


1. INTRODUCTION

This work is devoted to the consequences of the standard model
SU(2)L x U(1) x SU(3)C /1-3/ for the parity nonconserving (PNC)
nucleon-nucleon (NN) interactions. We carry out the analysis in the
framework of the usually accepted representation of the PNC NN for-
ces through the 1/-, 0-, W - meson exchanges with the parity noncon-
servation within one of the MNN ( M=T1,Q,wW ) vertices (see, e.g.,
reviews/4’5/, papers/6’7/). Here, the main theoretical problem is
the calculation of the PNC MNN vertices defined by the phenomenolo-

gical Hamiltonian x)
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An activity in this field is necessary at least by the following
reasons.

(0]
is the same as f in refa./5'7/. We neglect the PNC QNN vertex

with derivatives (e( h% ), because it plays a negligible role in
the PNC NN interactions (see ref./el).

')Ie use the Bjorken-Drell metric with )= (_2 '-‘) » our hh
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FPirst, the PNC NN interactions give the unique possibilities
for the study of all the components of the siandard model, which at
present is the low-energy benchmark for the iiost grand unified mo~
dels, Indeed, unlike the AS = 1 or/and 4 C = 1 nonleptonic decay
amplitudes, the PNC MNN vertices are generated not only by the char-
ged but also neutral hadroo current interactions, and therefore,
bear information oun unification scheme of all three types of the
fundamental interactions: weak, electromagnetic and strong. So, the

a1l = 1 PNC NN transitions are determined almost completely by the
neutral current interactions,and the modification of the bare (i.e.,
determined by the weak Lagrangian) PNC quark amplitudes by quark-
gluon interactions may tell on the values of hM very strongly (up
to an order of magnitude and sign).

Second, such an analysis may have interesting consequences for
zoime cxtensions of the standard model (e.g.,for the supersymmetric
oneg, gee ref ./9/).

A consistent consideration of our subject however encounters
¢3zential difficulties because there is no yet an adequate techni-
que for the transition from the quark interaction Lagrangian of tie
standerd model to the hadronic amplitudes. The available calculations
of the constantg .hM necegssrily include dissimilar tricks and
approximations, that isg the main origin of large uncertainties of
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In the papﬁrl7/ Desplaryucs, Donoghue and Holstein have carzied
out the unified treatment of e t
o based upon SU(6),, arguments

supplemented by quark technique and have analysed some of these
uncertainties.

As a result, they estimated the intervals of possible values
of hM ino the standard model and within the intervals found the
so-~-called "best values" of hM ( h#“) , which at present are widely
used for the estimations of the PNC effects in the standard model.
The "best values", however, are actually semiphenomenological or=sz,
because to obtain the, arbitrary (fitting) parameters have been
uged ‘). This circurstance hinders the use of h - to conclude
on consequences of the atandard model itself,

l)lﬂcreover some of these parameters have rather an unnatural
interpretation: large contribution of a quark sea to some h, Y

M
atrong breaking of the SU(6) gymmetry for nonfactorizable parts
of hu . :

w

For this aim a self-consistent parametef—free calculational
framework for HM is required. This framework also has to enable
one to 8ift possible artifacts of calculational methods included in
it.

Our realization of this plan is c¢lose in the form to the uni-
fied treatment of h, of ref.”T/ although differs from it in the
basic points. We begin with a treatment of the effective Hamiltoni-
an of PNC hadron-hadron interactions in the standard model, which
is the local operator in the first order generating the PNC MNN
verticea: hMoc (MN'| }‘PNC IND . The essential point here is the
choice of a low renormalization scale of the operators of the Hamil-
tonian ( K is near the characteristic inverse confinement radius).
This enables us to consider hadronic matrix elements of this opera-
tors taking into account only valence quarks, Then we expound the
overall structure of the PNC MNN vertices determined by this effec-
tive Hamiltonian. We pay special attention to a reconstruction of
quark mechanisms responsible for different contributions to hM B
After that we proceed to the calculation of hM . Here, the main
difficulty is the calculation of nonfactorizable (NF) (i.e.,nonredu-
cible to products of hadron currents) contributions to hp and
. We solve the problem proceeding from the approximate SU(6)

w F
symmetry of the NF 9arts of the PNC MNN vertices and calculate hgu)
/11 ] . 4
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the intervals determined in ref. , moreover hn::é.hw , and

ho‘u agree with hpiz’ . We analyse also the partial contributions
to HM
gluon interactions in the formation of hM . The concluding part

of the charged and neutral currents and a role of the quark-

of the work is devoted to the experimental consequences of our
results. We observe a rather good agreement of our values of hM
with the experimental data of the whole and concentrate our atten-
tion on the processes valuable for more elaborate conclusions.

Our work is organized in the form of three issues. In the remaining
part of this issue we consider the effective Hamiltonian 3{pNC
(sect.2) and calculate Hn (sect.3). The second issue (II) con-
taing the calculation of hpu);in the third issue (III) we discuss
the experimental consequendes of our results.

2, THE EFFECTIVE HAMILTONIAN OF THE PNC HADRON-HADRON
INTERACTIONS IN THE STANDARD MODEL
The general structure of the effective Hamiltonian of weak
hadron-hadron interactions in the unified gauge theories has been



studied in papers/m’m/. Their main result is that a part of H , dsq dzo d 2

that is not reduced to the renorlamization of the starting Lagran- ‘ +(i‘-(-) Lit 4] Kw + é_ -1 1-111 Kw )K 8 OI/Z } , (3)
gian, is finite, its leading terms being of the order O(G~ 93, /Mf,)

( 9, is the semiweak coupling constant). The explicit form of

}LAS=4 ix_1 the standard model with massless quarks in the second

order in 9w and in all orders in the quark-gluon coupling cons-

tant 95 (in the leading log approximation) has first been . }{PNC - ‘E.G{ K d84KcJ2-‘, [L 202? iyl $2 021 o4 (‘—452) o??‘J +
w 10 i 0

found in ref./14 . There have been observed the dynamical, owing AS=0 6 2 20
to the quark-gluon interactions, enhancement of octet transitions

and suppression of 27-plet quark transitions. In ref. /'%/ analo- (4 dg, ; dzo) de 28 , Y
gous effects have been found for PNC Hamiltonian }LDZCS_O. The next : * 20 Lot ‘] KW * 4 44 rJKW K [S O‘ +T% (2235 ) oo]+
step in the discovery of the structure of H in t_he standard

model was to take into account the dii}i1’e7ence of the quark mass sca- . (__‘_
le: m/ » Mud s . S0, in ref. it has been shown that the {20
elimination of the logarithmic contributions of ¢ ~ quarks from

the operator part of HAS:I leads to the appearance in }LAS=4

dg,  d 23 27 3
of new, including the neutral right-handed currents, operator +\2 G(l—2$i) { Kzu K (-—‘— O+ 4 O‘ + 4 0

W

d ' 4@\ d
Lol KoM+ L 41K )K‘(3)O:}+

A +
6 2 10 60 0)
structures which belong to the octet representation (the so-called

"penguins"). In the papers /17,18/ analogous effects have been d do d q 1
studied for the Al=1 part of }LZNSC=O » and in refs./19'20/ for + (“‘— [1441] KZM+ Z‘T (-t 1-417] Kzz >K : ( O4 +{L‘ Oo> +
all the isotopic parts of }LDNC_ . We are interested in the effective 20 3
Hamiltonian H°MC  which detez-gines the low-energy (E & 1 GeV) ;. . d“ .. o d‘(z‘)\ A3 A0
1igily usQruus. nere, 1LoLlOWlng tne calculation T = L1t I T = Lt 43K K | -
we shall give HPNC  in its final form and \ 60 z 60 z ° }
dwell only upon its features most important for the following.

Within the standard model *) in the second order in 9w and -3 G'L < [10o0 0] KdlS’ { Kda (OZ + 4 O%) —
in all orders of the leading logs in the quark-gluon interactions 37w Z ! 3 °
the Hamiltonian }LDNC' has the form:

IRC isvsiavvivus Ul
20
scheme of ref./ /,

d,3) Al
o[ K } .
]—LDNC= J-I.DNC + }{PNC 2) : é d(s) ‘
as=t " Moz 0, @
}{-ZNSi‘ = ﬁ G sc {— “6 K\ju K dﬂ O;; . + The Hamiltonian is represented by the linear combination of the lo-
2, 72 cal four-quark operators O? renormalized at the point I,(‘.\:Fo ‘s
where f{l, is a parameter of the infrared cut-off of the quark and
!)For simplicity we confine ourselves to the GIM sectorlz/ gluon loop momenta. This cut off is introduced at the characteristic
(the number of flavours h; = 4); subsequent results are practical- inverse radius of the confinement and takes phenomenologically into
1y not sensitive to the expansion of the quark basis to nN; = 6 account the colour confinement. In our case Ho= 0.2 GeV, Tl}e
(see ref. /21/). ¢ upper indices of the operators denote the S (3) representations



which they belong tc, end the lower ones show their properties in
the isospin space (AI) . The explicit form of operators OZ_"
is given in Appendix; O8 and O‘ are deiined as follows:

Clag, 1)
Oi&z OC(/\L, () Ol ) O(‘,l)
¢ O(‘,/\() ) A 0 \ Oc(l,l) )

kY

\

\ O((J,,«\i)

(5)

where O(M,N)= :QiYHYSMQi qJ-XHN 9+, OC(.M.,N) =19 Yf‘ Ys Mq; q,l' YHN 9; -,
Q{Eqi(o) , & sum over colour indices 4Ly =1, 2, 3 is assumed;
M, N are 3 x 3 matrices in the flavour space; /\‘/z= >‘6 s A=
Ay = 45}8 ( }é are the Gell-Mann matrices).
All the parameters of the standard wodel: S=stn QC
(c=cos QC) . S, Sin o, , Gw " 9s are contained in
e
v/
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corrections (here-through the renormalization group equations in
the masgless scheme of rcnormalization/22 ) leads to the matrices
K unequal to identity (as 'Rl , Kd—>4 ). The numbers
K are defined by Kw,z =&, (m%) /0(4(Mw,z) . =
= 0Ly () /0%y (M) ,where o, () = 121/ [(33-2n) bn (1/A2)]  is the
effzctive strong interactior coupling (3;@)/4;1) in the theory with
h flavours; m: is the mass of a charmed quark with a special
choice of the renormalization point, namely with ¢ , which is a
solution of the equation mc(l")= H %), The matrices dQ (propor-
tional to the matrices of the anomalous dimensions of the operators

O ) have the form

dy,=-6/25 | dpy= -6/23 | dy =42 /25 ;

(6)

%)Hence my = m,(m).

dg=dp (@), dy=d, (3),

-2/3 2 -3 9
. 27-4n _27-4n Y2 2/2
= 1 2
dAD (n) 33-2n 6 {7)
-14/3 11 0 0 :
9/2 24/2 92  -23/2
4 =/3 iq
d (r) = - 33 -2 .
23 -2 ’Zn_S (8)
3

PNC
To find numerical values of the coefficient functions of H , we

should choose the values of the parameters /\4 . /\3 , mZ . Note,
only two of these three parameters are independent. Indeed, the mat-
ching condition for the amplitudes <u,d, s | Q4 (u,d, s, c)l ud, s>
and {ud,s10y(ud s} lu,d s> in the log approximation
at W= mc" leads to Xz(m() =%, (m.") ; hence,

Az = m (/\4/’mc“)25/27 (see also 7237). We use Ay = 80 MeV
that complies with the charmonium data /24/, and mc' = 1.27 GeV
that follows from the analysis of the ete” - annihilation experimen-
tal data through the QCD sum rules (see, e.g., review/25 and
references therein). Hence, /\3 == 100 MeV and at Ho = 0.2 GeV
we obtain sz— KZE 2.5 and K ~ 3.6, oNC

It is convenient to write the final expression for H
in terms of On (see Appendix) and of the operators:

S
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The explicit form of the operators is given in Appendix, too. It is
easy to see that the operators 027 , 0° anda 0'° (OA , 01A) are sym-
metric (antisymmetric) with respect to the permutation of the colour
indices of the second and fourth or first and third quarks. The
operators O5 and O6 have no definite colour symmetry and have the
left-right ("penguin") structure: Op < O(M,N)- O(N,M).

As a regult we have:

PNC ( 2% 23 s NS 4 A
= + +
}{AS:l \JzG CAS:‘ O%‘ I/l cl/z 4/2 cl/z ‘/z

5 A5 6 M6 )
+ + (10)
€Yy T Gy Yy 1

PNC 27
Hoo =2G[cZ0]+ X (¢POF+ 08 +ct04+

45=0 (=01

+¢c2 0% + cf Of-’)+c‘sO'S+ et . (11)

The numerical values of the coefficient functions C‘f- at

S - A 21 anA el L A N7 and Aha ahbadend centaan~ s ¥ e

given in Tables 1, ; . For comparison we give also the bare values
of C% (l(w'z= K=4) « It is seen, the quark-gluon interactions
result in the increase (in absolute value) in the coefficients of
the antisymmetric operators OA and O‘A and in the decrease
in the coefficients of the symmetric operators 027 N OS and O{S .
The characteristic ratios [C(gsio)/C(gﬁo)' are ~ 2.5 and ~ 0.5,
respectively., It is to be remembered however that we have extrapo-
lated the coefficient functions found in the leading log approxima-
tion valid at X (M) &« I, into the region K » m, , where
Ols(,.t)w 4 , and therefore, essential contributions may come
from nonleading log terms ~9: "(tn m//_(o)zm (n>m) and from nonloga-
rithmic terms. All this may produce an especially strong influence
on the behaviour of (3 and C%, which gather their velues
mainly at F>mc. So, it is reasonable to assume that the differen-
ces C(gsaeo)—c(gs-; o) are reproduced by the leading logs up to
a factor of ~1.5 + 2 /26/.

It is important to note here that the choice of the so low re-
normalization point (Ho.v ]-1,,) is caused by the following circumstan-

PNC
Table 1. Coefficient functions of }{'AS 0 (10). (s = 0.23)

In brackets their values at o(,S: = 0 are given.
c ¢S cA cs cé
as={ b i 7 7
-0.014 0.0049 0.15 -0.011 0,0020
(-0.022) (0.011) (0.056) (0) (0)

PNC
Table 2. Coefficient functions of M _~ ' (11). (s = 0.23,

o
2
Sw = 0s23)
23 2? 27 S A 5 6
c, (O C% C; CY Cq Cc%
0.041 0.029 0.0094 -0.,027 0.46 -0,080 -0.029
(0.068) (0.049) (0.016) (-0.044) (0.17) (o) (-0.038)
S A s 6 is (A
% C% C, C, C C
0.0072 0.95 -0.098 -0.0078 0,016 0.17
(0.026) (0.35) ) (-0.022) (0.071) (0.099)

ces very essential for further considerations: the point } separa-
tes large (u<p< M, ) and mmall ( p,<p< M ) virtual

momenta between the coefficient functions and the operator part
of the effective Hamiltonian; at P =Ho the log contributions
of all the loops, including those of the quark sea, are completely



concentrated at the coefficient functions, and therefore, the hadro-
nic matrix elements of the operators ()(H=:Fo) in the log approxi-
mation are determined by only valence quarks*)(see ref. 2 ).

3. PARITY NONCONSERVATION IN THE # NN VERTEX

The PNC TN vertex (see (1)) plays a distinct role in the
description of PNC NN interactions: On the one hand hﬂ determi- B
nes the one-pion PNC exchange intensity, i.e.,the long-range part
(r,> 3fm)of PNC NN forces, on the other hand the value of hy,
is intimately connected with the structure of neutral hadronic cur-
rents and with the magnitude of such fundamental parameters of theo-
ry as the quark vacuum condensate density <b\§q|o)and the quark
masses niq .

At the same time the recent estimates of h“ in the standard
model are scattered in a very large interval: 2.5 x 10‘?{;1 <11 x 10’7
(see papers /1,17,18,28/ /5’29/). We may distigguish
the following main origins of this situation: a different choice
in the J{PNC ; the use of

in the calculation of the factorizable

and reviews

of the renormalozation point
different values of M

hn ; dissimilarity of the calculational methods
for the nonfactorizable part of

contributions to
T I~ more detail we dwell upon
these points in the main text.

We begin our consideration of the PNC TINN vertex with clari-
ficetion of the overall structure of the TﬂyB ( B, B' are nucleons
and/or hyperons) vertices determined by the matrix elementa
ab

cmagl | HMNC ey = A(BS) ue (12)

{
Nen3 2k°
(indices a,b,c identify the components of the pion isotriplet
and the nucleon octet; ir this notation hTI= A(n?%) ).

3.1. Overall Structure of tne PNC 4 B'B Vertices

. . PNC .
Let us write down the effective Hamiltonian H in the

form ’

HN-@e @ cNoMN | (13)

M,N

x) The choice K=, is possible owing to the small value of
/\3: 0.1 GeV , then O(S(Ho)e_-l.

106

where OM~=3ququ:, M,N
flavour x colour space, and consider the partial amplitude

AMN = \em32ke <n® BP | OMN| RS,

The standard reduction technique and PCAC representation for

are matrices in the spinor x

the interpolating pion field

0 = -2 9 5 P qu)
m? K
nou
({“ ~ 132 MeV is the decay constant of 11— Hv ) allow us to write

a a
pH_XFXS% , (14)

down
A= - 2 e mn) gt o™ BT (e PY qon, OMY) -
£ .
- 86) [qaPg a0y, OMNT 185, (15)

or, in the soft-pion approximatjon (K- 0O)

MN ; - -
AN %2‘ Jax <81 [500P3 qua, O], 18> . (16)
n

The equal-time commutator in (16) is easily calculated through the

AnrnAanT Al vl Aa.

C o= [P e, OMN] | =

a7)
B0 g [P Jaang: o Heen]
Then allowing for the explicit form of Pﬁ , we find
MN _ ({2 by, = Q - . C -
AT = %(Bl.q{xs%,M}quq.lEa>+{M N}. (18)

i

Thus, the amplitude /XMN reduces to matrix elements of the local
four-quark operators between one-particle hadron states.

In the course of calculation of such matrix elements it should
be taken into account that initial and final hadron states always
include the nonperturbative quark vacuum condensate, besides the
quark determining the hadron states themselves (in our picture of
the weak hadron interactions these are valence quarks). The exis-

11



tence of the condensate is exhibited immediately in the spontaneous
breakdown of the chiral symmetry, and PCAC provides the known rela-
tion between the scalar density of this condensate and parameters
of the explicit breaking of chiral symmetry (i.e.,Lagrangian quark
masses m.(i ):
2( )<o13quod == f*m? (3q= Gu, dd)

m,+my)<01gqi0d = F“ m; 3q= du, . (19)
Let us introduce the matrices (} and R through the Fiersz
transformation

MAB X Ncn = QADX Rca ’ (20)

Then,taking into account that

(D'M‘)AB X Nopy + My (P, N)CD-:

- (21)
- (plQ)ADx RCB + QAD‘ (p’R)CB )

where p is a matrix and the brackets denote the commutator or
anticommutator, the vacuum contributions may be singled out in the
matrix elements of Eq. (18)

(AMN)VQC - - (<°'§{15%“, M}q|o><s‘°quq|B°>—
fa (22)
—<0lq{ Q}qlo)(quRqIBc )+ {M“N,Q““RS

f./18/).

(see also re

Let us note, that the terms < (olqKqu)(B lq 15 U] 1 8¢S

(KL= MN,Q,R ) do not contribute to AMN  because they
correspond to the appearance in 3{DNC of operators with the
nonperturbative coefficient functions o { 013Kq|0) : such ope- :
rators have the canonical dimension equal to 3 and are absorbed by \
the quark mass matrix counterms in the initial Lagrangian (aee/12/).

Now the total amplitude AMN  ig written down in the form

-

12

N

o ()2 L a3 g 67 ), a3

where index q in the second matrix element denotes that the quark
operators in it act only on quarks determining the proper baryon
states.

To clarify to what mechanisms of the TMB'RB interactions dif-
ferent contributions to AMN  correspond, we transform Eq. (23) into
another form.

Vacuum contributions. Taking into account the relation

-8 g {7(5'%", K}q = [qu Py q), qKq]ﬂ:o (24)

and using PCAC and the reduction formula for T "from right to left}
we get

(anyvac (<nq[qujo><sbl gNq B> =

_<n“1q(.)q|o><&"|§l2qll?>°>>K 0+ {MHN ,QHRB.

(25)

vae
Hence, we see that A corresponds to the known factorizable
A /26.17.18.28/ ... PR

PN e .
AL ) GUIWLLUUVLULE W ¢ \Ldfpe 1Qse

The "quark"contributions. Using the fact that in our approxima-

tion the operators OMN coincide with the free ones (see sect, 2)
we apply to the T - product in Eq. (15), the Wick theorem. With the
equations of motion for the quark fields, we find

PT(:qPs, g0, OMN) = T,(x,0) + Ty (x0) + T, (x,0) + Ty (x0), (26)
Ty(x0) = (1500 P (0 GMaNG (a)
T,(x0) = : [GMSE0OP 0+ GEOPASEMaNg: + {M=N}, @)
T, (x,0) = - 8400 [qMy°P% () + Gy° Pa Mq]aNg: + {M= N}, ()
T,(x0) = o [ Tr (SE0PY SGAM):GNg: ~FMSE) PR Se)Nqi| @

+ {men},




(a) { b) {c) (d)
qQ’ q M Q
7 I (e, asr)
gy J"
T
(e) ()
QM N
g
{g)

Fig. 1. Structure of the TB'B  vertex. The black circle
denotes the effective Hamiltonian HPNC | (a) is
factorizable (F) and (b)-(d) are nonfactorizable (NF)
contributions; (e)-(g) is the interpetation of the P
part of the vertex.

mhere PY= o {m T8 SG= (20 [d exp (~ipx) (my- f - ie)!

The lower indices of operators | in (26) denote their operator
dimensions.

As K- 0 , the contributions T, to AN for different
tend to zero independently of each other, in particular

Y \ .
fa' " <B*IT, (x,0) + T, (x,0) 1B, » 0. (27)
Since from (17) and (26c) there follows

Jah e <8P IT, (x0) - 86) C,0 18> = 0, (28)

allowing for Eq. (27) we get

(AMN)q= -2 Sd“x eikx <BBIT‘6 (x,0) | BC\)qK_’O . (29)
m

Hence it follows that Aq corresponds to nonfactorizable (NF)
contributions to A determined by the operator 72 (Fig. 1 b,c) %)
The NF contribution Fig. 1d is determined by the operator 7; and
vanishes as K- 0O ; the operator I3 gives (perturbative)
contributions to AF and vanishes in thav limit, too.

3.2, Calculation of hﬁ

Now we shall apply the general formulas obtained in sect. 3.1

to calculate the constant hr R

FPactorizable (vacuum) céntributions. From Eqa. (25) and (11),

with taking into account the Fierz identities
(J'pxs)dp X (Xk)w = (?ﬁ:)dgx (XHXS)HQ =
.| bis z““) A ]

+ X .
R =123 . (30)
2 o 0 20 \ Yo i
¥5 /a8 Yp o8 A0S Sys
and the relation <11|§(p{%;;0> =
=é SU <Tflamﬁ1qzlo> 0 ,j , ¥ are colour indices, a sunm

over K is understood) we find
<n‘pl3{PNCln>F= 202G (% + %Cf) <n‘lc_iz(su lod<pladin>. (31)

To calculate the matrix elements of the quark densities in (31),

we use the equations of motion for the quarks, then (see refs.
/26,17,18,28/,

. 2
Tldyeulod>=__L {:" Ma , (32)
Vany 0" s iy
: Mz-3Ma+2Mp - )
S = —= 27 TLTF O u
{plidin> - pHn 2 (33)

!)Thiﬂ comclusion confirms the arguments of the papers/7’30/.

15



where nlqa niq(Po) are the quark Lagrangian masses renormalized
at the point H=Ho To avoid small differences ( Mp- Mg

and m,-my ) in (33), we use the SU(3) relation
Y 2 =
PrOInY=\F (2¢p10y 14> - <ALO =7 (34)
valid for any operators CLI:l and A[=91 which belong to the

game octet. E
From Eqs. (31) - (33) we obtain for HW

I
h, =

—&;_E Gm,f(?:cf«*Cf) t Mz -3Mat2Mp (35)
m +my m, -mg

Thus, the calculation of Ll:
W My n1s .
The renormalized mass "1q as a function of the renormaliza-

is reduced to the finding of the
quark masses M

tion point H in the lowest log approximation has the form (see,
e.g., ref. 237y
-4

— 9
my(p) = My ( fn K (36)

9 9 /

Ny

where ﬁ% is a constant. From QCD sum rules for the axial current
divergences it is known’“”’: m,= (7.6  2.2) MeV, fﬁd = (13.3 2
% 3.9) Mev, mg = (260 1 80) MeV. Hence, according to Eq.(36) we
have ( Ay = 100 MeV) m, = (8.9 t2.6) Mev, my = (15.7 %
= 4.6)MeV, mg = (306 = 94) MeV. We choose mean values from these
intervals:

N1u= 8.9 MeV , HH = 15.7 MeV, n1s = 306 MeV . (37)

This choice is supported by the following:
(1) With the use of PCAC and the average SU(3) - splitting of hadron
masses in the octets, in ref./31/ there have been obtained famous
expessions for M, : m, = (4.2 MeV)/Z , m, = (7.5 MeV)/Z ,

m¢ = (150 MeV)/Z , where the constant Z =<n|Guln>=<piddIp>.
This constant is easily evaluated in quark models. In the MIT bag
model Z =~ 0.48, that provides the values of hlq practically
coinciding with those of Eq. (37). (ii) The values of my of Eq.
(37) correspond to the density of the quark condensate (see Eq. (19))
<0|§q[O>F= tGev = (-225 Mev)? that agrees with the results of
QCD sum rules for mesons (see ref./zs/). (Iii) According to (33)
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and (37) <plud(n>~0.51, that is very close to the value calcula-
ted immediately in the MIT bag model : pludind,, =~ 0.48, The proxi-
mity of these results also provides an argument fJ& the self-consis-
tency of our calculation scheme partly using the MIT bag model ¥
(see the calculation of the NF part of kn below).

As a result, from Eqs. (35) and (37), for the values of C§
and Cﬁ from table 2 we obtain

F -
hn ~ 1.6 x 1077 (38)

Nonfactorizable ("quark") contributions. As it follows from
(17), the operators Cé[()MN-] have the same symmetry properties
as ()MN . Then (remind that the matrix elements of such operators
are determined in our framework by only valence quarks) owing to
the antisymmetry of quark wave functions in baryons, we have
8% ¢,[07]18°>9=<BP C,[0°]18°>%=0 * ana (B"| c L0118
:-<BBIC6[O6]lBC>q ; besides, as all the components of 04
include the s-quark operators (see Appendix), (plCe[(]ﬁ']]rf>q:O.
With this relations, from Eqs. (23) and (17), we find

Ry (c§-c9) <pl:ay,d (ayfu+ dytd « §}“S>: - (39)

’ !: t AN \q
ey~ dpls ¥ ys) i

On the basis of Eq. (39) h:p may be computed immediately in a
quark model, e.g.,in the MIT bag model, or connected by means of
the SU(3) relation (34) with the amplitudes A(A°)NF and

A EZ)NF . First consider the second, model-independent approach.

!)Here it should be remembered, that the large (~f"/(m,“+ md) )
value of the matrix element (32) is due to the pseudogoldstone natu-
re of the pion. In the MIT bag model, where the chiral symmeiry is
violated explicity by the boundary conditions, <n‘|315u IO)bag'V

“‘Ear'n; si.e.yit is by an order of magnitude as small as (32)
(see ref./jz/).
3%)14 15 the so-called Pati-Woo argument’>/,
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Since the operator Ot& gives no contribution to the r.h.s.
of Eq. (34), we come to the following expression for A:F

ST RS Laata-acre) L O

n
[/ Cb
" T

This expression differs from analogous realizations of (34)(for
review see refs. 75,29/ ) in the following points. Firet, Eq. (40)
is obtained for the total effective PNC Hamiltonian of the stan-
dard model ((10)(11)) %) without any ad hoc assumption on
somewhat egssential admixture of strange quarks in initial and final
hadron states. Second, Eq. (40) connects only NF parts of the ampli-
tudes. The impossibility of writing a sum rule of the type (40) for
total (experimentally known) amplitudes A(A2 ) and A(_,_) is due
to that combinations of the coefficients C® and C® in AF and
ANF are different (cf. Eqs. (39) and (35)) and moreover that to
A (A2, j::)NF the contributions from the operators 0°16 are
complimented by those from O 7 OS and QA .

The following circumstance, however, hinders us to find the
correct value of th from Eg. (40): The r.h.s. of Eq. (40) *s
very sensitive to the values of the coefficients (fU and C Uy
(they enter both into the denominator of that relation and inta

ANF - A®XP_ AF ), and as we emphasized in sect. 2, errors of
the leading log approximation for Cslf may essentially surpass
those for other coefficients C? .Théfefore, to evaluate IL:F ,
we apply immediately to Eq. (39) and the MIT bag model. Then, we

obtain

NF 5 (41)
Y= 4z G L (ci-¢%) (1.-41,)
n

K)Note, the relation (40) is a consequence of the choice of a low

renormalization point H and of the consideration of the
different mass scales of M, and
case the A S = 1 partners of O? »6 appear in H Ncl (see

sect.2) and the relations are valid, which are given prior to the
Eq. (39).

u ds * Indeed, only in this
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R Re
N 4 Z B R r L2, B
where Ia = j ridr [kl(r)+ Fd{r)j , Ib: cj rldrxgtn)Fz(r)
0 ¢

G(r):Jo(%)r) ang F(r)=- ‘(E ) are radial perts of a
"large" and a "small" compcnent of the gquark bispinor in the MIT bag
model (rn“: my=0 w2 0.24). at QN ~ 1 fm (the nucleon radius
in the model) Ia ~ 1.43 x 10~ Ger, Ib;: 0,65 x 1077 GevV” ,
and we get
NFE =7
h, ~-2.31 x 1077, (42)

The total value of hﬂ « fow we have feund all the componer::z
of ;ln . According to Egs. (23}, (38) and (42) we get

/—L /L 'NFW 1.3 x 1077 . (42

Separating the contributions to kn from the charged and neutral
currents (see Eq. (4)), we find

= h (Cﬂ)+A(~c)~(00+4 Y (0 Fan)

Hence it follows thet hn is almosti completely determined
by the neutral currents (see also ref. <8 Y. We give also the value

of h for the bare effective Hamiltonian }{PNC
In thi cd=0, c4=-4¢2 and T
n is case C, = 0, 1 & Sw
(Hn)d ~ 0.48 x 107/ . (45)

s=0

-

Thus, the quark-gluon interactions increase Iln about 3
times (while HE /(hﬁ )ds=0 ~ 73 . h#C/(h:F)ds 0 ¥-4.2 ).
From Eqs. (38) and (42) it is seen that in h7 the F part
dominates in  agreement with the results of papers 17,18, 28/.H0wever,

our value of hn is at least 2 times as small as previous esti-
mates of h" within the standard model. This point is explai-
ned by the following: First, we have used larger values of nlq than
have been used formerly, that is consistent with the modern data
and- with our application cf the MIT bag model (see point (iii) after
Eq. (37)). Second, for the calculation of ;L:F we have consis-
tently used the MIT bag model end &o not apply to relations of the
type (40), the incorrect use of which may lead to (erroneous) large
positive values of ;INF . In the conclusion of this section, we
provide the interval of values of h, arising due to the unser-
tainty of our knowledge of Mgy For n1u+rnd:(17—+ 32)MeV (i.e.,
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<Ol§qu>H:4GeV: -(200 < 250)> Mev?) and mg-m = (205 —>390) MeV,

%)

we find

hn = (0.62 « 3.0) x 1077, (46)

Thus, by the experimental determination of hn the values
of quark mess (or the quark condensate density) could be defined
more accurately, while the observation of h” on the level of

h. S 4.6 x 10 =7 would give explicit evidence for some exotic
contrlbutlons to the PNC NN forces (e. g./9/) or for insufficiency
of the leading log approximation for HPNC |

The experimental consequences of the values (43) - (45) will
be descussed in a concluding paper(III).

We are grateful to M.A.Shifman for valuable discussions.

Appendix. Explicit form of the operators of the effective
Hemiltonian H°NC  (10),(11).

lotation: q‘qzqsql’ = q“ THYS 92L qy}/ 7“ * , & sum over
color indeces 'J = 1,2, is understood.

AS=1
O:/z i, = -Q(Juas +dstu + Gsou + Ju&g>+ ddds + dsdd +

+ dsTs + Ssds + h.c.,

O?/z = Guds + dsau+ asdu +duas + 2(Tdds + dsZd +
+ dsdd + §gJ§)+ h.c.,

O:z = -Guds ~dsau + dsdu + duag + h.c.,

%) It is to be remembered,however, that the deviation of the
values of m, from (37) violates the self-consistency of calcu-
lation of h" with the use of the MIT bag model, so <pladiny=

=(0.76 «<— 1.4) <pladln>bag_
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5_ — Nz — 7 rl -— 7 —_—
Ol/l = —(u‘- upt d; G{/ + SL-SJ') 4} S +d¢'sj (Uju&' * d/CIL tS St') + h.c.,

e/__((ju+J0/+§g)Jg+Jg(&u+07d+s_§>+A.C. (A1)
2

aS=0
Oi7:—(auau+67a/67d) + dudd + ddau + Gddu + dudd,
O7= Guau-3ddd - (Guss + Tdu + Gsdu +Suds) +

+ ddgs + Isdd + dsdd + Sdds

0% - 2 (&u&u+c7d5fc/ + 3§S§§)+ gudd +ddaur addu + dusd —

o]

~3(&u§s +3s0u+ dds+3Tsdd + assSu + Sudgs + ds3d+ s‘oIJs),

O,S = Z(Gu&u—JdJol) +%[Ju§g + Sshu + GSSu + §uc7§)—

-4 (7dss « s dd + d55d + dds),

+dssd + sda‘fs) Zi(a’ols‘s + Ssdd+

s Gu
+ GsTu + Suds),

o =y5 L2(Fuau + dddd -2555<) « Gudd + Tdau + Gddu+ dudd-

=4 (GuSs + $5Gu + ddgs+ Ssdd + GsTu + Suas +AsTol + AT,

O/; =\é[—&uﬂd—z§fda—u + Gddu+ dudd + é (Gugs + Tsau +
+ddss + S'SJd)— é (@sSu+ suas + dssd + §c/3§),
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5o Y, N T d- <. - Ss-dd-
o, = £2§_ (Gou; 50— G, Grup +dedp S50 S %c/(),
O = B (Guse- Sedw v ddgs »»SSEJJ)
2
T o coe > = Ter
U =2 (uuuu—fdddd+smg&>+ Gudd + ddgu + uuSs+Ssuu+t

v ddzo+ sodd « Gddu+ duad + GsSu+ Suas + dsSd +3dds,

Ot = w(&uﬁd +Hd&u+—uu§s+§sau4fﬂd§5+§éﬂd) +

2e

4.
5.
6.
7.

8.
9.

10.

1.

12.

13.
14,

. BPriteach H. 2011 _Mommn M

Fuddu + duad v astu + SuaS + dsd + Sdds . (a2)
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