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where
X=1-%, 2z =1-12, v=(1—m§/s)1/2 .
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3 can be extracted

The amplitude A(q®,0,0) analysed in refs.
from eq. (2) in a straightforward way.

To calculate the Q(<(GG>) power corrections we incorporated
the method described in ref.?/ and obtained the following re-

sult for the sum of fig.lb-g contributions:
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It makes sense not to perform integrations over the Feynman pa-
rameters in eq. (5), since in what follows we will be interested
only in the moments of the amplitide A(q2, q%, 0), and the basic

integrals have just the form best suited for their computation.
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For the moments M _ defined by
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after rather cumbersome calculations we obtained from eqs. (2),

3):
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From eq. (7) it is not difficult to extract the results of
ref. ’%, one should just take r =0. From eq. (7) it is also clear
that the nonperturbative corrections rapidly (like (n +1)3) in-
crease with n and r. To maintain the power corrections at the
level of <20-25%, one should not consider large values of n
and r. -

To incorporate the sum rule technology, we represent the
absorptive part of A in the narrow resonance approximation
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where gi(hj) is the coupling constant characterizing the pro-
jection of’ the corresponding current onto an 1i-th (j~-th) reso-
nance state, F;; are dimensionless transition matrix elements,
and the constants a, , bj are determined by quantum numbers of
the resonances,

The sum rule can be written now as
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Using eqs. (7), (8) and extract/i?fl/g from eq. (8) only the lowest

transitions shown in fig.2 (cf. ) we get
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ITI, ANALYSIS OF THE SUM RULE

For the resonance masses we take their experimental values
Myfyp = 3.0¥3 eV, Mg = 24901 Gev, My - = 3.005 Gev, Ivin;—
= 3.592 GeV, For the c-quark mass we take the value m,=

1.28 GeV /3/. For the g, h constants we take the estimates
obtained in refs.’1.8.,12, 18/,

g¢=0.125; g¢»=0.0755; h’l = 0.12; h7l
c c

= 0.072,

Most popular value for <«<Oflag /n)G G l,|0> is 0.012 Gev*
obtained in ref.’?’, Recently, however, there were claims that
<0|(ag/m GG|0> 1is higher: <0|(a,/7)GG|6> = 0.017-0.025 GeV*
(see, e.g., refs, 718,16/

Now all the parameters entering into eq. (10) are fixed, and
we can try to extract information about the matrix elements
of the radiative Ml transitions. The values of n,r will be
chosen in the region, where

a) power corrections are smaller than 257,

b) sensitivity to the resonance contribution is high enough,

¢) all Fy; simultaneously are most stable with respect to
small changes of n,r allowing for. 107 deviations for
the leading contribution into the l.h.s. of eq. (10).

Table 1 There exists also one very
important constraint on the
admissible values of n,Tr,
which is due to the fact that
we have not included Ofay)

corrections into our sum rules.

Transition matrix elements
for three values of the
<0llag/m) GG 10> -
parameter: 0,012; 0,017 and

0.025 Gev* The calculation of these cor-
—— rections is a separate and
a rather complicated problem.
2.5 Note, however, that for mo-
ments of the 2-point function
F 244 analysed in refs.”*?/, the Olay)
\'\”z_c correction changes its sign
243 for4a<n< 5 and as a conse-
quence, it is rather small for
F 0.42 n = 3-6, That is why we rest-
rl‘c Y rict our analysis of eq. (10)
0.36 to the region 3 <n+r g 6.
\F | \ The continuum contribution
Wi 0.32 in the region conS1dered is
<107 (cf. refs, /1,137y
5,3 a result, we obtain from eq.
F (10) the values collected in
in! Table 1. Note that the most
¥ QC 4.8 broad stability region r = 3-6,
A.6 n+r = 4-6 was observed for
| Y NI ¢= U.UUl3 wnile IOY nigner ¢

values the stability region is
smaller: t = 3-5, n+r = 3-5,
For simplicity we used the estimate Fn'l/, ~ Fl//'n . Indeed,
C c

incorporating the potential analogy, one should expect that
these matrix elements are given by similar (and small) integ-

rals, Due to their smallness, the specific values of F X
c

and F¢énc as extracted from eq. (10) are very sensitive to
a particular choice of parameters in eq. (10), and the results
have large errors. In fact, what we obtained is only a very
rough estimate of M4 "+ I/Yy and ¥’ n,y decay w19ths. Hence,
our sum rule, just l1ke it was observed in ref,
one to get accurate results concerning the nondlagonal transi-
tions.

Finally, using the formula

. T, - Pyy) =

1

my, (-—) - -——-—)

mp, v, .
we find T'( » n,y) and T'(y’+n,y). The results of our calcu-
lations are presented in Table 2,

ij

does not allow



Table 2

Decay widths for charmonium transition;., The three values displayed in the rightmost

column correspond to the three values »f <Ol(a, /7)GG|0>

0.012, 0.017,

parameter:

4

and 0.025 GeV
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IV, CONCLUSIONS

Now we summarize main observations:

a) The inclusion of O(<GG>) nonperturbative corrections into
the amplitude describing the radiative Ml transitions between
the charmonium states improves the accuracy of estimates for
the transition matrix elements.

b) Taking into account the Oflz ;) —contributions should not
change the final result drastically: in the considered region
of m,r (n,rg 3-5) we expect only 20-307 correction (cf,”/1%14/y,

c) The nondiagonal transition matrix elements cannot be
extracted reliably from the sum rules., This is clear, in par-
ticular, from the results of ref./lmiwhere these matrix ele-
ments are shown to be small compared to the diagonal ones.

d) It is desirable to calculate 0(03) and 0(04) contribu-
tions to the 3-point amplitude, at least to compare the results
with the O(a,) terms which also are worth calculating.

e) Our analysis shows that assuming higher values for the
<Ollag/nm) Gi,GZV|0>-parameter one obtains a better agreement
with experimental data, However, any definite statement concer-
ning this point cannot be justified without taking into account
the higher-dimension contributions.

We are grateful to V,A,Nesterenko and S.N.Nikolaev for help-
ful discussions, and to D.V.Shirkov for support.
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