

сообщвиия объедииенного инетитута ядериых исследований дубна

$6424 / 83$

E2-83-611

V.M.Dubovik, S.V.Zenkin*

SELF-CONSISTENT CALCULATION

OF THE WEAK CONSTANTS
IN THE PARITY NONCONSERVING
NUCLEAR FORCES.
Effective PNC Hamiltonian in $\quad \mathrm{SU}(2)_{\mathrm{L}} \mathrm{xU}(1) \times \mathrm{SU}(3)_{c}$.
PNC in the $\pi N N$ Vertex

[^0]1. INTRODUCTION

This work is devoted to the consequences of the standard model $\operatorname{SU}(2)_{L} \times U(1) \times \operatorname{SU}(3)_{c} / 1-3 /$ for the parity nonconserving (PNC) nucleon-nucleon (NN) interactions. We carry out the analysis in the framework of the usually accepted representation of the PNC NN forces through the $\pi-, \rho-, \omega$ - meson exchanges with the parity nonconservation within one of the MNN ($M=\pi, \rho, \omega$) vertices (see, egg., reviews $/ 4,5 /$, papers $/ 6,7 /$). Here, the main theoretical problem is the calculation of the PNC MNN vertices defined by the phenomenolotical Hamiltonian \boldsymbol{B})

$$
\begin{align*}
\mathcal{H}_{M N N}^{P N C} & =\frac{1}{\sqrt{2}} h_{\pi} \bar{N}(\vec{\tau} \times \vec{\Pi})^{3} N+ \\
& +\bar{N}\left(h_{\rho}^{0} \vec{\tau} \vec{\rho}_{\mu}+h_{\rho}^{1} \rho_{\mu}^{3}+h_{\rho}^{2} \frac{3 \tau^{3} \rho_{\mu}^{3}-\vec{\tau} \vec{\rho}_{\mu}}{2 \sqrt{6}}\right) \gamma^{\mu} \gamma_{5} N+ \tag{1}\\
& +N\left(h_{\omega}^{0} \omega_{\mu}+h_{\omega}^{1} \tau^{3} \omega_{\mu}\right) \gamma^{\mu} \gamma_{5} N .
\end{align*}
$$

An activity in this field is necessary at least by the following reasons.
<compat>ᄑ<compat>ᅵ we use the Bjorken-Drell metric with $\gamma_{5}=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$, our h_{π} is the same as f_{π} in refs. $15,7 /$. We neglect the PNC $\rho N N$ vertex with derivatives ($\alpha h_{p}^{\prime \prime}$), because it playa a negligible role in the PNC NN interactions (see ref. ${ }^{18 / \text {). }}$

First, the PNC NN interactions give the unique possibilities for the study of all the components of the standard model, which at present is the low-enerEy benchmark for the most grand unified models. Indeed, unlike the $\Delta S=1$ or/and $\Delta C=1$ nonleptonic decay amplitudes, the PNC MNN vertices are generited not only by the charged but also neutral hadron current interactions, and therefore, bear information on unification scheme of all three types of the fundemental interactions: weak, electromagnetic and strong. So, the $\Delta I=1$ PNC NN transitions are determined almost completely by the neutral current interactions, and the modification of the bare (i.e., determined by the weak Lagrangian) PNC quark amplitudes by quarkglun interactions may tell on the values of h_{M} very atrongly (up to an order of magnitude and sign).

Second, such an analysis may have interesting consequences for wome axtensions of the standard model (e.g., for the supersymmetric ones, see ref./9/;

A consistent consideretion oi our subject however encounters obgential difficulties because there is no yet an adequate technique for the transition from the quark interaction lagrangian of tife stander model to the hadronic amplitudea. The availeble calculations of the constants h_{M} necesssrily incluie dissimilar tricks ard approximations, that is the main origin of large uncertaintiea of

In the paper/7/ Desplariacs, Donoghue and Holstein have carzted out the unified treatment of $i_{i_{M}}$ based upon $S U(6)_{W}$ arguments supplemented by quark technique and have analysed some of these uncertainties.

As a result, they estinated the intervals of posaible values of h_{M} in the standard model and within the intervals found the so-called "best values" of $h_{M}\left(h_{M}^{b . v}\right)$, which at present are widely used for the estimations of the PNC effects in the atandard model. The "best values", however, are actually aemiphenomenological oras, because to obtain ther, arbitrary (fitting) parameters have been used (X). This circur:stance hinders the use of $h^{\text {b.v. }}$ to conclude on consequences of the stendard model itself.

[^1]For this aim a self-consistent parameter-free calculational framework for h_{M} is required. This framework also has to enable one to sift possible artifacts of calculational methods included in it.

Our realization of this plan is close in the form to the unified treatment of h_{M} of ref. $/ 7 /$, although differs from it in the basic points. We begin with a treatment of the effective Hamiltonian of PNC hadron-hadron interactions in the standard model, which is the local operator in the first order generating the PNC MNN vertices: $h_{M} \propto\left\langle M N^{\prime}\right| \mathcal{H}^{P N C}|N\rangle$. The essential point here is the choice of a low renormalization scale of the operators of the Hemiltonian (μ is near the characteristic inverse confinement radius). This enables us to consider hadronic matrix elements of this operators taking into account only valence quarks. Then we expound the overall structure of the PNC MNN vertices determined by this effective Hamiltonian. We pay special attention to a reconstruction of quark mechanisms responsible for different contributions to h_{M}. After that we proceed to the calculation of h_{M}. Here, the main difficulty is the calculation of nonfactorizable (NF) (i.e., nonreducible to products of hadron currents) contributions to h_{p} and
h_{ω}. We solve the problem proceeding from the approximate $\operatorname{SU}(6)$ symmetry of the NF parts of the PNC MNN vertices and calculate $h_{\rho, w}^{\mathrm{NF}}$
 the intervals determined in ref. $/ 7 /$, moreover $h_{\pi} \simeq \frac{1}{3} h_{\pi}^{b . v}$, and $h_{\rho, \omega}$ agree with $h_{\rho_{,}, \omega}^{b . v . ~ W e ~ a n a l y s e ~ a l s o ~ t h e ~ p a r t i a l ~ c o n t r i b u t i o n s ~}$ to h_{M} of the charged and neutral currents and a role of the quarkgluon interactions in the formation of h_{M}. The concluding part of the work is devoted to the experimental consequences of our results. We observe a rather good agreement of our values of h_{M} with the experimental data of the whole and concentrate our attention on the processes valuable for more elaborate conclusions. Our work is organized in the form of three issues. In the remaining part of this isaue we consider the offective Hamiltonian $\mathcal{H}^{\text {PNC }}$ (sect.2) and calculate h_{Π} (sect.3). The second issue (II) contains the calculation of $\Pi_{\rho, \omega}$; in the third issue (III) we discuss the experimental consequences of our results.
2. THE EFFECTIVE HAMILTONIAN OF THE PNC HADRON-HADRON INTERACTIONS IN THE STANDARD MODEL
The general atructure of the effective Hamiltonian of weak hadron-hadron interactions in the unified gauge theories has been
studied in papers ${ }^{12,13 /}$. Their main result is that a part of \mathcal{H} that is not reduced to the renorlamization of the starting Lagrangian, is finite, its leading terms being of the order $O\left(G \sim g_{w}^{2} / M_{w}^{2}\right)$ (g_{w} is the semiweak coupling constant). The explicit form of $\mathcal{H}_{\Delta S=1}$ in the standard model with massless quarks in the second order in g_{w} and in all orders in the quark-gluon coupling constant g_{s} (in the leading log approximation) has first been found in ref. 1 14/. There have been observed the dynamical, owing to the quark-gluon interactions, enhancement of octet transitions and suppression of 27 -plet quark transitions. In ref. $15 /$ analogous effects have been found for PNC Hemiltonian $\mathcal{H}_{\Delta S=0}^{\text {DNC }}$. The next step in the discovery of the structure of \mathcal{H} in the standard model was to take into account the difference of the quark mass scale: $m_{c} \gg m_{u, d, s}$. So, in ref. /16/ it has been shown that the elimination of the logarithmic contributions of c - quarks from the operator part of $\mathcal{H}_{\Delta S=1}$ leads to the appearance in $\mathcal{H} \Delta S=1$ of new, including the neutral right-handed currents, operator structures which belong to the octet representation (the so-called "penguins"). In the papers $/ 17,18$, analogous effects have been studied for the $\Delta I=1$ part of $\mathcal{H} \begin{aligned} & P N C \\ & \Delta S=0\end{aligned}$, and in refs. $/ 19,20 /$ for all the isotopic parts of $H^{P N C}$. We are interested in the effective Hamiltonian $\mathcal{H}^{\text {PNC }}$ which determines the low-energy ($\mathrm{E} \ll 1 \mathrm{GeV}$)
 scheme of ref. ${ }^{120 /}$, we shall give $\mathcal{H}^{\text {PNC }}$ in its final form and dwell only upon its features most important for the following.

Within the standard model ${ }^{5}$) in the second order in g_{w} and in all orders of the leading logs in the quark-gluon interactions the Hamiltonian $\mathcal{H}^{\text {PNC }}$ has the form:

$$
\begin{equation*}
\mathcal{H}^{P N C}=\mathcal{H}_{\Delta S=1}^{P N C}+\mathcal{H}_{\Delta S=0}^{P N C}, \tag{2}
\end{equation*}
$$

$$
\mathcal{H}_{\Delta S=1}^{P N C}=\sqrt{2} G S C\left\{-\frac{1}{10} K_{w}^{d_{84}} K^{d_{27}} O_{3 / 2,1 / 2}^{27}+\right.
$$

[^2]$\left.+\left(\frac{1}{20}[1,111] K_{w}^{d_{84}}+\frac{1}{4}[-111-11] K_{w}^{d_{20}}\right) K^{d_{8}} O_{1 / 2}^{8}\right\}$,
\[

$$
\begin{align*}
& H_{\Delta S=0}^{P N C}=\sqrt{2} G\left\{K_{w}^{d_{84}} K^{d_{27}}\left[\frac{1}{6} c^{2} O_{2}^{27}-\frac{1}{10} s^{2} O_{1}^{27}+\frac{1}{120}\left(1-4 s^{2}\right) O_{0}^{27}\right]+\right. \\
& +\left(\frac{1}{20}\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] K_{w}^{d_{84}}+\frac{1}{4}\left[\begin{array}{llll}
-1 & 1 & -1 & 1
\end{array}\right] K_{w}^{d_{20}}\right) K^{d_{8}}\left[s^{2} O_{1}^{8}+\frac{1}{\sqrt{3}}\left(2-3 s^{2}\right) O_{0}^{8}\right]+ \\
& \left.+\left(-\frac{1}{120}[11] K_{w}^{d_{84}}+\frac{1}{30}[-14] K_{w}^{d_{1}(4)}\right) K^{d_{1}(3)} O_{0}^{1}\right\}+ \\
& +\sqrt{2} G\left(1-2 S_{w}^{2}\right)\left\{K_{z}^{d_{84}} K^{d_{27}}\left(-\frac{1}{6} O_{2}^{27}+\frac{1}{10} O_{1}^{27}+\frac{1}{60} O_{0}^{27}\right)+\right. \\
& +\left(-\frac{1}{20}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] K_{z}^{d_{84}}+\frac{1}{4}\left[\begin{array}{llll}
-1 & 1 & -1 & 1
\end{array}\right] K_{z}^{d_{20}}\right) K^{d_{8}}\left(O_{1}^{8}+\frac{1}{\sqrt{3}} O_{0}^{8}\right)+ \\
& +\left(\frac{1}{60}\left[1, j k_{z}^{d_{84}}+\frac{1}{60}[-14] k_{z}^{d_{1}(4)}\right) \dot{k}^{d_{3}(3)} O_{0}^{1}\right\}- \\
& -\sqrt{2} G \frac{1}{3} s_{w}^{2}\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] K_{z}^{d_{15}}\left\{K^{d_{8}}\left(O_{1}^{8}+\frac{1}{\sqrt{3}} O_{o}^{8}\right)-\right. \\
& \left.-\frac{1}{6}\left(\begin{array}{ll}
K^{d_{1}(3)} & O_{0}^{1} \\
K^{d_{1}(3)} & O_{0}^{1}
\end{array}\right)\right\} . \tag{4}
\end{align*}
$$
\]

The Hamiltonian is represented by the linear combination of the local four-quark operators O_{i}^{R} renormalized at the point $\mu \simeq \mu_{0}$, where μ_{0} is a parameter of the infrared cut-off of the quark and gluon loop momenta. This cut off is introduced at the characteristic inverse radius of the confinement and takes phenomenologically into account the colour confinement. In our case $\mu_{0} \simeq 0.2 \mathrm{GeV}$. The upper indices of the operators denote the SU(3) representations
which they belong to, and the lower ones show their properties in the isospin space (ΔI) . The explicit form of operators O^{27} is given in Appendix; O^{8} and O^{1} are defined as follows:

$$
O_{i}^{8}=\left(\begin{array}{c}
O\left(\wedge_{i}, 1\right) \tag{5}\\
O^{c}\left(\Lambda_{i}, 1\right) \\
O\left(1, \Lambda_{i}\right) \\
O^{c}\left(1, \Lambda_{i}\right)
\end{array}\right), \quad O_{0}^{1}=\binom{O(1,1)}{O^{c}(1,1)}
$$

where $O(M, N)=: \bar{q}_{i} \gamma_{\mu} \gamma_{5} M q_{i} \bar{q}_{j} \gamma^{\mu} N q_{j}:, O^{c}(M, N)=: \bar{q}_{i} \gamma_{\mu} \gamma_{5} M q_{j} \bar{q}_{j} \gamma^{\mu} N q_{i}:$ $q_{i} \equiv q_{i}(0)$, a sum over colour indices $i, j=1,2,3$ is assumed; M, N are 3×3 matrices in the flavour space; $\Lambda_{1 / 2}=\lambda_{6}, \quad \Lambda_{1}=\frac{1}{2} \lambda_{3}$, $\Lambda_{0}=\frac{1}{2} \lambda_{8} \quad\left(\lambda_{i}\right.$ are the Gell-Mann matrices).

All the parameters of the standard nodel:
$\left(c \equiv \cos \theta_{c}\right), \quad s_{w} \equiv \sin \theta_{w}, \quad g_{w}, g_{s}$ \qquad
$s \equiv \sin \theta_{c}$
 corrections (here-through the renormalization group equations in the massless scheme of renormalization $/ 22 /$) leads to the matrices K^{d} unequal to identity (as $g_{s} \rightarrow 0, K^{d} \rightarrow 1$). The numbers K are defined by $K_{w, z}=\alpha_{4}\left(m_{c}^{*}\right) / \alpha_{4}\left(M_{w, z}\right)$, $K=$ $=\alpha_{3}\left(\mu_{0}\right) / \alpha_{3}\left(m_{c}^{*}\right)$, where $\alpha_{n}(\mu)=12 \pi /\left[(33-2 n) \ln \left(\mu^{2}\left(\mu^{2} / \Lambda_{n}^{2}\right)\right] \quad\right.$ is the effective strong interactior coupling $\left(g_{5}^{2}(\mu) / 4 \pi\right)$ in the theory with n flavours; m_{c}^{*} is the mass of a charmed quark with a special choice of the renormalization point, nemely with μ, which is a solution of the equation $m_{c}(\mu)=\mu$. ${ }^{\text {W }}$. The matrices d_{R} (proportional to the matrices of the anomalous dimensions of the operators O^{R}, have the form

$$
\begin{equation*}
d_{84}=-6 / 25, \quad d_{27}=-6 / 27, \quad d_{20}=12 / 25 ; \tag{6}
\end{equation*}
$$

$$
d_{15}=d_{A D}(4), \quad d_{8}=d_{A D}(3)
$$

$$
d_{A D}(n)=-\frac{1}{33-2 n}\left(\begin{array}{cccc}
-2 / 3 & 2 & -3 & 9 \\
\frac{27-4 n}{6} & -\frac{27-4 n}{2} & 9 / 2 & 21 / 2 \\
-11 / 3 & 11 & 0 & 0 \\
9 / 2 & 21 / 2 & 9 / 2 & -27 / 2
\end{array}\right)
$$

$$
d_{1}(n)=-\frac{1}{33-2 n}\left(\begin{array}{cc}
-11 / 3 & 11 \tag{8}\\
\frac{27-2 n}{3} & 2 n-3
\end{array}\right)
$$

To find numerical values of the coefficient functions of $H^{\text {PNC }}$, we should choose the values of the parameters $\Lambda_{4}, \Lambda_{3}, m_{c}^{*}$. Note, only two of these three parameters are independent. Indeed, the matching condition for the amplitudes $\langle u, d, s| O_{4}(u, d, s, c)|u, d, s\rangle$ and $\langle u, d, s| O_{3}(u, d, s)|u, d, s\rangle$
in the \log approximation at $\mu=m_{c}^{-} \quad$ leads to $\alpha_{3}\left(m_{c}^{*}\right)=\alpha_{4}\left(m_{c}^{\prime \prime}\right)$
; hence,
$\Lambda_{3}=m_{c}^{*}\left(\Lambda_{4} / m_{c}^{*}\right)^{25 / 27} \quad$ (see also $/ 23 /$). We use $\Lambda_{4}=80 \mathrm{MeV}$ that complies with the charmonium data $/ 24 /$, and $m_{c}^{*}=1.27 \mathrm{GeV}$ that follows from the analysis of the $e^{+} e^{-}$- annihilation experimental data through the QCD sum rules (see, e.g., review/25/ and references therein). Hence, $\Lambda_{3} \simeq 100 \mathrm{MeV}$ and at $\mu_{0}=0.2 \mathrm{GeV}$ we obtain $K_{w} \simeq K_{z} \simeq 2.5$ and $K \simeq 3.6$.

It is convenient to write the final expression for $H^{\text {PNC }}$ in terms of O^{27} (see Appendix) and of the operators:
$\left(\begin{array}{c}O_{i}^{S} \\ O_{i}^{A} \\ O_{i}^{5} \\ O_{i}^{6}\end{array}\right)=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0\end{array}\right) 0_{i}^{8},\binom{O^{15}}{O^{1 A}}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right) 0_{0}^{1}$ (9)

The explicit form of the operators is given in Appendix, too. It is easy to see that the operators $0^{27}, 0^{5}$ and $0^{15}\left(0^{A}, 0^{1 A}\right)$ are symmetric (antisymmetric) with respect to the permutation of the colour indices of the second and fourth or first and third quarks. The operators 0^{5} and 0^{6} have no definite colour symmetry and have the left-right ("penguin") atructure: $O_{L R} \propto O(M, N)-O(N, M)$.

As a result we have:

$$
\begin{align*}
\mathcal{H}_{\Delta S=1}^{P N C} & =\sqrt{2} G\left(C_{\Delta S=1}^{27} O_{3 / 2,1 / 2}^{27}+c_{1 / 2}^{S} O_{1 / 2}^{S}+c_{1 / 2}^{4} O_{1 / 2}^{A}+\right. \\
& \left.+c_{1 / 2}^{5} O_{1 / 2}^{5}+C_{1 / 2}^{6} O_{1 / 2}^{6}\right), \tag{10}\\
\mathcal{H}_{\Delta S=0}^{P N C} & =\sqrt{2} G\left[c_{2}^{27} O_{2}^{27}+\sum_{i=0,1}\left(c_{i}^{27} O_{i}^{27}+c_{i}^{S} O_{i}^{S}+c_{i}^{4} O_{i}^{4}+\right.\right. \\
& \left.\left.+c_{i}^{5} O_{i}^{5}+c_{i}^{6} O_{i}^{6}\right)+c^{1 S} O^{15}+c^{14} O^{14}\right] \tag{11}
\end{align*}
$$

The numerical values of the coefficient functions C_{i}^{R} at
 given in Tables 1, 2 . For comparison we give also the bare values of $C_{i}^{R} \quad\left(K_{w, 2}=K=1\right)$. It is seen, the quark-gluon interactions result in the increase (in absolute value) in the coefficients of the antisymmetric operators O^{A} and O^{14} and in the decrease in the coefficients of the symmetric operators O^{27}, O^{s} and O^{15}. The characteristic ratios $\left|C\left(g_{5} \neq 0\right) / C\left(g_{S}=0\right)\right|$ are ~ 2.5 and ~ 0.5, respectively. It is to be remembered however that we have extrapolated the coefficient functions found in the leading log approximation valid at $\alpha_{s}(\mu) 《 1$, into the region $\mu \gg m_{c}$, where $\alpha_{s}(\mu) \sim 1$, and therefore, essential contributions may come from nonleading log texme $\sim g_{s}^{2 n}\left(\ell_{n} m / \mu_{0}\right)^{2 m}(n>m)$ and from nonlogarithmic terms. All this may produce an especially strong influence on the behaviour of $C^{5} 1 / 2$ and $C^{6} / 1 / 2$ which gather their values mainly at $\mu>m_{c}$. So, it is reasonable to assume that the differences $C\left(g_{s} \neq 0\right)-C\left(g_{s}=0\right), 126 /$ are reproduced by the leading logs up to a factor of $\sim 1.5 \div 2 / 26 /$.

It is important to note here that the choice of the so low renormalization point $\left(\mu \simeq \mu_{0}\right)$ is caused by the following circumstan-

Table 1. Coefficient functions of $\mathcal{H}_{\triangle S}^{P N C}$ In brackets their values at $\alpha_{s}=0$ are given.

$C_{\Delta S=1}^{27}$	$C_{1 / 2}^{S}$	$C_{1 / 2}^{A}$	$C_{1 / 2}^{5}$	$C_{1 / 2}^{6}$
-0.014	0.0049	0.15	-0.011	0.0020
(-0.022)	(0.011)	(0.056)	(0)	(0)

Table 2. Coefficient functions of $\mathcal{H}_{\Delta S=0}^{D N C} \quad(11) . \quad(s=0.23$, $\left.S_{w}^{2}=0.23\right)$

C_{2}^{27}	C_{1}^{27}	C_{0}^{27}	C_{1}^{S}	C_{1}^{4}	C_{1}^{5}	C_{1}^{6}
0.041	0.029	0.0094	-0.027	0.46	-0.080	-0.029
(0.068)	(0.049)	(0.016)	(-0.044)	(0.17)	(0)	(-0.038)
C_{0}^{S}	C_{0}^{4}	C_{0}^{5}	C_{0}^{6}	C^{15}	$C^{(4}$	
0.0072	0.95	-0.098	-0.0078	0.016	0.17	
(0.026)	(0.35)	(0)	(-0.022)	(0.071)	(0.099)	

ces very essential for further considerations: the point μ separates large $\left(\mu<p<M_{w}\right)$ and small ($\left.\mu_{0}<p<\mu\right)$ virtual momenta between the coefficient functions and the operator part of the effective Hamiltonian; at $\mu=\mu_{0}$ the log contributions of all the loops, including those of the quark sea, are completely
concentrated at the coefficient functions, and therefore, the hadronic matrix elements of the operators $O\left(\mu=\mu_{0}\right)$ in the log approximation are determined by only valence quarks*) (see ref. /27/).

3. PARITY NONCONSERVATION IN THE GINN VERTEX

The PNC Π MN vertex (see (1)) plays a distinct role in the description of PNC NN interactions: On the one hand h_{π} determines the one-pion PNC exchange intensity, i.e., the long-range part $\left(r_{\pi} \simeq 3 \mathrm{fm}\right)$ of PNC NN forces, on the other hand the value of h_{π} is intimately connected with the structure of neutral hadronic currents and with the magritude of such fundamental parameters of theory as the quark vacuum condensate density $\langle 0| \bar{q} q|0\rangle$ and the quark masses m_{q}.

At the same time the recent eatimates of h_{π} in the standard model are scattered in a very large interval: $2.5 \times 10^{-7} \leq h_{\pi} \leqslant 11 \times 10^{-7}$ (see papers $/ 7,17,18,28 /$ and reviews $/ 5,29 /$). We may distinguish the following main origins of this situation: a different choice of the renormalozation point μ in the $\mathcal{H}^{\text {PNC }}$; the use of different values of m_{q} in the calculation of the factorizable contributions to h_{π}; dissimilarity of the calculational methods for the nonfactorizable part of h_{π}. Ir more detail we dwell upon these points in the main text.

We begin our consideration of the PNC Π NN vertex with clarification of the overall structure of the $\pi B^{\prime} B$ (B, B ' are nucleons and/or hyperons) vertices determined by the matrix elementa

$$
\begin{equation*}
\left\langle\pi^{a} B^{b}\right| \mathcal{H}^{P N C}\left|B^{c}\right\rangle=A\left(B_{a}^{c}\right) \frac{i}{\sqrt{(2 \pi)^{3} 2 K^{o}}} \bar{u}^{b} u^{c} \tag{12}
\end{equation*}
$$

(indices a, b, c identify the components of the pion isotriplet and the nucleon octet; in this notation $h_{\pi}=A\left(n_{-}^{0}\right)$).
3.1. Overall Structure of the PNC SB'B Vertices

Let us write down the effective Hamiltonian $\mathcal{H}^{\text {PNC }}$ in the form

$$
\begin{equation*}
\mathcal{H}^{P N C}=\sqrt{2} G \sum_{M, N} C^{M N} O^{M N} \tag{13}
\end{equation*}
$$

[^3]where $O^{M N}=: \bar{q} M q \bar{q} N q:, \quad M, N$ are matrices in the spinor x flavour x colour space, and consider the partial amplitude $A^{M N}=\sqrt{(2 \pi)^{3} 2 k^{0}}\left\langle n^{a} B^{b}\right| O^{M N}\left|B^{c}\right\rangle$.

The standerd reduction technique and PCAC representation for the interpolating pion field

$$
\begin{equation*}
\pi^{a}(x)=-\frac{\sqrt{2}}{f_{\pi} m_{\pi}^{2}} \partial^{\mu} \bar{q}(x) P_{\mu}^{\alpha} q(x) \quad, \quad P_{\mu}^{a}=\gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \tag{14}
\end{equation*}
$$

($f_{n} \simeq 132 \mathrm{MeV}$ is the decay constant of $\pi \rightarrow \mu \nu$) ellow us to write down

$$
\begin{align*}
A^{M N}= & -\frac{i \sqrt{2}\left(-k^{2}+m_{\pi}^{2}\right)}{f_{\pi} m_{\pi}^{2}} \int d^{4} x e^{i k x}\left\langle B^{b}\right| \partial^{\mu} T\left(\bar{q}(x) D_{\mu}^{a} q(x), O^{M N}\right)- \\
& -\delta\left(x^{0}\right)\left[\bar{q}(x) P_{0}^{a} q(x), O^{M N}\right]\left|B^{c}\right\rangle \tag{15}
\end{align*}
$$

or, in the soft-pion approximation $(K \rightarrow 0)$

$$
\begin{equation*}
A^{M N}=\frac{i \sqrt{2}}{f_{\pi}} \int d^{3} x\left\langle B^{b}\right|\left[\bar{q}(x) P_{0}^{a} q(x), O^{M N}\right]_{x^{0}=0}\left|B^{c}\right\rangle \tag{16}
\end{equation*}
$$

The equal-time commutator in (16) is easily calculated through the

$$
\begin{align*}
C_{6}(x) & =\left[\bar{q}(x) P_{0}^{a} q(x), O^{M N}\right]_{x^{0}=0}= \tag{17}\\
& =\delta^{3}(x): q^{+}\left[\gamma^{0} P_{0}^{a}, \gamma^{0} M\right] q \bar{q} N q:+\{M \leftrightarrow N\}
\end{align*}
$$

Then allowing for the explicit form of P_{μ}^{a}, we find

$$
\begin{equation*}
A^{M N}=-\frac{i \sqrt{2}}{f_{\pi}}\left\langle B^{b}\right|: \bar{q}\left\{\gamma_{5} \frac{\tau^{a}}{2}, M\right\} q \bar{q} N q:\left|B^{c}\right\rangle+\{M \leftrightarrow N\} \tag{18}
\end{equation*}
$$

Thus, the amplitude $A^{M N}$ reduces to matrix elements of the local four-quark operators between one-particle hadron states.

In the course of calculation of such matrix elements it should be taken into account that initial and final hadron states always include the nonperturbative quark vacuum condensate, besides the quark determining the hadron states themselves (in our picture of the weak hadron interactions these are valence quarks). The exis-
tence of the condensate is exhibited immediately in the apontaneous breakdown of the chiral symmetry, and PCAC provides the known relation between the scalar density of this condensate and parameters of the explicit breaking of chiral symmetry (i.e., Lagrangian quark masses m_{q}):

$$
2\left(m_{u}+m_{d}\right)\langle 0| \bar{q} q|0\rangle=-f_{\pi}^{2} m_{\pi}^{2} \quad(\bar{q} q=\bar{u} u, d d)
$$

Let us introduce the matrices Q and R through the Fierz transformation

$$
\begin{equation*}
M_{A B} \times N_{C D}=Q_{A D} \times R_{C B} \tag{20}
\end{equation*}
$$

Then, taking into account that

$$
\begin{align*}
& (P, M)_{A B} \times N_{C D}+M_{A B} \times(P, N)_{C D}= \\
= & (P, Q)_{A D} \times R_{C B}+Q_{A D} \times(P, R)_{C B} \tag{21}
\end{align*}
$$

where P is a matrix and the brackets denote the commutator or anticommutator, the vacuum contributions may be singled out in the matrix elements of Eq. (18)

$$
\begin{aligned}
& \left(A^{M N}\right)^{\text {vac }}=-\frac{i \sqrt{2}}{f_{\Pi}}\left(\langle 0| \bar{q}\left\{\gamma_{5} \frac{\tau^{a}}{2}, M\right\} q|0\rangle\left\langle B^{b}\right| \bar{q} N q\left|B^{c}\right\rangle-\right. \\
& \left.-\langle 0| \bar{q}\left\{\gamma_{5} \frac{\tau^{a}}{2}, Q\right\} q|0\rangle\left\langle B^{b}\right| \bar{q} R q\left|B^{c}\right\rangle\right)+\{M \leftrightarrow N, Q \leftrightarrow R\} \\
& \text { (see also ref./18/). }
\end{aligned}
$$

Let us note, that the terms $\propto\langle 0| \bar{q} K q|0\rangle\left\langle B^{b}\right| \bar{q}\left\{\gamma_{5} \frac{\tau^{a}}{2}, L\right\}\left|B^{c}\right\rangle$ ($K, L=M, N, Q, R$) do not contribute to $A^{M N}$ because they correspond to the appearance in $\mathcal{H}^{D N C}$ of operators with the nonperturbative coefficient functions $\propto\langle 0| \bar{q} K q|0\rangle$: such operators have the canonical dimension equal to 3 and are absorbed by $/ 12 /$). the quark mass matrix counterms in the initial Lagrangian (see $/ 12$)

How the total amplitude $A^{M N}$ is written down in the form

$$
\begin{equation*}
A^{M N}=\left(A^{M N}\right)^{v a c}-\frac{i \sqrt{2}}{f_{n}}\left\langle B^{b}\right|: \bar{q}\left\{\gamma_{5} \frac{\tau^{a}}{2}, M\right\} \vec{q} N q:\left|B^{c}\right\rangle^{q}+\{M \leftrightarrow N\} \tag{23}
\end{equation*}
$$

where index q in the second matrix element denotes that the quark operators in it act only on quarks determining the proper baryon states.

To clarify to what mechanisms of the $\Pi B^{\prime} B$ interactions different contributions to $A^{M N}$ correspond, we transform Eq. (23) into another form.

Vacuum contributions. Taking into account the relation

$$
\begin{equation*}
-\delta^{3}(x) \bar{q}\left\{\gamma_{5} \frac{\tau^{a}}{2}, k\right\} q=\left[\bar{q}(x) D_{0}^{a} q(x), \bar{q} K q\right]_{x^{0}=0} \tag{24}
\end{equation*}
$$

and using PCAC and the reduction formula for Π "from right to left", we get

$$
\begin{align*}
\left(A^{M N}\right)^{v a c} & =\left(\left\langle\pi^{a}\right| \bar{q} M q|0\rangle\left\langle B^{b}\right| \bar{q} N q\left|B^{c}\right\rangle-\right. \\
& \left.-\left\langle n^{a}\right| \bar{q} Q q|0\rangle\left\langle B^{b}\right| \bar{q} R q\left|B^{c}\right\rangle\right)_{K \rightarrow 0}+\{M \leftrightarrow N, Q \leftrightarrow R\} \tag{25}
\end{align*}
$$

Hence, we see that $A^{\text {vac }}$ corresponds to the known factorizable

The "quark"contributions. Using the fact that in our approximation the operators $O^{M N}$ coincide with the free ones (see sect. 2) we apply to the T - product in Eq. (15), the Wick theorem. With the equations of motion for the quark fields, we find

$$
\begin{aligned}
& \partial^{\mu} T\left(: \bar{q}(x) P_{\mu}^{a} q(x), O^{M N}\right)=T_{9}(x, 0)+T_{6}(x, 0)+T_{6}^{\prime}(x, 0)+T_{3}(x, 0), \\
& T_{9}(x, 0)=i: \bar{q}(x) P^{a} q(x) \bar{q} M q \bar{q} N q:, \\
& T_{6}(x, 0)=:\left[\bar{q} M S(-x) P^{a} q(x)+\bar{q}(x) P^{a} S(x) M q\right] \bar{q} N q:+\{M \leftrightarrow N\}, \quad \text { (b) } \\
& T_{6}^{\prime}(x, 0)=-\delta^{4}(x):\left[\bar{q} M \gamma^{0} P_{0}^{a} q(x)+\bar{q}(x) \gamma^{0} P_{0}^{a} M q\right] \bar{q} N q:+\{M \leftrightarrow N\}, \\
& T_{3}(x, 0)=\partial^{H}\left[\operatorname{Tr}\left(S(-x) P_{\mu}^{a} S(x) M\right): \bar{q} N q:-: \bar{q} M S(-x) P_{\mu}^{a} S(x) N q:\right](d) \\
& +\{M \leftrightarrow N\},
\end{aligned}
$$

(a)

(b)
(c)
(d)

(9)

Fig. 1. Structure of the $\pi B^{\prime} B$ vertex. The black circle denotes the effective Hamiltonian $H^{D N C}$. (a) is factorizable (F) and (b)-(d) are nonfactorizable (NF) contributions; (e)-(g) is the interpetation of the P part of the vertex.
where $\quad P^{a}=\gamma_{5}\left\{m_{q}, \frac{\tau^{a}}{2}\right\}, \quad S(x)=(2 \pi)^{-4} \int d^{4} p \exp (-i p x)\left(m_{q}-\not p-i \varepsilon\right)^{-1}$.
The lower indices of operators T in (26) denote their operator dimensions.

As $K \rightarrow 0$, the contributions T_{i} to $A^{M N}$ for different i tend to zero independently of each other, in particular

$$
\begin{equation*}
\int d^{4} x e^{i k x}\left\langle B^{b}\right| T_{6}(x, 0)+T_{6}^{\prime}(x, 0)\left|B^{c}\right\rangle_{k \rightarrow 0} \rightarrow 0 . \tag{27}
\end{equation*}
$$

Since from (17) and (26c) there follows

$$
\begin{equation*}
\int d^{4} x e^{i k x}\left\langle B^{b}\right| T_{6}^{\prime}(x, 0)-\delta\left(x^{0}\right) C_{6}(x)\left|B^{c}\right\rangle=0 \tag{28}
\end{equation*}
$$

allowing for Eq. (27) we get

$$
\begin{equation*}
\left(A^{M N}\right)^{q}=-\frac{i \sqrt{2}}{f_{\pi}} \int d^{4} x e^{i k x}\left\langle B^{b}\right| T_{6}(x, 0)\left|B^{c}\right\rangle_{k \rightarrow 0}^{q} \tag{29}
\end{equation*}
$$

Hence it follows that A^{9} corresponds to nonfactorizable (NF) contributions to A determined by the operator T_{6} (Fig. $1 \mathrm{~b}, \mathrm{c}$) ㅍ) The NF contribution Fig. $1 d$ is determined by the operator T_{g} and vanishes as $K \rightarrow 0$; the operator T_{3} gives (perturbative) contributions to A^{F} and vanishes in that limit, too.

3.2. Calculation of $h_{g_{1}}$

Now we shall apply the general formulas obtained in sect. 3.1 to calculate the constant h_{π}.

Factorizable (vacuum) contributions. From Eqa. (25) and (11), with taking into account the Fierz identities

$$
\begin{align*}
& \left(\gamma_{\mu} \gamma_{5}\right)_{\alpha \beta} \times\left(\gamma^{\mu}\right)_{\gamma \delta} \pm\left(\gamma_{\mu}\right)_{\alpha \beta} \times\left(\gamma^{\mu} \gamma_{5}\right)_{\gamma \delta}= \\
= & -\left[\binom{\gamma_{\mu} \gamma_{5}}{2 \gamma_{5}}_{\alpha \delta} \times\binom{\gamma^{\mu}}{\hat{\delta}}_{\gamma \beta} \pm\binom{\gamma_{\mu}}{2 \delta}_{\alpha \delta} \times\binom{\gamma_{\gamma} \gamma_{5}}{\gamma_{5}}_{\gamma \beta}\right] \tag{30}
\end{align*}
$$

and the relation $\langle\pi| \bar{q}_{i} M q_{j}|0\rangle=$
$=\frac{1}{3} \delta_{i j}\langle\pi| \tilde{q}_{k} M q_{k}|0\rangle \quad(i, j, k$ are colour indices, a sum over K is understood) we find

$$
\left\langle\pi^{-} p\right| H^{P N C}|n\rangle^{F}=-2 \sqrt{2} G\left(c_{1}^{5}+\frac{1}{3} c_{1}^{6}\right)\left\langle\pi^{-}\right| \bar{d}_{\gamma_{5}} u|0\rangle\langle p| \bar{u} d|n\rangle
$$

To calculate the matrix elements of the quark densities in (31), we use the equations of motion for the quarks, then (see refs. $/ 26,17,18,28$).

$$
\begin{align*}
& \left\langle\pi^{-}\right| \bar{d} \gamma_{5} u|0\rangle=\frac{i}{\sqrt{(2 \pi)^{3} 2 k^{0}}} \frac{f_{\pi} m_{\pi}^{2}}{m_{u}+m_{\alpha}} \tag{32}\\
& \langle p| \bar{u} d|n\rangle=\frac{M_{\equiv}-3 M_{n}+2 M_{p}}{m_{u}-m_{s}} \bar{u}_{p} u_{n}, \tag{33}
\end{align*}
$$

(3) This conclusion confirms the arguments of the papers $/ 7,30 /$.
where $m_{q} \equiv m_{q}\left(\mu_{0}\right)$ are the quark Lagrangian masses renormalized at the point $\mu=\mu_{0}$ ．To avoid small differences（ $M_{p}-M_{n}$ and $m_{u}-m_{d}$ ）in（33），we use the $\operatorname{SU}(3)$ relation

$$
\begin{equation*}
\langle p| O_{1}|n\rangle=-\sqrt{\frac{2}{3}}\left(2\langle p| O_{1 / 2}|\Lambda\rangle-\langle\Lambda| O_{1 / 2}\left|\Xi^{-}\right\rangle\right. \tag{34}
\end{equation*}
$$

valid for any operators $O_{\Delta I=1}$ and $O_{\Delta I=1 / 2}$ which belong to the same octet．

From Eqs．（31）－（33）we obtain for h_{π}^{F}

$$
h_{\pi}^{F}=-\frac{2 \sqrt{2}}{3} G m_{\pi}^{2}\left(3 c_{1}^{5}+c_{1}^{6}\right) \frac{f_{0}}{m_{u}+m_{d}} \frac{M_{\equiv}-3 M_{\Lambda}+2 M_{\rho}}{m_{u}-m_{s}}
$$

Thus，the calculation of h_{π}^{F} is reduced to the finding of the quark masses m_{u}, m_{d}, m_{s} ．

The renormalized mass m_{q} as a function of the renormaliza－ tion point e．g．，ref． $25 / \mu$ in the lowest \log approximation has the form（see， e．g．，ref．$/ 25 /{ }^{\mu}$

$$
\begin{equation*}
m_{q}(\mu)=\bar{m}_{q}\left(\ln \frac{\mu}{\Lambda_{3}}\right)^{-\frac{4}{9}} \tag{36}
\end{equation*}
$$

where \bar{m}_{q} is a constant．From QCD sum rules for the axial current divergences it is known＇ciji：$\quad \bar{m}_{u}=(7.6 \pm 2.2) \mathrm{MeV}, \bar{m}_{d}=(13.3 \pm$ $\pm 3.9) \mathrm{MeV}, \bar{m}_{s}=(260 \pm 80) \mathrm{MeV}$ ．Hence，according to Eq．（36）we have $\left(\wedge_{3} \simeq 100 \mathrm{MeV}\right) m_{u}=(8.9 \pm 2.6) \mathrm{MeV}, \quad m_{d}=(15.7 \pm$ $\pm 4.6) \mathrm{MeV}, m_{S}=(306 \pm 94) \mathrm{MeV}$ ．We choose mean values from these intervals：

$$
\begin{equation*}
m_{u}=8.9 \mathrm{MeV}, \quad m_{d}=15.7 \mathrm{MeV}, \quad m_{s}=306 \mathrm{MeV} \tag{37}
\end{equation*}
$$

This choice is supported by the following：
（i）With the use of PCAC and the average SU（3）－splitting of hadron masses in the octets，in ref．$/ 31 /$ there have been obtained famous expessions for m_{q} ：$m_{u}=(4.2 \mathrm{MeV}) / Z, m_{d}=(7.5 \mathrm{MeV}) / Z$ ， $m_{S}=(150 \mathrm{MeV}) / Z$ ，where the constant $Z^{d}=\langle n| \bar{u} u|n\rangle=\langle p| \bar{d} d|p\rangle$ ． This constant is easily evaluated in quark models．In the MIT bag model $Z \simeq 0.48$ ，that provides the values of m_{q} practically coinciding with those of Eq．（37）．（ii）The values of m_{q} of Eq． （37）correspond to the density of the quark condensate（see Eq．（19）） $\langle 01 \bar{q} 9 \mid 0\rangle_{\mu=1 \mathrm{GeV}} \simeq(-225 \mathrm{MeV})^{3}$ that agrees with the results of QCD sum rules for mesons（see ref．${ }^{25 / \text { ）．（Iii）According to（33）}}$
and（37）$\langle p| \bar{u} d|n\rangle \simeq 0.51$ ，that is very close to the value calcula－ ted immediately in the MIT bag model ：$\langle p| \bar{u} d|n\rangle_{b a} \simeq 0.48$ ．The proxi－ mity of these results also provides an argument for the self－consis－ tency of our calculation scheme partly using the MIT bag model ${ }^{\text {F }}$ ） （see the calculation of the NF part of h_{π} below）．

As a result，from Eqs．（35）and（37），for the values of C_{1}^{5} and C_{1}^{6} from table 2 we obtain

$$
\begin{equation*}
h_{\pi}^{F} \simeq 1.6 \times 10^{-7} \tag{38}
\end{equation*}
$$

Nonfactorizable（＂quark＂）contributions．As it follows from （17），the operators $C_{6}\left[O^{M N}\right]$ have the same symmetry properties as $O^{M N}$ ．Then（remind that the matrix elements of such operators are determined in our framework by only valence quarks）owing to the antisymmetry of quark wave functions in baryons，we have $\left\langle B^{b}\right| C_{6}\left[O^{27}\right]\left|B^{c}\right\rangle^{9}=\left\langle B^{b}\right| C_{6}\left[O^{s}\right]\left|B^{c}\right\rangle^{q}=0^{\text {min }}$ ）and $\left\langle B^{b}\right| C_{6}\left[O^{5}\right]\left|B^{c}\right\rangle^{q}=$ $=-\left\langle B^{b}\right| C_{6}\left[O^{6}\right]\left|B^{c}\right\rangle^{q} \quad ;$ besides，as all the components of O_{1}^{A} include the s－quark operators（see Appendix），$\langle p| C_{6}\left[0_{1}^{A}\right]|n\rangle^{q}=0$ ． With this relations，from Eqs．（23）and（17），we find

$$
\begin{align*}
& h_{\pi}^{N F}=\frac{i}{f_{\pi}}\left(c_{1}^{5}-c_{1}^{6}\right)\langle p|: \bar{u} \gamma_{\mu} d\left(\bar{u}_{\gamma}^{\mu} u+a_{\gamma^{H}} d+\overline{\gamma^{\mu}}{ }^{\mu}\right):- \text { (39) } \tag{39}\\
& \left(\gamma_{\mu}{ }^{\wedge} \gamma^{\prime \prime} \rightarrow \gamma_{\mu} \gamma_{5}{ }^{\times} \gamma^{\prime \prime} \gamma_{5}\right)^{\text {(几゙ }}{ }^{\prime} \text { ? }
\end{align*}
$$

On the basis of Eq．（39）$h_{\pi}^{N F}$ may be computed immediately in a quark model，e．g．，in the MIT bag model，or connected by means of the $\operatorname{SU}(3)$ relation（34）with the amplitudes $A\left(\Lambda_{-}^{0}\right)^{N F}$ and $A(\equiv-)^{N F}$ ．First consider the second，model－independent approach．

[^4]Since the operator $O_{1 / 2}^{A}$ gives no contribution to the r.h.s. of Eq. (34), we come to the following expression for $h_{\pi}^{N F}$:

$$
\begin{equation*}
h_{\pi}^{N F}=-\sqrt{\frac{2}{3}} \frac{c_{1}^{5}-c_{1}^{6}}{c_{1 / 2}^{5}-c_{1 / 2}^{6}}\left[2 A\left(\Lambda_{-}^{0}\right)^{N F}-A\left(\Xi_{-}^{-}\right)^{N F}\right] \tag{40}
\end{equation*}
$$

This expression differs from analogous realizations of (34) (for review see refs. $/ 5,29 /$) in the following points. First, Eq. (40) is obtained for the total effective PNC Hamiltonian of the atandard model $((10),(11))^{\text {\# }}$ without any ad hoc assumption on somewhat essential admixture of strange quarks in initial and final hadron states. Second, Eq. (40) connects only NF parts of the amplitudes. The impossibility of writing a sum rule of the type (40) for total (experimentally known) amplitudes $A\left(\Lambda^{0}\right)$ and $A(\equiv-)$ is due to that combinations of the coefficients C^{5} and C^{6} in A^{F} and $A^{N F}$ are different (cf. Eqs. (39) and (35)) and moreover that to $A\left(\Lambda_{-}^{0}, \Xi_{-}^{-}\right)^{N F}$ the contributions from the operators $0^{5,6}$ are complimented by those from $0^{27}, O^{5}$ and O^{A}.

The following circunstance, however, hinders us to find the correct value of $h_{\pi}^{N F}$ from Eq. (40): The r.h.s. of Eq. (40) is very sensitive to the values of the coefficients $C_{1 / 2}^{5}$ and $C_{1 / 2}^{6}$ (they enter both into the denominator of that relation and inta $A^{N F}=A^{\text {exp }}-A^{F}$, and as we emphasized in sect. 2 , errors of the leading log approximation for $C^{5,6}$ may essentially surpass those for other coefficients C_{i}^{R}. Therefore, to evaluate $h_{\pi}^{N F}$ we apply immediately to Eq. (39) and the MIT bag model. Then, we obtain

$$
\begin{equation*}
h_{\pi}^{N F}=4 \sqrt{2} G \frac{1}{f_{\pi}}\left(C_{1}^{5}-C_{1}^{6}\right)\left(I_{a}-\frac{1}{3} I_{b}\right) \tag{41}
\end{equation*}
$$

[^5]where $\left.I_{a}=\int_{0}^{R} r^{2} d r\left[G^{4}(r)+F^{4}(r)\right], \quad I_{b}=2 \int_{0}^{R} r^{2} d r G^{2} r\right) F^{2}(r)$
$G(r)=J_{0}\left(\frac{\omega}{R} r\right)$ and $F(r)=-J_{1}\left(\frac{\omega}{R} r\right)$ are radial parts of a
"large" and a "small" component of the quark bispinor ir the MII bag model $\left(m_{u}=m_{d}=0, \omega \simeq 0.24\right)$. At $R_{n} \simeq 1 \mathrm{fm}$ (the nucleon radius in the model) $I_{a} \simeq 1.43 \times 10^{-3} \mathrm{GeV}^{3}, I_{b} \simeq 0.05 \times 10^{-3} \mathrm{GeV}^{3}$, and we get
\[

$$
\begin{equation*}
h_{\pi}^{N F} \simeq-0.31 \times 10^{-7} \tag{42}
\end{equation*}
$$

\]

The total value of $h_{\text {II }}$. How vie have found all the componen: of h_{π}. According to Eqs. (23), (38) and (42) we get

$$
\begin{equation*}
h_{\pi}=h_{\pi}^{F}+h_{\pi}^{N F} \simeq 1.3 \times 10^{-7} \tag{4}
\end{equation*}
$$

Separating the contributions to h_{η} from the charged and neutral currents (see Eq. (4)), we find

$$
h_{n}=h_{n}(C . C .)+h_{n}(N . C)=(0.0+1.3) \times 10^{-7}(44)
$$

Hence it follows thet h_{π} is almost completely determined by the neutral currents (see also ref. $/ 28 /$). We give also the value of $h_{i,}$ for the bare effective Hamiltonian $H^{\text {PNC }}$

In this case $C_{1}^{5}=0, C_{1}^{6}=-\frac{1}{6} S_{w}^{2}$ and

$$
\begin{equation*}
\left(h_{\pi}\right)_{\alpha_{s}=0} \simeq 0.48 \times 10^{-7} \tag{45}
\end{equation*}
$$

Thus, the quark-gluon interactions increase h_{π} about 3 times (while $h_{\pi}^{F} /\left(h_{\pi}^{F}\right)_{\alpha_{s}=0} \simeq 7.3, h_{\pi}^{N F} /\left(h_{\pi}^{N F}\right)_{\alpha_{s}=0} \simeq-1.2$

From Eqs. (38) and (42) it is seen that in h_{D} the F part dominates in agreement with the results of papers $17,18,28 \%$. However, our value of h_{π} is at least 2 times as small as previous estimates of $\quad h_{\pi}$ within the standard model. This point is explained by the following: First, we heve used larger values of m_{q} than have been used formerly, that is consistent with the modern data and with our application of the MIT bag model (aee point (iii) after Eq. (37)). Second, for the calculation of $h_{\pi}^{N F}$ we have consistently used the MIT bag model and do not apply to relations of the type (40), the incorrect use of which may lead to (erroneous) large positive values of $h_{\pi}^{N F}$. In the conclusion of this section, we provide the interval of values of h_{π} arising due to the unsertainty of our knowledge of m_{q}. For $m_{u}+m_{d}=(17 \rightarrow 32) \mathrm{MeV}$ (i.e.,
$\left.\langle 0199 \mid 0\rangle_{\mu=1 \mathrm{GeV}}=-(200 \leftarrow 250)^{3} \mathrm{MeV}^{3}\right)$ and $m_{\mathrm{s}}-m_{u}=(205 \rightarrow 390) \mathrm{MeV}$, we find ${ }^{\text {F }}$)

$$
h_{\pi}=(0.62 \leftarrow 3.0) \times 10^{-7}
$$

Thus, by the experimental determination of h_{π} the values of quark mass (or the quark condensate density) could be defined more accurately, while the observation of h_{π} on the level of $h_{\eta}^{\text {b.v. }} \simeq 4.6 \times 10^{-7}$ would give explicit evidence for some exotic contributions to the PNC NN forces (e.g./9/) or for insufficiency of the leading log approximation for $\mathcal{H}^{\text {PNC }}$.

The experimental consequences of the values (43) - (45) will be descussed in a concluding paper(III).

We are grateful to M.A. Shifman for valuable discussions.

Appendix. Explicit form of the operstors of the effective Hemiltonian $\mathcal{H}^{\text {PNC }}$ (10),(11).
ilotation: $\bar{q}_{1} q_{2} \bar{q}_{3} q_{4} \equiv: \bar{q}_{1 i} \gamma_{\mu} \gamma_{5} q_{2 i} \bar{q}_{3 j} \gamma^{\mu} q_{4 j}:$, a sum ovor color indeces $i, j=1,2,3$ is understood.
$\Delta S=1$

$$
\begin{aligned}
O_{3 / 2,1 / 2}^{27}= & -2(\bar{u} u d s+d s \bar{u} u+\bar{u} s d u+\bar{d} u \bar{u} s)+d d d s+d s d d+ \\
& +d s \bar{s} s+\bar{s} s \bar{d} s+h . c ., \\
O_{1 / 2}^{s}= & \bar{u} u d s+d s \bar{u} u+\bar{u} s d u+d u \bar{u} s+2(d d d s+d s \bar{s} d+ \\
& +\bar{d} s d d+\bar{s} s d s)+h . c ., \\
O_{1 / 2}^{A}= & -\bar{u} u d s-\bar{d} \bar{u} u+\bar{u} s d u+d u \bar{u} s+h . c .,
\end{aligned}
$$

[^6]$O_{1 / 2}^{5}=-\left(\bar{u}_{i} u_{j}+\bar{d}_{i} d_{j}+\bar{s}_{i} s_{j}\right) \bar{d}_{j} s_{i}+\bar{d}_{i} s_{j}\left(\bar{u}_{j} u_{i}+\bar{d}_{j} d_{i}+\bar{s}_{j} s_{i}\right)+h . c$, $O_{1 / 2}^{6}=-(\bar{u} u+\bar{d} d+\bar{s} s) d s+\bar{d} s(\bar{u} u+\bar{d} d+\bar{s} s)+$ h.c.
$\Delta S=0$
$O_{2}^{27}=-(\bar{u} u \bar{u} u+\bar{d} d \bar{d} d)+\bar{u} u \bar{d} d+\bar{d} \bar{u} u+\bar{u} d d u+\bar{d} \bar{u} d$,
$O_{1}^{27}=\bar{u} u \bar{u} u-\bar{d} d d-(\bar{u} u \bar{s} s+\bar{s} s \bar{u} u+\bar{u} \bar{s} \bar{s} u+\bar{s} u \bar{u} s)+$
$+\quad \bar{s} \bar{s} s+\bar{s} s d d+d s \bar{s} d+\bar{s} d d s$,
$O_{0}^{27}=2(\bar{u} u \bar{u} u+\bar{d} d \bar{d} d+3 \bar{s} s \bar{s} s)+\bar{u} u \not{ }^{2} d+\bar{d} d \bar{u} u+\bar{u} d \bar{d} u+\partial u \bar{u} d-$
$-3(\bar{u} u \bar{s} s+\bar{s} s \bar{u} u+d d \bar{s} s+\bar{s} s \bar{d} d+\bar{u} s \bar{s} u+\bar{s} u \bar{u} s+d s \bar{s} d+\bar{s} d d s)$,
$O_{1}^{s}=2(\bar{u} u \bar{u} u-\bar{d} d \bar{d} d)+\frac{1}{2}(\bar{u} u \bar{s} s+\bar{s} s \bar{u} u+\bar{u} s \bar{s} u+\bar{s} u \bar{u} s)-$
$-\frac{1}{2}($ dd $\bar{s} s+\bar{s} s d d+\pi \bar{s} d+\bar{s} d d s)$,
$O_{1}^{4}=-\frac{1}{2}(\bar{u} u \bar{s} s+\bar{s} \bar{s} \bar{u} u+d s \bar{s} d+\bar{s} d d s)+\frac{1}{2}(d d \bar{s} s+\bar{s} s d d+$ $+\bar{u} s \bar{s} u+\bar{s} u \bar{u} s)$,
$O_{1}^{5}=\bar{u}_{i} u_{j} d_{j} d_{i}-d_{i} d_{j} \bar{u}_{j} u_{i}+\frac{1}{2}\left(\bar{u}_{i} u_{j} \bar{s}_{j} s_{i}-\bar{s}_{i} s_{j} \bar{u}_{j} u_{i}-\right.$
$$
\left.-d_{i} d_{j} \bar{s}_{j} s_{i}+s_{i} s_{j} d_{j} d_{i}\right)
$$
$O_{1}^{6}=\bar{u} u \bar{d} d-\bar{d} d \bar{u} u+\frac{1}{2}(\bar{u} u \bar{s} s-\bar{s} s \bar{u} u-\bar{d} d \bar{s} s+\bar{s} s \bar{d} d)$,
$O_{0}^{S}=\frac{1}{\sqrt{3}}[2(\bar{u} u \bar{u} u+Z d \bar{d} d-2 \bar{s} s \bar{s} s)+\bar{u} u d d+\overline{d d} \bar{u} u+\bar{u} d d u+\bar{d} u \bar{u} d-$ $\left.-\frac{1}{2}(\bar{u} u \bar{s} s+\bar{s} s \bar{u} u+d d \bar{s} s+\bar{s} s \bar{d} d+\bar{u} \bar{s} u+\bar{s} u \bar{s} s+\bar{s} \bar{s} d+\bar{s} d d s)\right]$,
$O_{o}^{A}=\frac{1}{\sqrt{3}}\left[-\bar{u} u \bar{d} d-d d \bar{u} u+\bar{u} d \bar{d} u+\bar{d} u \bar{u} d+\frac{1}{2}(\bar{u} u \bar{s} s+\bar{s} s \bar{u} u+\right.$ $+\overline{\bar{s}} s+\bar{s} s d d)-\frac{1}{2}(\bar{u} s \bar{s} u+\bar{s} u \bar{u} s+\bar{s} \bar{s} d+\bar{s} d d s)$,
$U_{0}^{5}=\frac{\sqrt{3}}{2}\left(\bar{u}_{i} u_{j} \bar{s}_{j} s_{i}-\bar{s}_{i} s_{j} \bar{u}_{j} u_{i}+d_{i} d_{j} \bar{s}_{j} s_{i}-\bar{s}_{i} s_{j} d_{j} d_{i}\right)$, $O_{0}^{6}=\frac{\sqrt{3}}{2}(\pi u \bar{s} s-\bar{s} s u 4+\pi d \bar{s}-\bar{s} d d)$.
$u^{\prime s}=2(\bar{u} u \bar{u} u+\bar{d} d d d+\bar{s} s \bar{s} s)+\bar{u} u d d+\bar{d} d \bar{u} u+\bar{u} u \bar{s} s+\bar{s} s \bar{u} u+$
$+d d \bar{s} s+\bar{s} s d d+\bar{u} d \bar{d} u+d u \bar{u} d+\bar{u} s \bar{s} u+\overline{s u} u s+Z \bar{s} d+\bar{s} d \bar{d} s$,
$U^{1 A}=-(\bar{u} u d d+\bar{d} d \bar{u} u+u u \bar{s} s+\bar{s} s \bar{u} u+d d \bar{s} s+\bar{s} \bar{d} d)+$ $+u d \bar{d} u+\pi u \bar{u} d+\bar{u} s u+\bar{s} u \bar{s} s+\pi s \bar{s} d+\bar{s} d \bar{d} s$.

References

1. Glashow S.L. Nucl. Phys., 1961, 22, p. 579; Weinberg S. Phys.Rev. Lett., 1967, 19, p. 1264; Phys.Rev., 1972, D5, p. 1412; Salam A. Proc. 8th Nobel Symp. ed. N. Svartholm (Almqvist and Wiksell, Stockholm, 1968) p. 367.
2. Glashow S. L. Iliopoulos J., Maiani L. Phys.Rev., 1970, D2, p. 1285.
 p. 365.
3. Fischbach E., Tadić D. Phys.Rep., 1973, 6C, p. 123; Tadić D. Rep. Progr. Phys., 1980, 43, p. 67.
4. Desplanques B. Nucl. Phys., 1980, A335, p. 147.
5. Box M.A. et al. J. Phys., 1975, G1, p. 493.
6. Desplanques B., Donoghue J.F., Holstein B.R. Ann. Phys., 1980, 124, p. 449.
7. Holstein B.R. Phys.Rev., 1981, D23, p. 1618.
8. Suzuki M. Phys.Lett., 1982, 115B, p. 40; Dunkan M.J. Nucl. Phys., 1983, B 214, p. 21.
9. Palle D. et al. Nucl. Phys., 1980, B166, p. 149; Pićek I., Tadić D., Trampetić J. Nucl. Phys., 1981, B 177, p. 382.
10. Chodos A. et al. Phys.Rev., 1974, D9, p. 3471; DeGrand T. et al. Phys.Rev., 1975, D12, p. 2060.
11. Weinberg S. Phys.Rev., 1973, D8, p. 605; ibid., p. 4482.
12. Mathur V. S., Yen H.C. Phys.Rev., 1973, D8, 3569.
13. Gaillard M. K., Lee B. W. Phys.Rev.Lett., 1974,33. p. 108; Altarelli G., Maiani L. Phys.Lett., 1974, 52B, p. 351.
14. Altarelli G. et al. Nucl. Physo, 1975, B88, p. 215.
15. Vainshtein A.I., Zakharov V.I., Shifmar: M.A. Pis'ma Zh. Eksp, Teor. Fiz., 1975; 22, p. 123.
16. Guberina B., Tadić D.,Trampetić J. thacl. Pay., 1979, B:5. F. 4.9.
17. Buccella F.et al Nucl. Phys., 1979, I 152, fo. 451.
18. Dubovik V. W., Zamiralov V.S., Zenkin S.V., Nucl. Phys.. 1981. B 182, p. 52.
19. Dubovik V.M., Zamiralov V.S., Zenkin \&.V. Yadern. Jiz., 1991, 34, p. 837.
20. Babaev Z.R., Zamiralov V.S., Zenkin S.V., Yaderf. Hiz., 1902 35, p. 144.
21. Weinberg S. Phys.Rev. 1973, K, p. 3497.
22. Ellis J. et al. Nucl. Phys., 1980, B 176, D. 61: Shirkov D.V. Yadern. Fiz, 1981, 34, p. 541,
23. Mackenzie P., Lepage G.P. Phys.Rev. Lett., 1991. 47, F. 1244; Krasnikov N.V., Pivovarov h.A. Phys. Lett., 1962, 116I, p. 168.
24. Gasser J., Leutwyler H. Phyg.Rop., 1982, s?, p. 77.
 1977, 72, p. 1275.
25. Hovikov V.A, et al. Arn. Phys., 197\%, 105, p. 276.
26. Körner U.G., Kramer G., Willrodt J. Fhys.Lett., 1979. 818, p. 365.
27. Galić H., Guberina B., Tadić D. Fortschr. Yhys., 1981, 29: 261.

28. Weinberg S. In: Festschrift for I. T.Rabi, ed, Lloyd Motz (F , w York Ac demy of Science, N.Y., 1977) p. 185.
29. Abe Y. et al. Progr.Theor. Phys., 1980, 64, p. 1363; Dubovik V.M., Zenkin S.V., JIIR, E2-82-195, Dubna, 1982.
30. Miura K., Minamikawe T., Progr•meor. Phys., 1967, 38, p. 954; Körner J.G. Nucl. Phys., 1970, B 25, p. 282 ; Pati J.C., Woo C.H. Phys.Rev., 1971, D 3, p. 2920.

Received by Publishing Department
on August 25,1983.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY? You can receive by post the books listed below. Prices - in US \$, including the paeking and registered postage

D-12965 The Proceedings of the International school on The Proceedings of the International School on the Problems of Charged Particle A.
for Young Scientists. Minsk, 1979.
The Proceedings of the International conference n Systems and Techniques of Analytical Comput ns in Theoretical Physics. Dubna, 1979.

The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.
The Proceedings of the International School on Nuclear Structure. Alushta, 1980
Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980.

D4-80-572 N.N. Kolesnikov et al. "The Energies and Half-Lives for the $a-$ and β-Decays of Transfermium Elements"

D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
D10,11-81-622 proceedings of the International meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980
D1,2-81-728 proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.
D17-81-758 Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.

D1,2-82-27 Proceedings of the International Symposium on polarization Phenomena in High Energy Phystes. Dubna, 1981.
D2-82-568 Proceedings of the Meeting on Investications in the Field of Relativistic Nuclear Physics. Dubna, 1982
09-82-664 Proceedings of the Symposium on the Proceedings of the Symposium on the Problems of coliective
D3,4-82-704 Proceedings of the IV International

Аубовик В.М., Зенкин С.В.
E2-83-611
Самосогласованный расчет слабшх констант

- несохраняюцих четность ядерных силах.

Зффективный H_{4} в гамильтониан в $\operatorname{SU}(2)_{\mathrm{L}} \mathrm{xU}(1) \mathrm{xSU}(3)_{c}$.
Н4 в TMN вершине.
На основе полного зффектияного гамильтониана несохраняющих четность /НЧ/ адрон-адронных взаиодействий, найденного в стандартной модели $\operatorname{SU}(2)_{L^{X}}$ $\mathrm{xU}(1) \mathrm{xSU}(3)$ с во всех порядках главных логарифмов, с учетом различия масшта-

 расчета оазличных вкладов в эту вершину, обращав особое внимание на оомот ные артемактн зтих метопов в рамках самосогласопаниой расчетиой схени, тично зкпочарщек мопепи массачусетского мег, чение константы и определяомей зту вершнну. Наше значение чение константы h_{π}, определяомей зту вершину. Hawe значение $h_{\pi}\left(\approx 1.3 \times 10^{-7}\right)$ в $2: 4$ раза меньше предыдущих оценок и не противоречит зкспериментальнын данным.

Работа выполнена в Лаборатории теоретической физики оияи.

Сообмение Обпединенного ннститута ядерных исследований. Дубна 1983
Dubovik V. M., Zenkin S.V
Self-Consistent Calculation of the Weak Constants In the Parity Nonconserving Nuclear Forces.

PNC in the TNN Vertex
On the basis of the total effective Hamiltonian of the parity nonconser ving /PNC/ hadron-hadron interactions found within the standard model SU(2) $x U(1) \times S U(3) c$ in all orders of the leading logarithms allowing for the difference of quark mass scales ($\mathbb{m}_{c} \gg \mathrm{~m}_{4}$, g) we consider the PNC mNN vertex ge nerating the long-range part of the Big^{8} nuciear forces. We analyse the orl gin and the methods of calculation of various contributions to this vertex with a special attention to possible artifacts of these methods. Within the elf-consistene calculational framewort partly including thods. Within the we evaluate the total value of the constantly including the MIT bag model we evaluate the total value of the constant h_{π} determining the PNC TNN ver-
tex. Our value of $h_{\pi}\left(=1.3 \times 10^{-7}\right)$ is $2+4$ times as small as previous estimatex. Our value of $h_{\text {I }}\left(\approx 1.3 \times 10^{-7}\right)$ is $2+4$ times as
tes and does not contradict the experimental data.

The Investigation has been performed at the Laboratory of Theoretica hysics, JINR.

Orders for the above-mentioned books can be sent at the address: publishing Deparcinent, JINR
Head Post office, P.O.Box 79101000^{\prime} Moscow, USSR

[^0]: - Institute of Nuclear Research of the USSR Acad. of Sciences, Moscow

[^1]: . ${ }^{\text {K }}$ Moreover some of these parameters have rather an unnatural interpretation: large contribution of a quark sea to some h_{M}; a atrong breaking of the $S U(6)_{W}$ aymetry for nonfactorizable parts of h_{M}.

[^2]: $\left.{ }^{\pi}\right)_{\text {For }}$ simplicity we confine ourselves to the GIM sector ${ }^{/ 2 /}$ (the number of flavours $n_{f}=4$); subsequent results are practically not sensitive to the expansion of the quark basis to $n_{f}=6$ (see ref. ${ }^{121 /}$).

[^3]: x) The choice $\mu=\mu_{0}$ is possible owing to the amall value of $\Lambda_{3} \simeq 0.1 \mathrm{GeV}$, then $\alpha_{3}\left(\mu_{0}\right) \simeq 1$.

[^4]: F）Here it should be remembered，that the large $\left(\sim f_{\pi} /\left(m_{u}+m_{d}\right)\right)$ value of the matrix element（32）is due to the pseudogoldstone natu－ re of the pion．In the MIT bag model，where the chiral symmetry is violated explicity by the boundary conditions，$\left\langle\pi^{-}\right| \bar{d} \gamma_{5} u|0\rangle_{\text {bag }} \sim$ $\sim f_{\pi} R_{\pi} m_{\pi / 32 /, i, e ., i t}^{2}$ is by an order of magnitude as small as（32） （see ref．／32／）．

 3in）It is the so－called Pati－Woo argument／33／．

[^5]: ${ }^{5}$) Note, the relation (40) is a consequence of the choice of a low renormalization point μ and of the consideration of the different mass scales of m_{c} and $m_{u, d, s}$. Indeed, only in this case the $\Delta S=1$ partners of $0,5,6$ appear in $H^{D N C} \quad \Delta S=1$ (see sect.2) and the relations are valid, which are given prior to the Eq. (39).

[^6]: 天) It is to be remembered, however, that the deviation of the values of m_{q} from (37) violates the self-consistency of calculation of h_{π} with the use of the MIT bag model, so $\langle p| \bar{u} d|n\rangle=$ $=(0.76 \longleftarrow 1.4)\langle p| \bar{u} d|n\rangle_{\text {bag }}$.

