

объвдиненный институт
 ядерных
 исследованй
 дубна

V.A.Beilin, A.V.Radyushkin

QCD SUM RULE ANALYSIS
OF $\mathrm{J} / \psi \rightarrow \eta_{\mathrm{c}} \gamma \quad$ DECAY

Submitted to "भдерная физика"

1. INTRODUCTION

QCD sume rules $/ 1,21$ are a very effective tool to study the hadronic structure within the QCD framework. One of the most important advantages of the QCD sum rule approach is the possibility of taking into account the nonperturbative effects and their influence on physical quantities characterizing the dynamical properties of hadrons. One of the basic assumptions of the method concerns the nontrivial structure of the QCD vacuum, and the quantitative predictions are based on the analysis of the power series resulting from the Wilson expansion valid up/ to some critical dimension of the local composite operators/2/. The nonzero vacuum expectation values like $\langle 0| \mathrm{G}_{\mu \nu}^{\mathrm{a}} \mathrm{G}_{\mu \nu}^{\mathrm{a}}|0\rangle$, $\langle 0| \bar{q} q|0\rangle$, etc., are treated as some universal parameters describing the dynamics of quark-gluon interactions on distances of an order of the confinement radius, i.e., the resonance formation zone. Fixing these parameters, e.g., from the charmonium sum rules ${ }^{12 \%}$, it is possible, in principle, to get parameter-free predictions concerning the static properties of hadrons. This program was partially accomplished in refs. ${ }^{18-8 /}$, and the method proved out to be a very fruitful tool to study the hadrons composed both of light and of heavy quarks.

In the present paper we use the QCD sum rules to study the radiative transitions between the charmonium states. Earlier this problem was investigated in refs ${ }^{/ 8-12 /}$. However, the corrections due to the gluon condensate $\langle 0|\left(a_{g} / \pi\right)^{\prime} \mathrm{G}_{\mu \nu}^{a} \mathrm{C}_{\mu \nu}^{2}|0\rangle$ were not taken into account in these papers.

The dispersion theory of the charmonium $/ 1 /$ revealed a rather high degree of duality between the physical charmonium spectrum and the theoretical one calculated up to $O\left(\alpha_{8}^{2}\right)$ terms. For the radiative decays the duality was demonstrated in ref. $/ 12$. How ever, a more precise fixing of characteristics of the $\bar{c} c-s y s t e m$ requires to include into consideration also power corrections to the corresponding amplitudes. A detailed study of the nonperturbative <GC> contributions into the polarization operator (i.e., 2-point function) for the $\overline{\mathrm{c}} \mathrm{c}$-currents allowed one to calculate masses of all s - and p-levels of the charmonium ${ }^{2,8 /}$ in good agreement with experiment.

Recently $8,18,14$ the QCD charmonium sum rule approach was applied to a 3 -point function $T_{5 \mu \nu}\left(q, q_{1}, q_{2}\right)$ in the simplest kinematics $q^{2}=q^{2}=0$ to extract information concerning the $\eta_{c} \rightarrow 2 y$ decay widths. We generalize the analysis of refs. $/ 8,13 /$ 2_{2}^{c}
onto a more complicated kinematics $\left(q_{2}^{2}=0\right.$, but $\left.q_{1}^{2}-q^{2} \neq 0\right)$ relevant to the study of $J / \psi \rightarrow \eta_{c}{ }^{\gamma}$ radiative transitions.
II. DERIVATION OF THE SUM RULE

Consider a 3-point function
$T_{5 \mu \nu}\left(q, q_{1}, q_{Z}\right)=\int d^{4} \Sigma d^{4} y \exp \left\{-i q_{1} x-i q_{R} y\right\} \times$
$\left.x\langle 0| T \mid j_{\mu}(0) j_{\nu}(y) J_{5}(x)\right\}|0\rangle=$
$=3 e Q \epsilon \operatorname{ma\sim } q^{a} q \beta_{A}\left(q^{2}, q_{1}^{2}, q_{2}^{2}\right)$,
where $Q=2 / 3$ is the electric charge of the c-quark, $q^{2} \neq 0, q_{1}^{2} \neq 0$, $\mathrm{q}_{2}^{2}=0$,

$$
\begin{aligned}
& j_{\mu}(x)=\dot{c}(x) \gamma_{\mu} c(x) \\
& J_{g}(x)=i c(x) \gamma_{5} c(x)
\end{aligned}
$$

In the nonrelativistic approximation the amplitude $A\left(q^{2}, q_{1}^{2}, 0\right)$ describes the dipole $M 1$ transitions between the charmonium states. Diagrams contributing to A are presented in fig. 1 . The nonperturbative corrections proportional to $\langle 0| \mathrm{G}_{\mu \nu}^{\mathrm{a}} \mathrm{G}^{\mathrm{a}}{ }_{\mu \nu}|0\rangle$ are due to diagrams $1 \mathrm{~b}-\mathrm{g}$.

e)
c)

g)

Fig. 1. Diagrams contributing to $T_{5 \mu \mu}\left(q_{,} q_{1}, q_{\mathcal{L}}\right)$, Momenta q. q_{1}, q_{2} correspond to $J / \psi, \eta$ and γ, respectively. Dashed lines are related to the external gluonic field.

The simplest diagram la is most conveniently calculated by using a double dispersion relation. The result looks as

$$
\begin{align*}
& A^{(0)}\left(q^{2}, q_{1}^{2}, 0\right)=\frac{1}{2 \pi^{2} m_{c}} \int_{0}^{1} d z \int_{0}^{1} d x \times\left[1-\frac{q^{2}}{m_{c}^{2}} \times \overline{\mathrm{x}} \mathrm{z}-\frac{q_{1}^{2}}{m_{c}^{2}} \times \vec{x} \vec{z}\right]^{-1}= \tag{2}\\
& \Rightarrow \frac{\mathrm{m}_{\mathrm{c}}}{2 \pi^{2}} \int_{4 \mathrm{~m}_{\mathrm{c}}^{2}}^{\infty} \mathrm{ds}_{1} \int_{4 \mathrm{~m}_{\mathrm{c}}^{2}}^{\infty} \mathrm{ds} \frac{\delta\left(\mathrm{~s}-\mathrm{s}_{1}\right)}{\left(\mathrm{s}-\mathrm{q}^{2}\right)\left(\mathrm{s}_{1}-\mathrm{q}_{1}^{2}\right)} \ln \left(\frac{1+\mathrm{v}}{1-\mathrm{v}}\right)
\end{align*}
$$

where

$$
\bar{x}=1-x, \quad \bar{z}=1-z, \quad v=\left(1-m_{\mathbf{c}}^{2} / \mathrm{s}\right)^{1 / 2}
$$

The amplitude $A\left(q^{2}, 0,0\right)$ analysed in refs. ${ }^{18.13 /}$ can be extracted from eq. (2) in a straightforward way.

To calculate the $O(\langle G G\rangle)$ power corrections we incorporated the method described in ref./7/ and obtained the following result for the sum of fig.lb-g contributions:

$$
\begin{aligned}
& \mathrm{A}^{(\mathrm{GG})}\left(\mathrm{q}_{1}^{2}, \mathrm{q}_{1}^{2}, 0\right)=-\frac{3}{2 \pi^{2} \mathrm{~m}_{\mathrm{c}}} \cdot \phi \cdot\{-2 \mathrm{I}(0,0,2,0,3)+ \\
& +4[\mathrm{I}(1,0,2,0,3)-\mathrm{I}(1,0,3,0,3)-\mathrm{I}(2,0,3,0,3)+ \\
& +\mathrm{I}(1,0,3,1,3)-\mathrm{I}(1,2,4,0,3)+\mathrm{I}(1,0,2,2,3)- \\
& -\mathrm{I}(0,2,3,1,3)-\mathrm{I}(0,3,4,0,3)]+ \\
& +8[\mathrm{I}(3,0,4,0,4)+\mathrm{I}(0,0,3,1,4)+\mathrm{I}(0,3,4,0,4)- \\
& -\mathrm{I}(0,0,2,2,3)-\mathrm{I}(0,0,3,1,3)]+ \\
& +18[\mathrm{I}(2,1,4,0,4)+\mathrm{I}(1,2,4,0,4)]
\end{aligned}
$$

where

$$
\begin{align*}
& \phi=4 \pi^{2}<0\left|\frac{a_{s}}{\pi} \mathrm{C}_{\mu \nu}^{a} \mathrm{G}_{\mu \nu}^{\mathrm{a}}\right| 0>\cdot \frac{1}{9\left(4 \mathrm{~m}_{\mathrm{c}}^{2}\right)^{2}}, \tag{4}\\
& \mathrm{I}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{p})=\int_{0}^{1} \mathrm{dx} \int_{0}^{1} \mathrm{dz} \frac{\mathrm{z}^{\mathrm{a}} \bar{z}^{\mathrm{b}} \mathrm{x}^{\mathrm{c} \bar{x}^{d}}}{\left(1-\frac{\mathrm{q}^{2}}{\mathrm{~m}_{\mathrm{c}}^{2}} \times \bar{x}_{\mathrm{z}}-\frac{\mathrm{q}_{1}^{2}}{m_{\mathrm{c}}^{2}} \times \overline{\mathrm{x}} \overline{\mathrm{z}}^{\mathrm{p}}\right.} \tag{5}
\end{align*}
$$

It makes sense not to perform integrations over the Feynman parameters in eq. (5), since in what follows we will be interested only in the moments of the amplitide $A\left(q^{2}, q^{2}, 0\right)$, and the basic integrals have just the form best suited for their computation.

$$
\begin{equation*}
M_{n r}^{A}=\frac{1}{n!r!}\left(\frac{d}{d q^{2}}\right)^{r}\left(\frac{d}{d q_{1}^{2}}\right)^{n} A\left(q^{2}, q_{1}^{2}, 0\right) q^{2}=0, q_{1}^{2}=0 \tag{6}
\end{equation*}
$$

after rather cumbersome calculations we obtained from eqs. (2), (3) :

$$
\begin{align*}
& M_{n, r}^{A}=\frac{1}{2 \pi^{2} m_{c}} \cdot\left(\frac{1}{m_{c}^{2}}\right)^{n+r} \cdot \frac{[(n+r)!]^{2}}{(2 n+2 r+2)!}\left\{1+O\left(a_{s}\right)-\right. \tag{7}\\
& \left.-\phi \frac{n+r+1}{2 n+2 r+3}\left[(n+r)^{3}+(n+r)^{2}+6(n+r)-4 n+4 n r+4 r(n+r)\right]\right\}
\end{align*}
$$

From eq. (7) it is not difficult to extract the results of ref. ${ }^{/ 8 /}$: one should just take $r=0$. From eq. (7) it is also clear that the nonperturbative corrections rapidly (like $\left.(n+r)^{3}\right)$ increase with n and r. To maintain the power corrections at the level of $<20-25 \%$, one should not consider large values of n and r .

To incorporate the sum rule technology, we represent the absorptive part of A in the narrow resonance approxination

$$
\begin{equation*}
\operatorname{Im} A=\pi_{i, j}^{2} \sum_{i} h_{j} F_{i j} M_{1}^{a_{i}} M_{j}^{b_{j}} \delta\left(s-M_{i}^{2}\right) \delta\left(s_{1}-M_{j}^{2}\right) \tag{R}
\end{equation*}
$$

where $g_{i}\left(h_{j}\right)$ is the coupling constant characterizing the projection of the corresponding current onto an i-th (j-th) resonance state, $F_{i j}$ are dimensionless transition matrix elements, and the constants a_{i}, b_{j} are determined by quantum numbers of the resonances.

The sum rule can be written now as

$$
\begin{equation*}
M_{n r}^{A}=\frac{1}{\pi^{2}} \int_{\text {thr. }}^{\infty} \frac{d s}{s^{r+1}} \int_{\text {thr. }}^{\infty} \frac{d s_{1}^{s_{1}^{n+1}}}{} \operatorname{Im} A \tag{9}
\end{equation*}
$$

Using eqs. (7), (8) and extracting from eq. (8) only the lowest transitions shown in fig. 2 (cf. ${ }^{/ 2}$) we get

$$
\mathrm{F}_{\psi \eta_{\mathrm{c}}}+\frac{\mathrm{h}_{\eta_{\mathrm{c}}^{\prime}}}{\mathrm{h}_{\eta_{\mathrm{c}}}}\left(\frac{\mathrm{M}_{\eta_{\mathrm{c}}}}{\mathrm{M}_{\eta_{\mathrm{c}}^{\prime}}}\right)^{\mathrm{r}+1} \mathrm{~F}_{\eta_{\mathrm{c}}^{\prime} \psi}+\frac{\mathrm{g}_{\psi^{\prime}}}{\mathrm{g}_{\psi}}\left(\frac{\mathrm{M}_{\mathrm{J} / \psi}}{\mathrm{M}_{\psi^{\prime}}}\right)^{2 \mathrm{n}} \mathrm{~F}_{\psi^{\prime} \eta_{\mathrm{c}}}+
$$

$\left.+\frac{\mathrm{h}_{\eta_{\mathrm{c}}^{\prime}}}{\mathrm{h}_{\eta_{\mathrm{c}}}} \frac{\mathrm{g}_{\psi^{\prime}}}{\mathrm{g}_{\psi}}\left(\frac{\mathrm{M}_{\mathrm{J} / \psi}}{\mathrm{M}_{\psi^{\prime}}}\right) \mathrm{g}_{\mathrm{n}} \mathrm{M}_{\eta_{\mathrm{c}}}^{\mathrm{M}_{\eta_{\mathrm{c}}^{\prime}}}\right)^{2 \mathrm{r}+1} \mathrm{~F}_{\psi^{\prime} \eta_{\mathrm{c}}^{\prime}}+{ }^{\prime \prime}$ continuum $^{\prime \prime}=$
$=\frac{1}{g_{\psi} h_{\eta_{c}}}\left(\frac{M_{J} / \psi}{m_{c}}\right)^{2 n}\left(\frac{M_{\eta_{c}}}{m_{c}}\right)^{2 \mathrm{r}+1} M_{n \mathrm{n}}^{\mathrm{A}}$.

Fig.2. Radiative transitions between charmonium states. So1id lines correspond to the diagonal transitions $J / \psi \rightarrow \eta_{c} \gamma$ and $\psi^{\prime} \rightarrow \eta_{c}^{\prime} \gamma$, dashed lines to the nondiagonal ones: $\eta_{\mathrm{c}}^{\prime} \rightarrow \mathrm{J} / \psi \gamma$, $\psi^{\prime} \rightarrow \eta_{\mathrm{c}} \gamma$.

III. ANALYSIS Of the sum rule

For the resonance masses we take their experimental values

$=3.592 \mathrm{GeV}$. For the c -quark mass we take the value $\mathrm{m}_{\mathrm{c}}=$ $=1.28 \mathrm{GeV} / 3 /$. For the g, h constants we take the estimates obtained in refs./1,8, 12, 13/:

$$
\mathrm{g}_{\psi}=0.125 ; \quad \mathrm{g}_{\psi^{\prime}}=0.0755 ; \quad \mathrm{h}_{\eta_{\mathrm{c}}}=0.12 ; \mathrm{h}_{\eta_{\mathrm{c}}^{\prime}}=0.072
$$

Most popular value for $\langle 0|\left(a_{\mathrm{s}} / \pi\right) \mathrm{G}_{\mu \nu}^{\mathrm{a}} \mathrm{G}_{\mu \nu}^{\mathrm{a}}|0\rangle$ is $0.012 \mathrm{Gev}^{4}$ obtained in ref. ${ }^{2 / 2}$. Recently, however, there were claims that $\langle 0|\left(a_{\mathrm{g}} / \pi\right) \mathrm{GG}|0\rangle$ is higher: $\langle 0|\left(a_{\mathrm{g}} / \pi\right) \mathrm{GG}|0\rangle=0.017-0.025 \mathrm{GeV}^{4}$ (see, e.g., refs. ${ }^{15,16 \text {). }}$

Now all the parameters entering into eq. (10) are fixed, and we can try to extract information about the matrix elements of the radiative Ml transitions. The values of n, r will be chosen in the region, where
a) power corrections are smaller than 25%,
b) sensitivity to the resonance contribution is high enough,
c) all $F_{i j}$ simultaneously are most stable with respect to small changes of n, r allowing for 10% deviations for the leading contribution into the $1 . \mathrm{h} . \mathrm{s}$. of eq. (10).

Transition matrix elements for three values of the $\left.<0\left|\left(a_{s} / \pi\right) \mathrm{G}_{\mu \nu}^{\mathrm{a}} \mathrm{G}^{\mathrm{a}}{ }_{\mu \nu}\right| 0\right\rangle-$
parameter: $0.012 ; 0.017$ and $0.025 \mathrm{GeV}^{4}$

There exists also one very important constraint on the admissible values of n, r, which is due to the fact that we have not included $O\left(a_{s}\right)$ corrections into our sum rules. The calculation of these corrections is a separate and a rather complicated problem. Note, however, that for moments of the 2 -point function analysed in refs. ${ }^{12,3 /}$, the $\mathrm{O}\left(\alpha_{5}\right)$ correction changes its sign for $4<n<5$ and as a consequence, it is rather small for $\mathrm{n}=3-6$. That is why we restrict our analysis of eq. (10) to the region $3 \leq n+r \leq 6$.

The continuum contribution in the region considered is $\leq 10 \%$ (cf. refs. ${ }^{1,13 /}$). As a result, we obtain from eq. (10) the values collected in Table 1. Note that the most broad stability region $r=3-6$, $n+r=4-6$ was observed for $\phi=$ U.UUls while for nigner ϕ values the stability region is smaller: $\mathbf{r}=3-5, \quad \mathbf{n}+\mathbf{r}=3-5$.
 incorporating the potential analogy, one should expect that these matrix elements are given by similar (and small) integrals. Due to their smallness, the specific values of $F_{\eta_{c}^{\prime}} \psi$ and $F \psi_{c}^{\prime} \eta_{c}$ as extracted from eq. (10) are very sensitive to a particular choice of parameters in eq. (10), and the results have large errors. In fact, what we obtained is only a very rough estimate of $\eta_{\mathrm{c}}^{\prime} \rightarrow \mathrm{J} / \psi y$ and $\psi^{\prime} \rightarrow \eta_{\mathrm{c}} y$ decay widths. Hence, our sum rule, just like it was observed in ref. ${ }^{12}$, does not allow one to get accurate results concerning the nondiagonal transitions.

Finally, using the formula

$$
\Gamma\left(V_{j} \rightarrow P_{i} \gamma\right)=\frac{a Q^{2}}{24}\left(F_{i j}\right)^{2} m_{v_{j}}\left(\frac{m_{v_{j}}}{m_{P_{i}}}\right)^{2}\left(1-\frac{m_{P_{i}}}{m_{V_{j}}}\right)^{3}
$$

we find $\Gamma\left(\psi \rightarrow \eta_{\mathrm{c}} \gamma\right)$ and $\Gamma\left(\psi^{\prime} \rightarrow \eta_{\mathrm{c}}^{\prime} \gamma\right)$. The results of our calculations are presented in Table 2 .

IV. CONCLUSIONS

	$\begin{array}{ccc} \infty & n & M \\ & \Re & \Re \\ 0 & 0 & 0 \\ +1 & +1 & +1 \\ 0 & \infty & 1 \\ 0 & 0 & \sigma \\ - & 0 & 0 \end{array}$	$\begin{array}{lll} \sim & \text { in } & \forall \\ V & v & v \end{array}$	$\begin{array}{ccc} \infty & \sim & N \\ \dot{0} & \dot{0} & \dot{1} \\ +1 & +1 & +1 \\ \infty & \dot{n} & + \\ \dot{H} & \dot{H} & \dot{-} \end{array}$	$\begin{array}{lll} \dot{r} & \sim & n \\ \dot{*} & \bullet & \dot{\circ} \\ \vee & v & v \end{array}$
岕 3	0 0 +1 +1 0 -1	$\begin{aligned} & \sigma \\ & H \\ & 0 \\ & \dot{+} \\ & +1 \\ & \sigma \\ & \ddot{0} \end{aligned}$	$\begin{aligned} & \stackrel{+}{\sim} \\ & \dot{+} \\ & +1 \\ & \stackrel{+}{C} \\ & \dot{0} \end{aligned}$	1
	$\begin{aligned} & \text { N } \\ & \text { in } \\ & \dot{0} \\ & +1 \\ & \text { in } \\ & \dot{-1} \end{aligned}$	\cdots	$\begin{aligned} & N \\ & \dot{0} \\ & +1 \\ & \underset{\sim}{+} \\ & 0 \end{aligned}$	$\stackrel{N}{v}$
		$\stackrel{\text { n }}{\sim}$	1	1
芯	$\begin{array}{ll} N & N \\ 0 & 0 \\ + & 0 \\ + & 1 \\ \stackrel{0}{0} \end{array}$	$\begin{aligned} & \stackrel{N}{r} \\ & \dot{0} \\ & +1 \\ & + \\ & 0 \\ & \dot{0} \end{aligned}$	∞ $\dot{\sim}$ 1 \cdots \downarrow 0	1
$$	$\begin{array}{r} \uparrow+\underset{y}{\gamma} \\ +r \end{array}$	$\begin{array}{rl} \infty \\ -1 \\ -7 & 1 \end{array}$	$\begin{array}{cc} \pi & -\frac{y}{i} \\ -\lambda & \frac{1}{r} \end{array}$	-

14. Kirschner R., Schiller A, Zeitschr.Phys., 1982, CI6, p. 141 .
15. Voloshin M.B. ITEP-21, Moscow, 1980.
16. Nikolaev S.N., Radyushkin A.V. Phys.Lett., 1982, 124B, p. 243.
17. Gaisser J. SLAC-PUB-2887, Stanford, 1982.
18. Eichten E. et al. Phys.Rev., 1980, D21, p. 203.
```
Бейлин В.А., Радэшкин А.В.
Анализ распада J/\psi 
    Проведен анализ радиационных М1-переходов в чармонии
с учетом непертурбативных поправок O(<QG>) методом КХД правил
```



```
к экспериментальным значениям. Прослежена зависимость резуль-
татов от выбора параметра <CG>
Работа выполнена в Лаборатории теоретической физики оияи.
```

Beilin V.A., Radyushkin A.V.
QCD Sum Rule Analysis of $J / \psi \rightarrow \eta_{\mathrm{c}} \gamma$ Decay
On the basis of the QCD sum rule approach an analysis is performed of the radiative Ml transitions between charmonium states including the nonperturbative corrections $\mathrm{O}(<\mathrm{GG}>)$. The calculated widths $\Gamma\left(J / \psi \rightarrow \eta_{0} y\right)$ and $\Gamma\left(\psi^{\prime} \rightarrow \eta_{c}^{\prime} y\right)$ are close to their experimental values. Dependence of the results on the magnitude of the <GG> parameter is investigated.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

