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1. Introduction 

There are several versions of N•1 supergravity: minimal 11/ 
(12+12 fields), non-minimal/2 ,3/ (20+20 fields), new minimal/4/ 
(12+12) and, finally, the flexible (28+28) one which we propose in 
this paper ( see aleo/51). They differ in their auxiliary field sets 
as well asin their intrinsic geometries/51. In the absence of matter 
the auxiliary fields vanish on -shell, and it is clear that all the 
versions are equivalent. In the presence of matter, however, the 
auxiliary fields are expressed in terms of the matter fields in va­
rious ways. Does this lead to different effective interactions? Are 
there essentially different mechanisms of supersymmetry breaking in 
those versions of supergravity? 

These questions are intensively discussed/6-8~ now in connection 
with the possible applications of N•1 super,ravity in the phenomeno­
logical models of grand unification (see /9 and references therein). 

'i'he present paper i s a so devo-.;ed -.;o -.;h ~s prool em. l'ne geome-.;­
ric approach/5, 107 (see also/3~) developed earlier allows one to dis­
cuss and compare the different versions of N•1 supergravity on a com­
mon basis. The main results of the paper are listed here. 

i) The most restrictive version of N•1 supergravity is the new 
minimal one. It demands R-symmatry in matter couplings because of 
its local U(1) invariance (or, equivalentlY., because of a rigid cons­
traint on the supergravity prepotentials/57). We propose here .a new 
version with 28+28 fields which we shall refer to as the flexible 
one. It is obtained by relaxing the new minimal one. In other words, 
a Lagrange multiplier is introduced producing the above-mentioned 
constraint for the new minimal version when there is no matter/51. 
In the presence of matter, however, the Lagrange multiplier appears 
in the matter sector as well. This leads to a modified ("self-adjus­
ting") constraint the form of which is influenced by matter couplings. 
This explains why the flexible version allows the same types of mat­
ter c~uplings as the minimal and non-minimal ones. Notice that the 
Lagrange multiplier introduced is at the same time a gauge compen­
sator for the local U(1) symmetry of the new minimal version. This 



is another explanation of the increased versatility of the. flexible 
version. 

ii) It has recently been shown that the old and new minimal and 
the non-minimal versions are mutually equivalent tor R-symmetric mat­
ter Lagrangians/61. However, the importance of R-noninvariant matter 
couplings is evident becauea the R-symmetry can be broken by anomali­
es in the quantum case. At the same time there is a ~ommon belief 
/ 6 • 11 •121 that in the non-minimal supergravity R-non-invariant matter 
couplings are impossible because of the absence of a proper chiral 
density tor the superpotentials despite such a density has been men­
tioned several years ago/3/, In the present paper we rederive a den­
sity of this type and obtain the corresponding supertield equations 
ot motion tor a geueral R-non-invariant superpotential. Tbe consis­
tency of these equations ie proved. The auxiliary fields do not pro­
pagate and are expressible as combinations of matter fields in a Lo­
rentz-invariant manner. So, the non-minimal version is not more re­
strictive in metter couplings than the minimal one. 

iii) In the flexible supergravity a similar chiral density can 
be constructed with the help of the Lagrange multiplier (just the­
refore the matter fields become involved in the constraint mentioned 
above). Therefore the flexible version also admits general R-non­
-invariant matter couplings. 

It is wrothwhile to make the following comment conc·erning both 
ii) and iii) statements. The chiral densities obtained have some su­
perfield in the denominator. Then one must have a non-vanishing 
supercosmological term. At the same time the cosmological terms in 
X-space can vanish because it obtains also a contribution opposite 
in sign from a spontaneous euperaymmetry breaking term in the matter 
sector / 13/, 

iv) It bas been ehown/14• 15/ that the inclusion of the Payet­
Iliopoulos term in supergravity in a certain way implies R-invarian­
ce. Here we propose another possible way of incorporating the PI­
term with its local U(1) invariance but without R-invariance. This 
can be done in the flexible and non-minimal supergravity but not in 
minimal and new minimal. Careful checks are still required to make 
sure the construction suggested does not lead to difficulties. 

Tbe paper is planned as follows. In section II we recall some 
basic elements of the geometric approach to supergravity/10

• 51. Then 
we introduce the very useful concept ot "building blocks" . There are 
some simple determinants of derivatives of the supergrevity prepo­
tentials having homogeneous transformation laws. Playing with the 
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blocks one can easily construct densities, actions, etc.,avoiding the 
use of the elaborate machinery ot differential geometry. Section III 
examines the various types of metter terms in the different supergra­
vity versions. In particular, the chiral densities for the non-mini­
mal and flexible supergravity are discussed, and the new PI-term is 
described. Section IV ie devoted to a detailed examination of the 
euperfield equations of motion for non-minimal supergrevity coupled 
to general non-R-invariant matter. Pinally, section V contains a 
summary. 

II. Geometp, "Blocks", and Action Pormulae 

_II.A. Geometry of N .. 1 eupergravity 

Here •e shall briefly recall some necessary information about 
the 
More 

geometric formulations of the various 
details can be found in Rets,/5, 101. 
Consider the complex superspace 

N•1 eupergravity modele. 

c<fN = {zM = (x,., e~t <pf)11 
..(_ '4.) 'LJ ..(_ J 

-= {2/(M = (XIl~ 0/ ~MJJ J 

Here ~Hand ~/11 are lett- or right-handed 
~herd i nt roduce t he follc~ing " t i a gul a 

d-xr= .A"'(~,~) 
d'-Of = >l {><I!, BJ J 

~-jt_ -~ X - • ~ -.f ( ~:,~) 'f'~J . 
It leaves invariant the "chiral" supers pace 

c~'Yt~ = c'~12 
) 

cvtz = {~ t.~= (~~ B/)} 

or 

parametrizations 
" !$a\.leso gz·uup 1 

or 

(2.1) 

//'~/~ 
of 1£.. • 

(2.2) 

(2.3) 

The real (physical) euperapace is defined as a hypersurtace in 

(2.4) 

where 
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(2.5) 

Xm::: Rex/JJ Bfi::. g.!l 
:.::: ) "- ) 

I rn X/11 = H ~>~ ( ><; G) G)/ 

lfJ/- eft=- J.t' ( x () 8) "- ) ) ) 

Cfj- e.R~ ::: jjft (XI B) B) . 
11A The superfunctions H"", H~" , n determine the shape of the hyper-

surface. After imposing a dynamical postulate (action principle) 
they become the eupergravity euperfielde (prepotentials). 

The group (2.2) corresponds to conformal supergravity. Using 
euperdeterminante (Bereziniane) one can impose the following ~~~V 
tiona between the transformations of the volume elements of L 

and £"11 • · 

{e.ec(;i')f'' = [BezafJJ 1
". (2.6) 

These define subgroups of (2.2) corresponding to the various N•1 
Einstein eupergravitiee/1-41. Depending on the value of the Gates­
Siegel parameter rt/3/ one can distingui sh the following three cases: 

i) fl=-j- • According to (2.6) in this case 

Be z ('()~
1

) =1 ( 2. 7) 

~~ ' r Y/.2 -;¥ 
i.e. the eupervolume of ~ is preserved. The pare~~ter-ij? in 
(2.2) remains un~~etricted, eo the prepotentiale n , J1 can be 
gauged away and one is left with H~ only. This is the case of mi-

' /1 3 10/ nim'll eupergravity ( 12+12 fields) ' ' • 
11) rt=O • Now 

Bez(~~'\::: f (2 . 8) 
~o~) J 'f/'f 

i e the eupervolume of C is preserved. In this case there remains 
• • /5 16/ 

local U(1) invariance in the Wese-Zumino gauge ' • It causes prob-
lems when trying to ~rite down an invariant action. The first way to 
deal with this problem is to impose a constraint on the prepotent1 -
ale H"'H/1 jjli. It has a cle"lr geometrical meaning. In the case n "O 

I I 
(and only in it) t he Berezinian of changing variabl e s from the l eft-
to right-handed parametrization of C"l'f (see (2.1), (2. 5)) 

U=- Bezl~) \0zR 
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(2.9 ) 

is invariant. Indeed, J8z and .d~rl< are invariant (see (2.8)), and 
on the hypereurfaceVrelatee them to each other, rA 8i!'-: r;d'.cll • The 
constraint on V is 

'V=i. (2.10) 

It reduces the number of fields to 12+12 again and leads to the eo­
called new minimal eupergravityf41. Notice that the local U(1) inva­
riance remains in this version of the n;:. 0 theory. 

As shown in Ref./5/, there is an alternative approach to the 
case Yl,. 0. The local U( 1) invariance can be compensated by intro­
ducing a real pseudoscalar compensating superfield I(J(x) {);G). It 
transforms as follows: 

I ' { !f=<f+i e-rz). (2.11) 

(The chiral superfO.nctions;-parameters e , '"Z are defined in (2.18) 1 
the first component of f ( f- 'Z. ) is just the U( 1) parameter). Thus, 
the number of fields becomes 28+28 (20+20 in H,., ){~' J?'. 8+8 in I(' ), 

} } 

no constraints are imposed, no local U(1) invariance is present. This 
is a new, "flexible" version of the "new minimal" supergravity (or 
rather, the latter is a truncated version of the former). As we shall 
see in what follows, this version is more versatile in matter cou­
plings than the new minimal one.In other words,the flexible formula­
tion restores the equal rights of the new minimal version as a member 
of the family of non-minimal supergravities. 

iii) n '*- J. 0 • In this case we have the 20+20 fields of the 
so-called non-m~~imal supergravities/2 ,31. 

Here we would like to make the following comment. Another widely 
used scheme of classification of N•1 supergravities is the one based 
on compensating conformal supergravity with various multiplets/ 17,31. 
Thus, the minimal supergravity corresponds to a chiral compensator, 
the non-minimal version - to a complex linear one, the new minimal 
version- to a real linear one. As is shown in/18/, the flexible 
eupergravity also belongs to this scheme with a relaxed linear mul­
tiplet/19/ as a compensator. 

II.B. Building blocks 

The standard way of describing the invariant properties of the 
curved superspace fR"1

'f is to develop the formalism of differential 
geometry, i.e. to introduce supervierbeins, connections, covariant 
derivatives, torsion, and curvature. All this can be done in the sche­
me described in section II.A./101. However, for a number of practical 
purposea,such as writing down actions, one can avoid using the whole 
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machinery. Instead, one can introduce a faw objects with simple trans­
formation properties ("blocks") and then construct various quanti­
ties out of them. 

'lfe begin with defining the basic differential operator in the 
framework of sect. II.A. It ie the epinor derivative75/ 

V« <fJ (~)-= (f+tJ H)~ fl L1..fo <tY 2) ~ ~ 62 <:p (z J < 2. 12 > 
p. o( 

of a scalar euperf,;eld 'PC~Lw~th re!'pect to ~ (in the right-handed 

parametrization XR =-X~ (
0 H": (J ,/1 = e /1 ' 'f,t= ()l!t )/' ' see 

(2.5)). H;re ';) . ~ H~~,( .r., JJ') -f n. g 
LJcl.=.7> 8 .. -L(}e-ol. i-re. on ,.., gxll J 

(2.13) 

(1 -tZ'd H)~ f\-= ~ 
11

+ L. CJ,., )I~ ( t -rt1 H)« Jl= ~ f! LJO( ff~ 
It ie easy to check that g 1' transforms homogeneously under the 
group (2.2), (from there on we consider only infinitesimal parame-
ters): . 

~ <p) :: (v'O( <P) 
1

- ~ <p =-(~J?j ~ cp. (2.14) 

In the case n =-1 (minimal eupergravity), where H~" and ./;-rare 
absent, the role of ~ ie played by Llo<. (2.13): 

' ~o( <P) =- (Ll~ ,.\ ~ t:lp <p, 
Notice the following algebraic properties (moat easily proved 

in the right-handed baeis in fl(q1): 

{~, flp] ~ 0 ) ./'LJo<,LJ_p] =- 0. 
Now we c~me to the [;finition of our basic building blocks. 

(2.15) 

Consider the quantities 

A= olf f (: ~o. ~"' [tJ~) LJ"i} H ~) A+:::: A <
2

•
16

> 

B =- d.ef{ ~ ~ + t'dllt H1 ) C =ole f ( ~fl f!JO( ki). 
They transform infinitesimally ae follows 

J' A ::: ( w+c» -t- ~)A 
1 

I' B = ( w-+ t- '({) 13) (2 .17) 

dC :: ( r.v+?.- R) C. 

Here 
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The Einstein subgroup condition (2.6) becomes in these terms 

( 3 h + t)L ::::. 2 n e . (2.19) 

The Berezinians of changes of variables between different bases 

/R 'ffl( 
in ~re expresse~ in terms of the blocks i: the following way 

l3 e z~ ~) -=. B C -1 
; Be z !d ZR 1 :: B C - f 

l~ / (2.20) 

TJ = Bez(j.i<) = B 13 - 1C c -i. 
We are going to ~ke heavy use of the blocks defined above for 

constructing various quantities given their transformation properties . 

II.c. Action formulae 

Now it ie very easy to find the general action formula for all 
f'l- (except n:.O ). It il!l simply the eupervolume/20 ·13/ 

S == n ~ 1 J cl 8 2 E < 2. 21 > 

and it says that our hypereurface is the minimal one. The density 
must compensate the transformations of the volume element: 

!E=-~E. (2. 22) 

Such a quantity can easily be built from the blocks (2.17) (taking 
into account (2.19)) 

11-+1 ]it-f( 

E-=- A- h( Bffj z- t c)--z (2.23) 

Ae can be expected, at h =-f the blocks C, Ccontaining 
disappear. 

ibe formula (2.23) ie valid for n=o ae well but (2.21) ia not 
an action any more. An indication of this ie the dropping out of the 
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block If. The latter is the only one which contains the scalar curva­
ture as a component field. In the case n. = 0 the supergravity action 
can be written down in one of the following two ways& 

i) n= 0 1 new minimal supergravity. Taking into account the con­
straint (2.10), (2.20) and (2.23) one finds 

E =- Be?.Gg zL \ _ n ( 9zR I 
9 z-;; - r:J e?. 'CJZ:/. 

Therefore 

(2.24) 

f ol 82 £ ::: f ol 2~ ' t ::: 0 (,'f 7.1 :=_ :1) I (
2•25 ) 

i.e. the supervolume of J?l'f'fvanishesin this case/15• 111, and we 
cannot use it to write down the action. However, there is an action 
of the form/ 111 •) 

S'fltWlli•'"=~'l.jdaz Etnf. (2.26) 

It will be invariant if the quantity J transforms according to 

d'f =-- f re-t7.J f or I e, f =- i (e-t r-J. <2.21> 

Indeed, taking into account lJ=i we have 

d' f ol ~z E €n f == -f o/ 81. E.: {f-+?J 

=- -tfJ~-c,e(~L)- if Jjzl? zc~~J=- o. 
Such a quantity can uniquely be built out of the blocks, 

. f =A-~~ BJ~ ( cc)- g
1
". <2.2a> 

Notice that the important "kinetic" block A is again present in 
(2.26). 

11) n=.O& the flexible supergravity. As we have explained in 
sect. II.A, in the flexible supergravity we lift the constraint V=l._. 
Then the action (2.27) ceases to be invariant. The U(1) gauge compen­
sator (2.11) introduced above is used to restore the invariance. 
The integral 

I ::: f c/ 8 
2L ( €11 f -t c' ff) (2.29) 

., 
It is worthwhile to note that the action (2.26) can be obtai­

ned from Eq. (2.21) by taking the limit n~ 0 /21/ and imposing the 
constraint 0•1. 
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is invariant G/Ye~~r+£·'1)=- e (~J) and the action become/51 

g.JRu. =- £~'t f ol 3z E [v ~ (e~~f-~-~·c&+ZI----f(e;,/- c'rd]. <
2

•
30

> 

It is important to realize that the compensator ltJ appears in 
(2.30) as a Lagrange multiplier. The variation of V' produces the 

equation of motion 
(2. 31) ?J Yz = 7J -}j_ 

which coincides with the constraint (2.10). So, on-shell and in the 
absence of matter the flexible supergravity is equivalent to the new 
minimal one. The substantial difference between the new minimal and 
flexible supergravity becomes clear in the context of matter coup­
ling which ,is the subject of the next section. 

III. Matter Coupling in N•1 Supergravitiea 

Thera are several kinds of globally supersymmetric matter ac­
tion terms which are of interest for possible 
cations/221. They are& 

phenomenological appli-

1) The kinetic term for chiral matter1 

s*,.,. =f J az cp c:p ( ).1) 

0tX cp = ~01 CfJ= 0 
It can be generalized to the 

l:e. cp::: cp ('$L.). 
non-linear ~ -model-type action/ 21 

sk.J. =fJ 8L! k (qy) cpJ. 
- / 23/ latter has the Kahler invariance The 

owing to the property of the flat superepace integral 

(3.4) 

2) The potential term for chiral matter& 

S,of::: f o/~ P{<:lJ{5~J) + Jl. C. ( ).5) 

J) The Yang-llills term 

S~!r ""j J ~ f 'i( q;) lA~/ W~· -di. C', (3.6) 
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Here "<:c( is the (yhiral) field-strength of some Yang-Mills gauge pre­
potential 11.: , f'J is some function of the chiral matter superfields 
cp , and i,j are indices of the adjoint representation of gauge 
group. 

4) The Payet-Illiopoulos term 

--~~r -=- r f c1 ~ v-+ ,s-;-M ( 11 Jl (3.7) 

where V is the prepotential for an additional U(1) gauge invariance 
and r measures th!_ scale of supersymmetry breaking. Equation (3.7) 
i s invariant unde r U( 1) gauge t ransformations 

d'v~ i (11-..V) 0o('11 =a o.a> 
as the flat space integral over fR~I'fvanishes if the integrand is a 
chiral superfield (3.4 ) . We woul d l ike to emphasize a deep analogy 
between the Kahler (3. J) and U(1) transformations. This analogy re­
mains valid in supergravity and it will be used below in Sect. III.C. 

In the present section we sha ll generalize the above matte r cou­
plings to the case of local supersymmetry (i.e. the curved super­
space). 

III.A. Kinetic t erms and KBhler invariance 

We shall begin with an extension of the kinetic term (3.2) for 
supargravity versions with llt-0. By analop;y with the minimal ce~e 
n ~- f /3, 14, 24/ it can be written down as (the supergravity action 
it se lf is also included ) 

~~.~:" ~ n1at .. J ol Rz E e-x;) (n ~ ~ k ( 'P; ®). (J.9) 

Here ~ CfS are c ovariantly ohiral superfie lds 

(3.10) 

The remarkable peculiarity of the action ( 3.9) consists in its inva­
riance under KBhler transformations of )( {q>, q5 1keeping e:xaotly the 

J / -!!!!form (3 . J) which they have in the flat superepace. The Kabler 
transformations 

are accompanied now by the super-Weyl ones. Por the latte r one has 
to relax the group condition (2.19).In the presenc e of matter it has 
to be replaced by 

}() 

( 3 n -t 1) L == f 11 e -i. 11 J? r c: ( ¢). < J. 11 > 
Taking into account (2.17), (2.23) and (3.11), it is easy to cneck 
that 

(3.12) 

and that the action (3.9) is invariant under transformations (3.3') 
and (J.12). 

However, the kinetic term (J.2) can be generalized also in other 
ways. One can, e.g., use a straightforward generalization (we include 
again the supergravity action) 

1\('Cov _j__f;'! L- 2 -11 
d A>k, ·~ ::.n~ t. Of ~£ 1-+)l'Je )( {CP; <J:!jJ• 

Evidently this action has also the combined Kahler-Weyl invariance. 
However, the latter comes now in a slightly modified form . 

(3 . 13) 

A comparison of (J.3') and (J. 13) shows that in the fi r st case the 
KBhler metrics 9:. 'O~al{S coincides w~th the one in the f l at super­

space limit while in the second can J'=-o~~ [.,1.e.en{t-tnae•)(('P.,<f)J} and 

this coincidence is absent. Therefore, it i s just the action ( J . 9 ) 
t ha t corresponds to the simplest interact ion of supergravity wi t h 
matter fields. (Por the minimal vereion, n =- J... , t hi s fa ct was 
won a uuod i 114 241) . 3 

Now we shall proceed to the h ::. O supergravity versions. The 
following generali zations of the kinetic t erm (3.2) preserve the 
KBhler invariance of the flat case 

i) The new minimal version: 

(\ ct Cov fo/ 8 -
(j ~Kil-f = z E J((<P, ¢) . (3.14) 

There is no need here to combine the KBhler transformations with the 
Weyl ones. Indeed, in this version (J=j, so 

J'S~,.,~w::foi~ E?:(</)j + k. C.-=[d~~z:(q;(~.:))t-k. c .=. o · 
ii) The flexible supergravity (the supergravi ty self-interact i on 

is included) 

(3.15) 

Here the Kahler transformations (3.3) have to be accompanied by the 
transformations of the Lagrange multiplier 
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dk4he If =--ioet CL:CC/>J-f(Cf5)]. 
Then the action (J.15) is invariant under (J.J') together with 
(3.16)1 

o-s =- _!___,_ fol ~ E v~t (R'Lc:c<P) -+ H. c. := 
i..~ 

= f clfJ 2, L' ( cp (~J)-+ H. C. ~ o. 

(3.16) 

Therefore for all the supergravity versions one can arrange such 
an interection with non-linear ()-modele (J.2) which preserves the 
Ka"bler invariance or the latter. 

III.B. Chiral densities and superpotentials 

The auperpotential term (J.5) requires special care in a super­
gravi;y background. In general, one has to insert a density 2) in 
(3.5) ) I 

sroc;v:: J of 6$L v p(cp) +H. c ( J. 17) 

It must transform aa follows. 

d'v -::::.- e'J) (3.18) 

(' Y/Z 
to compensate for the transformation or the_yolume element or 
(aee (2_~18)). Further, ?) _ must be chiral, ~Zl ~o)and muat have 
flat limit 1 (because (J.5) baa to be recovered at ae~ 0 ) 

(3.19) 

It auch ~-+gensity is not available, the potential f{cp) and, 
respectively, .SP muat be densities themselves. Thia maana that only 
monomials in ~ are allowed1 

p(cp)"" cp ~, J"cp =- i e <:p. o.2o> 
Thia in turn implies that k (t:P, iiJ) in (3.10) cannot be an arbitrary 
function ot cp <f5 • So, the lack or cbiral densities leads to severe. 
restrictions ~n the matter sector /6,7,1 2 •141. 

One or tae main purposes or tbia paper ia to ahow that auch den­
sities exist tor moat or N•1 aupergravities (except the new minimal 
one). Now we proceed to a separate discussion or each caae. 

i)To make contact with the language used in other papers we would 
say that the necessity to have a density in (J.17) corresponds to the 
aaeignment or the "Weyl weigbt J in an f' - type formula" (aee /6/ and 
r!terances therein). 
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i) The minimal supergrevity. According to (2.7) eAt~ is invari­
ant in this caae, 110 no density is in tact required. Therefore the 
auparpotential is given by 

co-v J C s,qf = cl '3~.. F(<P) +H. e. 

R"'~~ 
It ia instructive to rewrite Eq. (J.22) aa an integral over 

S,~:v={fd~~ ~tp(~)-+ H.C. = 
(3.22) = f f J!E' 9 28ez {f~ P(cp) + k. C. 

({"--:.~6 in the minimal case). Using (2.20) one finds ( C=i bare) 

~,:; = f die /(gj Jef( /;., 11~ l, J~ k)P('P) t If, C. (J.2J) 

Hera cf(ii}-:..f Gt is the Grasl!llll8nn d-tunction. 
Owing to the properties or of(B) such a representation of the 

potential term is uaetul in the supargraph technique. We would like 
to mention that the variation of (J.2J) with respect to the gravi­
tational, aupartield H~>~ is easily shown to vanish (the chiral au-
pertield £ depends on {"';,X~ c.' ){tit ). This means that in the 
minimal case the suparpotential does not contribute to the suparcur­
rant defined by the Hilbert prescription• 

J - !'r 
~ - ~· /25/ 

:fnis genera 1.zes ,;be ana ogoua Dt ts t elilent o:t· he i' l&t .... p.. .. ·ospa ii • 

ii) The non-minimal aupergravity. In this case the densi'y in 
(J.16) is indispensable. It is not hard to check that the following 
expression can play thia role1 

OJ-:::. P'V"F (3.24) 
9tlfitF 

Here -{: is a quantity with the transformation law 

d'F=- e F. o.25> 
Correspondingly it can be constructed out or building blocks as 

follows 1~+/ 

J='-::::. [A 'lk, B "-r if~'~+-f C -111-1 C -311 +') "ifh' . <3• 26 > 

Taking into account that f.. is chiral ( (7.; e-::. 0 ) • and also (2.14) 
and (2.19) one sees that (J.17) is fulfilled. Obviously, ~ is cbi­
ral (see (2.15)). :Pinally, F= f+O(ae) , so 

~· n.. _IJ· Pfee"F /), f!C7(-t+fii.F-t0((11')} .A 
C.lllo ·u - {II'\ -- - Ct~ ~ :.L 
SC~o eMO 'lt;f e" f - llf-*0 ~ V e It ~ ' 
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The integral (3.16) with 'D (3.24) can be rewritten inf?'tl'l, 

S cov =fdcz ~~F p-+ H. C. :::: 
pot dL flflf11F 

f 
3 8er('J? )FP 

-t- k . C. = of Z _ 7fi!/ -t /1. c.=-
VP' f';r f- (3.21 > 

Here (2.12), (2.20), (2.23), (3.26) are used. With the help of (2.14), 
(2.19), (3.25) one can see that the quantity 

11.-tf 

R -=- .r -Tii+f 17 11 e )1 + 
is a scalar satisfying the modified chirality condition 

fr- n-q - -) R 
~ + 5n+ f ~en f; = 0 ' 

Then (3.27) becomes 

('( Co v - r !8 E p 
,) fof -) ~ "l R ' 

A similar expression exists in the minimal case,too. 

(3.28) 

(3.29) 

The appearance of the denominator in (3.24) or (3.30) may lead 
to singularities. To avoid this one has to always use a potential J? 

•> starting with a constant term (the supercosmological constant ). Then 
R will not cause singularities (see (4.6) below). 

Although the form (3.30) of the superpotential term has been pro­
posed a long time ago/3/, in the literature doubts have been cast on 
the existence of arbitrary chirsl potentials in the non-minimal super­
gravity /11,1 21. However, the corresponding density does exist. At the 
same time the expression (3.30) (or (3.24)) is rather complicated and 

¥) This is compatible with the vanishing of the x-space cosmolo­
gical constant because the latter obtains also a contribution of the 
opposite sign tyo~ the spontaneous supersymmetry breaking term in the 
matter sector I Jt. 
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a careful examination is needed to make sure that it leads to meaning­
ful and trouble-free Lagrangians. We are going to do this in section 
IV using the superfield technique. 

iii) The new minimal supergravity. In this case a density of the 
type (3.24) cannot be constructed. Indeed, playing with the blocks 
(2.16) one can only build the quantity~ (2.26) but not ~ with the 
transformation law (3.25). The reason is that if an ~ (3.25) exis­
ted, then f:p-t could be used to compensate the local U(1) invariance 
in the theory: IFF-1 =. ('Z-e) F.P-t , cf. (2.11)). Therefore the 
new minimal version is the only one not allowing general couplings 
to chirel matter. The remedy for . this is provided by! 

iv) The flexible supergravity. In this case, as explained in sec­
tion II, the necessary U(1) gauge compensator~ (2.11) is introduced. 
Combining it with the quantity JC (2.26) one can construct a quanti­
ty ~ (the naught stands for h~o> of the type (3.26)s 

Fo-=- fe<'lf) d'-fo -=-ff"o . 
Then a density like 0 (3.24) can be written down 

0o~ fifi(fe'~ 
~ 17 { enf-H'<f) 

(3.31) 

Putting together theJsupergravity action, the chiral matter kinetic 
term (3.15), and the potential term (3.16) one finds the following 
ull .. c i u 

S = &ef d ~z £ [ v~Jtf-tt''f-t ;;eZk(cq¢) t H. c)+ 

-+[J 6 V{l(fe'r;) ;; J 
o/'3'- f7 f7 (f,. fTc'Cf}_pl q;) -t If. C, • 

We stress the following important feature of the flexible supergra­
vity. The variation of 0.33) with respect to the compensator <f 
gives the following equation of motion (we omit the straightforward 
calculation) 1 

_, (v·Lv-il = v'~1rel'rp ~(~Jtft-('~Jv~~~f+c'~Jpff).o.34> 
2~.. .J 7 [Vr? {bt f-+ t ~)]?.. 
Now, we compare this equation with (2.31) obtained in the absence of 
matter. If the latter leads to the constraint 0•1 of the new minimal 
supargrevity , the new one produces a modified constraint in which 
the matter fields take part. Here is the cruc i al difference between 
the new minimal and flexible supergrsvity. The former employs a rigid 
constraint regardless of the presence of matter whereas in the latter 

15 



the constraint is "self-adjusting" to the matter sector (with the help 
of the Lagrange multiplier tf ). This explains the greater versatility 
of the flexible version in matter couplings. 

III.c. Payet-Iliopoulos term 

The covariantization of the Yang-Mills term (3.6) causes no prob-« . 
lema, because W < WD( · is the density needed itself'. . 

The FI-term (3.7r, however, is not ao easy to generalize. In the 
flat case it possesses the U(1) gauge invariance (3.8). If one insi­
sts on preserving this invariance in the supergrevity background, 
one can apply the trick d.escribed in section III.A. Thera Kahler 
transformations were compensated by super Weyl transformations. We 
have mentioned above the analogy between Kahler and U(1) invariances. 
Consequently, to generalize the FI-term it is sufficient to sub-
stitute k ('P,cP)-J f VJ 'C('P)..,~fA{J;_) in formulas sect. III.A. 
E.g. for ll'FC versional 

(3.35) 

while the group restriction (2.19) becomes 

U i1-+, J 1. = 2~o e - i Jt. ,· ~ 111 . (3. 36) 

However, in this approach, the problem appears in the superpotential. 
There V is not present, and the Weyl-transformations of the gravl­
tational superfields remain non-compensated. This implies that the 
superpotential must be R-invariant/141. 

As is explained in section III.A, in the new minimal supergra­
vity the form of KBhler (the same applies to U(1)) invariance re­
mains unchanged. There, however, the R-invariance of the superpoten­
tial is a consequence of the coupling to supergravity itself/4, 151. 

Here we are going to propose a completely different mechanism 
of accomodating the FI-term together with its U(1) invariance but 
without the requirement of R-invariance in the matter sector. This 
can be done in the flexible and non-minimal supergravity only. The 
idea is to use modified U(1) transformations which do not imply com­
pensating super Weyl transformations. Let us consider the simply co­
variantized FI term1 

( 3. 37) 

In the non-minimal versions it is invariant under the following U(1) 
transformational 
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(3.38) 

Really, ..!!!. 

d'S>';:-z h r fol~ zr~'(&)/1{~)-f H.c. = o. 
The density<]),.., serves to ensure invariance of the integral (then 
;1 (~} has no weight). 

Analogously, in the flexible version modified U(1) transforma­
tions are 

d'u.= ;_ [71(1 ~)- zr-VI-rhJ]. (3.39) 

The question ariaea1 how to construct a gaUge invariant kinetic term 
for "t? Our suggestion is as follows. One should try to define ano­
ther U(1) gauge prepotential V:: V((9j having the standard transfor­
mation law (3.35) and then construct the standard kinetic term for it. 
Here we shall give an idea how this can be done in principle (the 
flexible version (3.39) will be considered). 

According to (2.9) VVt..t.' i.e. v~ e~<'4, '2.1=11+. Putting this 
into (3.39) one gets 

~~)J -:::. L' (A-X)-{!1-ti)f:J (.{. (3.40) 

From this one obtains 

r~ /() _ d':\r 1 n.. 1u- J'7 ,() .A /,; -;-) (2~ IJ4 
(}Vol v-- Lt-tc'~ll ;uO( (.ZoJu.!j-=. ( LJ,x ;'-tAM/ 1-+ t' fJ '< (3.41) 

Thus one derives a modified derivative ~ 1.9-- which transforms with 
the s!!ndard inhomoganeous term i'4A. In a similar way one can mo-
dify~ lJ, • -

FUrther, one applies~~ to (3.41) and after soma simple al­
gebra obtains 

I' [0f2o< (.9-7 ::. J' [?~J ~ (.J-+c.~ (3- .0a( '&. 4 1 = 
J ..... -1-f ,· (J q, 

• - fA ~ J - (3.42) 

= (, 0"' 0ol!l- '('-tA) L 0 ,;( ( 0 o: "£()~ (1 

0;.. f) lt <2. f;y '< . 
1-tc /;Jli (j -c.'f;jf.l.) {f+ c'-!Ju) 

-""' The same pattern is observed 1 Qlc(0-< (J- transforms with the usual 
(for a standard gauge prepotential) term i'2,;..2.,..A • ~oceeding in the 
same way, one finally arrives at the expression ~~.z-0.ot • It is a 
modification of the l.h.s. of the equation of motion for a U{1) pre­
potential (the necessary curvature terms are omitted tor simplicity). 
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It transforms as follows 

J'(£0~ t.J-) =: i01J-zZJ{A-/I)-(/I-tA) 2.'(u). 

Here the first term vanishes (the standard equation of motion is gau­
ge invariant), and 2'(~Jis some complicated function of ~ • Finally, 
one is now able to define 

~ v- (J- 0 0~2> LQ... /-..,.. 4 (3.44) 
-~- ;E(4} 'tl 

which has the standard transformation law (3.8). 
The potentially dangerous point in this construction is the di­

vision by ~(u) in (3.44). To avoid singularities one has to make 
sure that ;!:(4} does not vanish. This means that some auxiliary field 
(the first component of ~ ) must have non-zero vacuum expectation 
value. In a theory with spontaneously broken aupersymmetry it is pla­
usible, but careful .explicit checks are still required. 

IV. Consistency Checks for Non-Minimal Supergravity 
Coupled to Chiral Matter 

In this section we check the consistency of the equations of mo­
tion for the non-minimal supergravity coupled to matter in the pre­
sence of a general R-non-invariant auperpotential (3.30) using the 
cbirei density (3 . 24) . o a ii f ~cultiea a r e ound . Ou a al3bia es 
not cover the density (3.32) which we propose for the flexible super­
gravity. However, it is rather similar to the one for the non-minimal 
supergrevity (3.24). 

We shall restrict ourselves to the case n=--( where the al­
gebra is moat simple. For instance, there1).,/P:: & 'P (for h :f. -1 the 
factor F (3.26) appears in the r.h.s.). The connection ,.. -o so 

" "'<y~- ' '\7 ~<pis a covariantly chiral superfield (not a denaity, as it is 

for n :t--i ) ' etc. 
We are going to examine the full action consisting of the kine­

tic term (3.9) and the potential term (3.16), (3.24). We begin with 
varying this action with respect to the gravitational spinor prepo­
tential H"'- and the matter superfield (/) • The first equation of 
motion allows us to establish the values of the aupergravity auxi­
liary fields, the second one- to look at the self-interaction of the 
chiral matter superfields. 

At the beginning we shall drop temporarily the matter kinetic 
term ( K(~~:. 0 ) and reinstate it later on. Recalling the expli­
cit expressions for f (2.23) and + (3.26) we find the following 
action 

IIi 

The variation of HJ,in the first term is very easy. There only 
[ (2.16) depends on H "- 1 

tc ::: c ( 11-11 1-0 ·-~} 4 d'ko(=~ I'Jt ~· 

cf ~,_jdJrA-'cc =~~fo11zA-'cc ~ cl'l-lo.!= 

(4.1) 

(4.2) 

= ~ J df~~ Fe rfl)l~ frJ~iL lk o!~ -r == ~z/J} E I'Jtt&t. 
Here (2.20) was used; the change of basis 2-.,2 permits easy integ­
~ation by parts with ~~ ~1t) • So, this te~ gives a contribution 
ae• ~ £f to the equation of motion. The variation of the other two 
terms in (4.1) proceeds along the same linea. The new element is the 
restoration of the full supers pace integral J ~ M J~ -HI~ • After 
some algebra one arrives at the following equation of motion 

&e<if -t lP- R Pf~fot. = Po( (PP) I (4.3) 
where 

(4.4) 

-to(.:::: ~ en. F V'~ 1-P. -= z.l c_, 
(4.5) 

PP e11 F I ,;- c'J'l 
Differentiating (4.3) by Ifill once and then a second time one obtains 
two equations 

~-'l.R -t2 P-i p-{2.__ p YPt-) {1-t iff J :::. o 
t?o( (P!V- rvYPfz._)fo~. =O, 

(4.6) 

(4. 7) 

which are equivalent to (4.3). The chiral scalar R contains the sca­
lar curvature, the ir-trace of the gravitino field-strength and some 
complex scalar auxiliary field. Equation (4.6) expresses R in terms 
of the (ohirel) matter potential (a similar equation exists in the 
minimal oaae/20 •31). The spinor ~~ contains multiplet of auxiliary 
fields only. The proof is as follows. From the property (4.5) of ~~ 
it follows that the only non-trivial components of "+o< are 
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'fc( =to( fe-:.e--=.o) Ao~;; = 0& fo< /IJ=ff=-oJ )!.Dl=-01.~/e-:.G--=tJ <4.s> 
We are interested in a solution which does not break the Lorentz in­
variance, i •. e. in which 

!f.x=Ac(J:::..df'OI..=O <4.9> 
(only sea lara can have a non-vanishing vac'uum expect at ion value). 
So, we have to decompose eq. (4.7) in terms of components and check 
the compatibility with the solution (4.9). Taking (4.7) at {)=.{i=:G 
we get 

(V'o~ P)o if?.-t ~ ( Pf,{.,lJo <p t!( -Cr?.{PfJ)o Cfo/.:: 0 (4.10) 

( { )
0

meana the value at 6=-~=-0 ). This equation is algebraic in 
~ q and is obviously compatible with (4.9). The remaining components 
;f (4.7) are obtained by ~-differentiation (the~ -derivative of 
~e l.h.a. of (4.7) vanishes identically, see (4.5)). E.g.,applying 
!D01 to (4.7) and using lfo~.=O we get the equation for an auxiliary 
complex vector . 

E [ A~J- 2 A If 1;1 Ao~r:;] =0. (4.11) 
This algebraic equation has the Lorentz invariant solution A-olD/ -:::0 
again. So (4.9) is indeed an appropriate solution of (4.7). 

Taking (4.9) into account we find that eq. (4.6) is greatly 
simplified. Ita components are 

~{[Jo-t P{P)o = 0) 

~z (~ R )0--t 2{Va PJ8 = 0 J 
(4.12) 

~~ (v~i)o -ti(t? ?5")0 -+(!P)o -t ~ 2P)~ = o 
and one can see that no potentially dangerous (e.g., higher deriva­
tive) terms appear. 

Now let us go back to the kinetic term e -k{~f} (3.12). If 
we just insert e- k into the first integral in (4.1) we run into 
trouble. The point is that an inhomogeneous term ~-L e - /( ~ k will 
appear in the l.h.a. of eq. (4.3). It will enormously complicate the 
simple analysis we have just carried out. The conaiat~ncy of the new 
equation will become obscure if not doubtful. Therefore we propose 
the following trick. Instead of introducting e-k in the first term 
in (4.1) only, we substitute 

A--~~A-1e-k <4.n> 
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in all the three terms. The modified block tt has the same transfor­
mation properties as the initial one. Then (4.1) becomes 

(T __ J..j ;8 Fe-k LJ-,16' i?vFe-k_ '-' .7<4.14> 
. l) - ~-~_ (J1 2- + Of JL Vf? (f~t F-k) frr. ('j. 
It is not hard to see that the block A-1 does not participate acti­
vely in the derivation of the equation of motion (4.3). Therefore we 
obtain again the same equation with just one modification: the quan­
tity -F in (4.4), (4.5) should be replaced by Fe -K. This will not 
affect the subsequent analysis. In particular, the same solution 
(4.9) to eq. (4.7) will be obtained but ita meaning will change. 
Before we had, e.g., 

~o( ett -F)o:: 0 (4.15) 

ond now~~;:'~ ;:•- &o( k). o: 0. (4.15') 

In other words, (4.15) means that some auxiliary aupergravity field 
vanishes, and (4.15' ) means that it is expressed in terms of some 
matter fields. Again, we do not see anything inconsistent in the new 
equations. ' 

This concludes our discussion of the equation of motion obtained 
by variation of ~~. Let us now turn to the metter equation. Varying 
the matter auperfield ~ in (4.14) we find the following equation: 

p 
1 + f7 2L-k 1

( ~-z_ Pf 1-_ Pf) {i- R J1)}::: 0' (4.16 ) 

where 
Pr- ro_e k ~ - 9k.. - ») -c;r<p 

Taking into account (4.6), (4.7), (4.9 ) we can write down the compo-
nents of eq. (4.16)& 

(f ')o -~ K 9a -t ;£-'l(rt?xVo = o, 

&o( Plo ·-fo((fk~o -t-a?- 2 (~ vlk'),=o. <4.17 > 

~2P 0o- (V 1{PkV)a-t a?-'/_(r7 7flk}u -r(P ff"k)o = 0. 
Comparing (4 .16), (4.17) with the correspond i ng equation in the 
minimal case and ita components: 
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(P~o -t de-£~\( Vo = (); 

~o( p 1-+ ()e-
2~c( 0 tk Yo ::: 0) 

(f/ r ~c -t ~-2.{1J1.62.k')o = 0. 

(4.18) 

We can see only insignificant (from the consistency point of view) 
changes. 

We do not examine there the equation of motion for H ": It con­
tains equations for the graviton, gravitino and the second of two 
axial auxiliary fields. 

v. Conclusion 

The flexible N•1 supsrgravity version proposed is an improved mo­
dification of the new minimal one. In contrast to the latter it does 
not imply local U(1) symmetry subjected to anomalies and it admits 
a wide class of matter couplings. 

The first main result of the paper is the derivation of chiral 
1ft 'fit 

densities appropriate for the integration over chiral ~ -super-
space. Using these densities one can arrange at the classical level 
R-non-invariant matter couplings in all N•1 supergravity versions ex­
cept the new minimal one. This fact seems to be rather important be­
cause the R-invariance has to be apparently broken at the quantum 
level by anomalies (like the local U(1) symmetry above). 

The second main result is the suggestion of a new kind of the 
Fayet-Iliopoulos mechanism for spontaneous supersymmetry breaking. 
This construction does not imply an accompanying super Weyl trans­
formation. It works only in the non-minimal and flexible versions. 
So these versions will not be equivalent to the minimal one if a 
future careful analysis will confirm a consistency of the construc­
tion conjectured. 

It is worthwhile also to reanalyse the auxiliary field anoma­
lies/8/ tsking into account chiral densities discussed in the pre­
sent paper. 

The authors cordially thank Drs. E.Ivanov,T.Kugo,A.van Proeyen, 
K.Stelle, and B.Zupnik for valuable discussions. 
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