
\end{align*}
$$

(see (22)) corresponsing to the amplitudes (25)-(30). In (A1)(A3) $a, b, c, d=u, d, s, a$ sum over colour indices $i, j=1,2,3$ is assumed. The states $\left|(q \bar{q})_{M}\right\rangle$ and $\left|(q q q)_{B}{ }^{\prime}\right\rangle$ have the following form

$$
\begin{align*}
& \left|(q \bar{q})_{M}\right\rangle=\delta_{j}^{1} M_{B}^{A} b_{i A}^{+} d^{+j B}|0\rangle, \quad M_{B}^{+A} M_{A}^{B}=1, \\
& \left|(q q q)_{B}\right\rangle=\epsilon^{i j k} B^{A B C_{b}^{+}} b_{i A}^{+} b_{j B}^{+} b_{k C}^{+}|0\rangle, \quad B_{A B C}^{+} B^{A B C}=1, \tag{A.5}
\end{align*}
$$

$C\left|(q \bar{q})_{M}>=\delta_{j}^{1} \bar{M}_{B}^{A} b_{i A}^{+} d^{+j B}\right| 0>$,
where $b_{14}^{+}\left(d^{+i A}\right)$ are operators of creation of a quark (an antiquark) with the momentum $\vec{p}=0 ; A, B, C=1,2, \ldots, 6$ are $\operatorname{SU}(6)$ indices: $1=u,(\bar{u}),, 2=u(\bar{u}), \ldots, 6=s(\bar{s}) ; B^{A B C}$ are symmetric in A, B, C. The phases of baryon states are taken accor-
 matrix elements (see (14) and (I.14)):

$$
\begin{align*}
& <0\left|\frac{1}{2}\left[\left(V^{3}\right)_{1}^{1} \mp\left(V^{3}\right)_{R}^{2}\right]\right|\left(\begin{array}{c}
\rho^{\circ} \\
(0)
\end{array}\right\rangle=\frac{1}{\sqrt{(2 \pi)^{3} 2 m_{\rho}}} \frac{\mathrm{m}_{\rho}^{\mathrm{L}}}{\mathrm{f}_{\rho}}, \tag{A.7}\\
& \left.<0\left|\left(A^{\circ}\right)_{1}^{2}\right| \pi^{-}\right\rangle=-\frac{1}{\sqrt{(2 \pi)^{3} 2 \mathrm{~m}_{\pi}}} \mathrm{f}_{\pi} \mathrm{m}_{\pi} . \tag{A.8}
\end{align*}
$$

where $\left(V^{\mu}\right)_{a}^{b}=: \bar{q}_{i a} y^{\mu}{ }_{q}^{i b}: ;\left(A^{\mu}\right)_{a}^{b}=: \bar{q}_{i a} y^{\mu} \gamma_{5} q^{i b}$. . Now we shall
list nonzero components of the functions BABCof the baryons $P_{\uparrow}, n_{\uparrow}, \Lambda_{\uparrow}, \Xi_{\uparrow}^{-}$and functions M_{B}^{A} of the mesons $\rho_{(0)}^{0}, \omega_{(0)}, \pi^{-}$:

$$
\begin{align*}
& p_{\uparrow}: \quad B^{114}=-2 B^{123}=\frac{1}{9 \sqrt{2}}, \\
& \mathrm{n}_{\uparrow}: \quad \mathrm{B}^{233}=-2 \mathrm{~B}^{134}=-\frac{1}{9 \sqrt{2}}, \\
& \Lambda_{\uparrow}: \quad B^{145}=-B^{235}=\frac{1}{12 \sqrt{3}}, \tag{A.9}\\
& B_{9}^{-}: \quad B^{455}=-2 B^{356}=\frac{1}{9 \sqrt{2}} \text {; } \\
& \rho_{(0)}^{o}: \quad M_{2}^{1}=M_{1}^{2}=-M_{4}^{3}=-M_{3}^{4}=\frac{1}{2 \sqrt{3}} \text {, } \\
& {\left[\bar{M}_{2}^{1}=\bar{M}_{1}^{2}=-\bar{M}_{4}^{3}=-\bar{M}_{3}^{4}=-\frac{1}{2 \sqrt{3}}, \quad \eta_{C}(\rho)=-1\right],} \\
& \omega_{(0)}: \quad M_{2}^{1}=M_{1}^{2}=M_{4}^{3}=M_{3}^{4}=\frac{1}{2 \sqrt{3}} \text {, } \tag{A.10}\\
& {\left[\overline{\mathrm{M}}_{2}^{1}=\overline{\mathrm{M}}_{1}^{2}=\overline{\mathrm{M}}_{4}^{3}=\overline{\mathrm{M}}_{3}^{4}=-\frac{1}{2 \sqrt{3}}, \quad \eta_{\mathrm{C}}(\omega)=-1\right] \text {, }} \\
& \pi^{-}: \quad M_{2}^{3}=-M_{1}^{4}=\frac{1}{\sqrt{6}}, \\
& {\left[\overline{\mathrm{M}}_{3}^{2}=-\overline{\mathrm{M}}_{4}^{1}=-\frac{\mathrm{i}}{\sqrt{6}}, \quad \eta_{\mathrm{C}}(\pi)=1\right] ;}
\end{align*}
$$

the isotriplets $\{\rho\}$ and $\{\pi\}$ have the form

$$
\{\rho\}=\left(\begin{array}{c}
-\rho^{+} \tag{A.11}\\
\rho^{\circ} \\
\rho^{-}
\end{array}\right), \quad\{\pi\}=\left(\begin{array}{c}
-\pi^{+} \\
\pi^{\circ} \\
\pi^{-}
\end{array}\right)
$$

Contributions of the operators $\bar{q}_{q} q^{b} \bar{q}_{q} q^{d}$ to the amplitudes (25)-(30) are presented in Tables A1, A2. Matrix elements of the operators $\left(\bar{q}_{a} q^{b} \bar{q}_{c} q^{d}\right)^{\prime}$, due to the antisymmetry of the state $\left|(q q q)_{B}\right\rangle$ in colour indices, obey the following relation

$$
\begin{equation*}
A_{M, \bar{M}}\left(\bar{q}_{a} q^{b} \bar{q}_{c} q^{d}\right)^{\prime}=-A_{M, M_{M}}\left(\bar{q}_{a} q^{b} \bar{q}_{c} q^{d}\right) \tag{A.12}
\end{equation*}
$$

Then it follows that the matrix elements of the symmetric operators $\mathcal{O}^{S} \propto \bar{q}_{a} q^{b} \bar{q}_{c} q^{d}+\left(\bar{q}_{a} q^{b} \bar{q}_{c} q^{d}\right)$ vanish (see ${ }^{/ 14 /}$).

安	20		$\infty \quad \infty$	$\begin{aligned} & \infty-\infty \\ & -1 \infty \\ & -10 \end{aligned}$
	3 70 15	$\begin{aligned} & \infty \quad \infty \quad \infty \\ & \nabla / l_{m}^{m} N l_{i m}^{m} N \end{aligned}$	$\operatorname{lil}_{-1 m}^{\infty} \rightarrow-\ln 0$	0
	$\begin{aligned} & 3 \\ & 13 \\ & 10 \end{aligned}$	$\infty \quad \infty \quad \infty \quad \infty$	$0 \quad 0 \quad 0$	∞
$\begin{aligned} & \stackrel{\Perp}{ \pm} \\ & \circ \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \infty \quad \infty \quad \infty \\ & \left.\left.\left.v\right\|_{m} ^{m} v\right\|_{m} ^{m} \alpha\right\|_{m} ^{m} \end{aligned}$	$0 \quad 0 \quad 0$	$-\infty$
	70 18 18 3	$=\quad=$	$==$	$===$
	$\begin{aligned} & 13 \\ & 13 \\ & \end{aligned}$	000	000	000
$\stackrel{\text { ¢ }}{\ddagger}$				

REFERENCES

1. Dubovik V.M., Zenkin S.V. JINR, E2-83-611, Dubna, 1983
2. Michel F.C. Phys.Rev., 1964, 133, p. B329

Fischbach E., Tadić D. Phys.Rep., 1973, C6, p. 123;
3. Fischbach E., Tadić D., Trabert K. Phys.Rev., 1969, 186, p. 1688 ;

Zenkin S.V. Yadern. Fiz., 1981, 33, p. 323.
4. Pirner H.J., Rustgi M. L. Nucl.Phys., 1975, A239, p. 437 Galić H., Guberina B., Tadić D. Z.Phys., 1976, A276, p. 65.
5. Donoghue J.F. Phys.Rev., 1976, D13, p. 2064.
6. Donoghue J.F. Phys.Rev., 1976, D15, p. 184.
7. Dubovik V.M., Zamiralov V.S., Zenkin S.V. Nuc1.Phys., 1981, B182, p. 52; Yadern. Phys. 1981, 34, p. 837.
8. McKellar B.H.J., Pick P. Phys.Rev., 1972, D6, p. 2184 ; 1973, D7, p. 260.
9. Desplanques B., Donoghue J.F., Holstein B.R. Ann. Phys., 1980, 124, p. 449.
10. Palle D.. et al. Nucl.Phys., 1980, B166, p. 149.
11. Pićek I., Tadić D., Trampetić J. Nucl.Phys., 1981, B177, p. 382.
12. Nagels M.M. et al. Nuc1. Phys., 1979, B147, p. 189.
13. Van Royen R., Weisskopf V.F. Nuovo Cim., 1967, 50A, p. 617.
14. Miura M., Minamikawa T. Progr.Theor. Phys., 1967,38, p.954; Körner J.G. Nucl.Phys., 1970, 25B, p. 282;
Pati J.C., Woo C.W. Phys.Rev., 1971, D3, p. 2920.
15. Galić H., Tadić D., Trampetić J. Nuc1.Phys., 1979, B158, p. 306.
16. de Swart J.J. Rev.Mod.Phys., 1963, 35, p. 916.

Аубовик В.М., Зенкин С.В.

Самосогласованный расчет слабых констант в несохраняющих четност ядерных силах. H4 в ρ NN и ω NN вершинах

На основе эффективного несохраняющего четность /НЧ/ гамильтониана стандартной модели $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1) \times \mathrm{SU}(3)_{\mathrm{c}}$. полученного в нашей предыдущей работе, рассмотрена кварковая структура НЧ $\rho \mathrm{NN}$ и $\omega \mathrm{NN}$ вершин. Без свободных /подгоночных/ параметров рассиитаны все вклады в константы $\mathrm{h}_{0}^{0,1,2}$ и $\mathrm{h}_{\omega}^{0,1}$. входящие в $H 4$ NN потенциал. Нефакторизуемые /НФ/ вклады в эти константы ассчитаны, исходя из приближенной SU(8) симметрии матричных элементов
 дАТСя в согласии с "лучшими значениями" ha, Desplanques, Donoghue и Holstein.

Работа выполнена в Лаборатории теоретической физики ОИяи.

[^0]: *Institute of Nuclear Research of the USSR Acad. of Sciences, Moscow

[^1]: * By the functional structure of an amplitude we mean its representation by a linear combination of the coefficient functions c_{i}^{R}.

[^2]: * In the limit of $\operatorname{SU}(3)$ symmetry $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}=\mathrm{m}_{\mathrm{s}}=0$.
 ** Of course the normalization $I_{a}[G, F]+I_{b}[G, F]=1$ is conserved.

