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where m; =mgtmy ;3 q=d,s ;D =4-2¢ is the space-time dimen-
sion in the dimensional regularization; yg is the fully anti-
commuting analogue of the 4-dimensional matrix/12/. To find the
three-loop approximation of (2.1), one needs the one-loop appro-
ximation for the bare charge ay ,the mass renormalization con-
stant up to the two-~loop level (see, e.g., /137y and the rele-
vant terms in the ¢ —expansion of the corresponding diagrams
(some typical diagrams are shown in the figure). In particular,
only the pole parts of the fourteen three-loop diagrams are re-
quired.
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Typical representatives of: a) l-loop, b) 2-loop
and c¢) 3-loop contributions to the spin zero quark
current correlator.

The diagrams were evaluated analytically with the help of
the SCHOONSCHIP program mentioned above. Leaving all the de-
tails for a subsequent publication, we present here only the
final result in the ﬁg—scheme
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where { is the number of quarks; £(3)= 1.202... . Notice, that

the cancellation of divergences in the renormalized quantity
relates the coefficients of the non~leading log terms to the
pole part of aB and the mass renormalization constant Z,, pro-
viding us with a useful check of the calculations.
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However, only the absorptive part R(s)= -le F(~s ¢ ie)
4

of the correlator (2.1) is of physical interest. To find it,
one should continue eq. (2.2) to the timelike region. Doing so,
we get for f=3:
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This result demonstrates two new features typical of physical
quantities calculated in the timelike region up to the next-
next-to-leading order, namely, the scheme dependence of two per-
turbative terms and the manifestation of the O(a2 7o) correc—
tion associated with the analytical continuation of the log
terms. In our case the contribution diminishes the total three-
loop coefficient, so we need not worry about the redefinition

of the coupling constant in the spacelike region proposed in/14/
to absorb the corrections of a similar nature. As to the total
magnitude of the O(aE ) term, it amounts to about 187 of the
leading one (at as = 0.25) and is three times as less as the
two-loop one.

3. FESR and Light Quark MasseS. LONSider now tne reLon 1 ap-
plication to eq. (2.3):
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R™ ()= = Im (Fp 1.+ Ry.p.} (=5 + ic),

where Fp,1. is defined via eq. (2.2), while Fy p, denotes the
non—perturbat1ve power contributions (see/9 ). As- has been pro-
posed in ref, /3/, we apply the renormalization group method not
to the spectral density itself, but to its moments M:
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Here the running coupling constant a (8) and the running mass
m(s) are determined by solving the d1fferent1al equations
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with the three-loop approximations for the QCD B -function
and mass anomalous dimension v /
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@, and M can be parametrized in terms of the scale parameter A
and the invariant mass m as (see, e.g.,’!3 ):
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where L =1n s/ AZ,

The application of the renormalization group to My in the
time-like region has several attractive features. Firstly, it
allows one to integrate explicitly all log terms in eq. (2.3)
before their final summing up. Secondly, using this approach
one can single out the contribution to My due to power terms
suppressed by (Q2)k only. Indeed, s1nce absorptlve parts of
power corrections are proportional to 8™ (s), integration
over s automatically nullifies them,if n;é k.

To determine the absolute values of md and m} from (3.1),
we will consider the one- and two-resonance approximations of
the physical spectral density (in full analogy with the two-
loop calculations of md /3/ ), saturating the FESR (3.1) by n,n’
and K, K’ pseudoscalar mesons, the ground states of which (=
and K ) are the Goldstone bosons responsible for chiral sym-
metry breaking.

First we model the physical spectra by R PgZpt 6(s —m )

whete p=7,K; f, = 132 MeV; fg= 153 MeV, and obtain fob the
zero moment:
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G%> = 0.012 Gev*. Choosing the duali-
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ty interval as (sy)p _(m +mz)/ = mg 2, /9 (for details see,
e.g.,’3/ and references thereln) with m_»= 1,24 Gev/17/, m, =
= 1.45 GeV/18/ and solving eq. (3.5), we get

i = 26-21 (MeV), m¥ (1 CeV) = 16 MeV;

Fn:r ~ 320-260 (MeV), m* (1 GeV) = 200 MeV; 3.7)
01 < A< 0.2 (Gev).

While obtaining these estimates the validity of the duality
relations (3.1) in a rather small interval of energies was taken
for granted. To verify the stability of (3.6) with respect to
the choice of s¢ and to check the reliability of the FESR ap-
proach we adopt now the two-resonance model of the spectral den-
Sity:

exp o2 4 _ml 2 4, 2,
Ry _fpmp(S(s mp)+fp mg 6(s—mp),
where the last term corresponds to the »° and K° excitations.

In this case we do not use any additional suppositions to fix
s, but extract it together with f,- and m;' from the system

of three equations obtained from (3.1) atk = 0,1,2:*
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*We omitted the non-perturbative terms, which are negligible
at (So)p> 1 GeV as compared to the perturbatuve ones.




The solution of (3.8) is

(8¢), = 2 GeV, (89 )k =~ 2.8 GeV,
fﬂ, - 4,7 Mev, fK'" 51 MeV, (3.9)
2722 (MeV), m* « 3254264 (MeV),

0.1<AgS < 0.2 (GeV).
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The corresponding running mass values EJ'(I GeV) = 17 MeV and
'+ (1 GeV) ~ 205 MeV are in agreement w1th (3.7). Thus, we con-
clude that taking into account the ()(a ) correction makes the
difference between the FESR mass estimates and those of the cur-
rent algebra (mf ~ 11 MeV) smaller. (Note, however, that the
connection between M , M and current algebra mass definitions

is not yet clearly understood).

Our results for the ratios f,*/f; = 0.036 and fx+/fx = 0.335
are consistent with those obtained by other methods, in parti-
cular, with f'/f Vrln /m , r=6+2/7/ It is also interesting
to note, that the use of the FESR version considered in/!1/ leads
to the similar analytic expression for f,”. Indeed, following
the ideas of ref./!1/,one can make the 1/N —expansion inspired
conjecture that radial excitation spectra consist of an infinite
number of the infinitely narrow resonances, and combine it with
the FESR to derive "linear dual models for such spectra*:
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mﬁm)zrrng n=12,.. p=n,K.

Notlce, that the agreement of f'= f (1) with the above estimates
is an argument in favour of both the results (3.9) and the "li-
near dual models', Moreover, as has been emphasized in/3/, the
prediction (3.10) of the mass of the second » -meson excitation
m,(2) = 1,75 GeV agrees with the observation of the pseudoscalar
resonance m,”. = 1,77+0,03 GeV/!7/ considered to be the candidate
for this role. Encouraged by these facts we propose to search

foz ghsﬂfecond radial excitation of the K -meson near my (2) =

= eV™,

* Analogous "linear dual spectra" are also predicted by the
Veneziano model,

*After completing this paper we became aware of the recent
experimental data, which suggest the existence of the second
excitation of the K -meson around 1.83 GeV/19/.
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To be complete, 1et us improve the FESR predictions for the
scalar meson channel’? by taking into account the O(aS cor—
rection., Following the standard procedure, we saturate (3.1) by
the lowest mesonic state & (980) considered here as a quark-
antiquark system (for discussions of other possibility see,
e.g., /20/). The existence of the corresponding excitations has
not yet been experimentally established, Thus, to calculate
my =myg -m, Wwe use only the one-resonance model of the spect-
ral density, the value fg5 = 1,2 MeV/2:6/ for the decay constant
being taken as an input parameter. Solving the system of the
first two equations (3.8), we get S -3/2m5 and

my = 108 (MeV);
0.15 Ayg

my (1 GeV) = 6 MeV;
< 0.2 (GeV).

(3.11)

Eqs. (3.7) and (3.11) lead to the following absolute values of
the light quark masses:

m =~ 86.5 (MeV),

u

m, (1 GeV) = 5 MeV,
My = 18%14.5 (MeV), my (1 GeV) =~ 11 MeV,
i, = 312¥253,5 (MeV), mg (1 GeV) = 195 MeV,
0.1 < Agz < 0.2 (GeV)

(3.12)

(the accuracy is about 25%). These results are consistent with
those of the previous works on the subJect/]67/

As to the "linear dual models" predictions for this channel,
the corresponding model spectra must be different from egs.,
(3.10) due to the essentially nonzero masses of the ground sca-
lar hadron states (i.e., the & (980) and k (1350) mesons). In-
dedd, thanglng the value of the duality interval from (sg ) *m /2
to (s ) = 3m /2, we obtain

ms2(n) =(n+ 1)m2S ,

(3.13)
£2(n) = L
s n

, n=0,1,2,...; s=25,Kk.
S

Thus, on assuming the two-quark structure of the & -meson, one
may expect its radial excitation to have the mass mg(l) = 1.4 GeV.
Eqs. (3.13) lead also to m (1) = 1.9 GeV for the mass of the

k (1350) excitation, and this estimate does not contradict the
experimental indications for this excitation to exist near m - =
= 1,85 GeV/21/ 0f course, the "linear dual models" are no more
than model equations, and thus, one should not overestimate

their prediction ability. However, it is worth noting, that in
all previously considered cases (see, e.g.,/lh3/ ) the local
duality ideas worked well enough.









