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1. INTRODUCTION

In papers /12’ (referred to as 1 and II) the possibility of
extension to the supersymmetric case of the quasipotential
equations’/%4/ has been discussed. In paper I the transition to
the three-dimensional equations may be carried out by the rela-
tive-time /8’ vanishing in some (fixed in the fermionic sector)
centre-of-mass system. The corresponding "equal-time" operation
is performed in II by vanishing one of the variables in the
1ight-front"’. As 1s well known, for the simplest scalar
chiral superfields one multiplet contains the fields with spin
0 and 1/2 (ref./lsf). Therefore, in the supersymmetric case
two—-particle equations of the quasipotential-type for particles
with spin O and 1/2 are written down in a common way. Moreover,
in the supersymmetric theories there are less divergences than
in the ordinry case’® .

In the present paper the two-particle relativistic equations,
for which the transition to the three-dimensional equations
is achieved by vanishing the relative energy in the center-of-
mass system’&ﬂ/, are generalized to the supersymmetric case.

As has been shown in ref.’?/, vanishing of the relative energy
(in the centre-of-mass system) is equivalent to the relativistic
invariant condition of Markov-Yukawa (pg=0) in the two-partic-—
le wave function, where p 1s a total momentum and q is a rela-
tive momentum. It is evident (see (A.1)) that the Markov-Yukawa
condition 1s invariant with respect to the supertransformations.
There are found the supersymmetric equations for the two-partic-
le wave function, where the quasipotential is found in a per-
turbative way from the quantum field theory. The interaction
between one scalar massless-and one massive superfield as well
as the case with self-interaction are considered. In the lowest
order in the coupling constant the gquasipotential and the cor-
responding equations are local as in the ordinary case’®,

In the case when the supersymmetry-breaking terms which give
a suitable mass—-splitting between bosons and fermions are
contained in the Lagrangian they are included in the quasipoten-
tial function. Then after eliminating the nondynamical compo-—
nent of the wave function by using the equations of motion, we
get the necessary mass-splitting in two-particle quasipotential
equations. Y,

Note that as has been shown in ref. , the operation of va-
nishing the relative energy (in the c.m. frame) is equivalent



to the gauge fixing procedure for the B-S amplitude with res-
pect to the special type of gauge transformations. The origin
of these gauge transformations is the nondefiniteness of the
position of the center-of-mass in the case of two interacting
particlesfg/ Then, the operation of vanishing the relative ti-
me or one of coordinates on the light—front is equivalent to
the transition from the B-S amplitude to quantities invariant
with respect to these transformations.

2. SUPERSYMMETRIC MARKOV-YUKAWA CONDITION

In papers’aa/ the nonphysical relative energy of the two-
particle system is removed by the Markov-Yukawa condition

1 2
P*a ¥ (P @) =5 (B -p5 - 1+ WD Y. Py = 0 (2.1)
in the two-particle wave function, Here
P=P1+Dg. Q=M3P1—'#1P2.

uy= @2 + m? —m§')/2pg. pe=(%-m% +m§)/2p2

(2.2)

are the total momentum and the relative momentum of the two-
particle system, and ¥ (P, 9) is the Fourier transform of the two-
particle Bethe-Salpeter (B-§8) amplitude

Yx,.35,) =<0|T@*x)S(x))Ip>.

In the centre-of-mass frame (p = (E, 0)) the condition (2.1)
is equivalent to the vanishing of the relative energy, i.e.,
9p = 0.

The general solution of eq. (2.1) is given by

Y@ Q= 5(Dq)‘l’p (@.
In the case of spinor equal masses, using the identity

pE-p) = (B, + )6, -B,).

where

= (vH# 1 = wy 2
B, =y ®Dp, . P, =08y )p,.,

y; (a=1, 2) are the Dirac matrices acting on an a-th particle,
we have the following condition on the two-particle B~S ampli-
tude

2

@l_ﬁa)l#(pl'pg‘:()‘ (2.3)

It may be pointed out that when m, #m, the condition (2.3) is
more complicated (see ref.’7/).

ThenA the following relativistic three-dimensional equa-
tion /™ (for scalar equal-mass particles)

GP2ra-wB)y (@ = [4%BGOVE, 0 k), () .

where V is a quasipotential, is proposed.

Consider the supersymmetric case. In the simplest case when
we are dealing with the scalar (real or complex) chiral super-
fields’ﬁj, it is convenient (because of the invariant with
respect to spatial reflections) to write the corresponding B-S
amplitude in the following form (see I, II):

'f’++(x1-‘2: 8y,05)

v T, 6,,8,)
(2,2 0,,8,) = LA (2.4)

v Ty xp 6,,05)
¥ (=, %56y 6)
where

6B o0 T@ (x1.0,) 0Py . 050 10> (@, B = +,-)
and 4f1¢_) are left (right) chiral superfields. Here, as in pa-
pers I and II, the two-component spinor formalism is used.

In the supersymmetric case the nonphysical relative energy
can be removed applying to the B-S amplitude (2.4) the constraint
(2.1), which is supersymmetric (see (A.1)). As will be shown
below, the constraint (2.1) in the equal-mass case can be found
from the following supersymmetric equation:

2
le(pl'el’ga)[d es]¢‘(plvp2|as.02) = (2.5)

= ng(pz l621 64)[d204]¢(p1|p2 uglvai) =0 »

where Kla) are the operator parts of the free field equations
for the {1rst and second particles, respectively, [d%4] is
given by (A.3). The explicit form of the operators K is given
by the formula (A.2). Substituting (A.2) into (2.5), we find


http:X""2:01.02

the following constraints on the components of the two-
particle B-S amplitude

Ay (2,0) - B (0,2) =0,
pZAY(0,0) - By (2,2) =0,
Ap(2,2) -p% By (0.0) = 0,
p2AY(2,0) -p3BY(0,2) =0,
p3ay 20y L) =0, (2.6)
B, ¥ (1,0) + By (1,2) =0,
AY(2,1) + B9 (0,1) =0,
¢,0(1,2) +p2BY(1,0) =0,
p2AY (0, 1) + BFy (1) =0.
Here by ¢ (2, b) (a, b= 0,1,2) (momentum variables p, q are omit-

ted) we denote the components of the supersymmetric B-S ampli-
tude (2.4), i.e.,

V@ Ppi 01,05) =¥ @ .pp:i 0.0) + (B,), ¢ (®,.pg: 1,0} +

+8,), ||bb(p1, Pgi 0 1) + oo + (0, €0 )(G, €6, )0 (.50 2,2)

where it should be taken into account that only chiral represen-
tations of the supergroup are considered. For the compa9tness
the constraints (2.6) are written down in terms of bispinor for-
malism and the following notation is used:

ookl _ k2
31 _— Plru ’ ﬂz-pgruv
0 o, o 0 0 0 9, 0 .
5, 0 0 0 0 0 0 o (2:7)
P H 1-,{»‘!)= =
g ! A ~ '
0 0 0 oy au 0 0 0
0 0 o 0 0 o, 0 0

Here op=1-2x2 is the identity matrix, 9y &J) (J=1,2,3)
are the Pauli matrices, oy =€0 c_l,e'siag. 1t can be checked

that the following identities for the matrices (2.7) are
satisfied:

A2=BE=,g

(A,Bl=0, (A T}1=[BT)]=0, $e-3)

1 p!
ity oyl =2g,0,

where II is the identity matrix and [, 1, {, 1} denote the matrix
commutator and anticommutator, respectively. From (2.6) it fol-
lows (after some algebraic operation where (2.8) are used) that

for any of the components of (x,, x5, 6y, fg) the constraints
C2.0), d.8ey

(le"P§)¢’(P1.P2-3~b)=(PEJ.)Ht’(P-Q-a'b)"0; (2.9)
(a,b =0,1,2)

are satisfied. It should be pointed out, that as in the ordinary
case /7 for the spin 1/2 particles m, £ my, because of the
supersymmetry in the constraints (2.6), the quasipotential must
be present.

The general solution of the constraint, eq. (2.9) or (2.6),
can be written in the form

v (@, q 3 b) =8(@a) ¥, (g 8 b), (2.10)

wherep and q are the total and relative momenta of the two-
particle system defined by (2.2).

It should be pointed out that there is a difference as com—
pared to the Logunov-Tavkhelidze approach (I, II) in which the
corresponding constraints are not invariant with respect to the
supertransformations. Consequently, the corresponding reference
frame in the superspace in which the constraints are applied
should be fixed (as well as in the fermionic sector). Here, the
constraints are invariant with respect to the supertransforma-
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tions, and consequently, they can be applied in an arbitrary
reference frame.

3. SUPERSYMMETRIC THREE-DIMENSIONAL EQUATION
FOR THE TWO-PARTICLE WAVE FUNCTION

For the two-particle wave function (2.7), the following super—
symmetric three-dimensional equation is proposed

2
IKI(P- Q. 611 es)ld 63]¢p (Q| 631 62 )+

4 (R . b5, 8)[3%,14y (0 0y, 09 = 1
S (V@ QK Oy, 0,) 800, &, 8, 0,),

where
dn - d*c[a®6, 1807018 0K) (3.2)

and [d° @) is given by (A.3).Eq. (3.1) is the sggfrsynnmtric gene-

ralization of the equations proposed in papers 8/ The super-
symmetric quasipotential vV, o k, 64...0,) can be determined from
the series in the coupling constant

V=V, + Vgt (3.3)
where
Vg ==Ty. Vp=-Tg + T, 0T, . (3.4)

T, is the k-th term of the supersymmetric transition amplitude,
~~denote integration over the intermediate spinor variables

g, and integration over intermediate momentum variables is im-
plied.

Substituting (A.2) into (3.1) and taking into account (2.6)
after integration over the intermediate spinor variables, we
find the following equations for the componenst of the super-
wave function:

Ay (2,0) + By (0, 2) - 2my (0,0) = -W(0, 0),

pfm,flco. 0) + By (2, 2) -2my (2, 0) =-W2,0),
Ay(2,2) + p’; By (0, 0) - 2my (0, 2) =— W(0, 2) ,

|

p2AY (2,00 +p5BY (0, 2 ~2my (2, 2) = -W(EZ, 2.,
B (1 0) - By (1,2) +2my (1, 0) =W O,

Bow(0,1) = Ag(2, 1) + 2my (0, 1) = w(, 1),

(3.5)
(ﬁl"'#z - 2m)¢' (1‘ 1) = W(l, 1) .
g,v (1,2 -p3BY(,0) +2my(1,2) =Wl 2,
%¢(&1)—P¥A¢W-0+2m¢@JJ=W@.D.
where the following notation
W(a, b)'_‘ IV(D- q, k; a, br asp 94) mhbpfki 63164) (3-6)

is introduced, and dQ is given by (3.2).
Eliminating the nondynamical components of the wave function
from the system of equations (3.5) we get

(pf + pg +2m2)y (0,0) =-mW(0, 0) -%—W(& 0) —%W(O. 2).,
@ + WYL =5 W10,
@e+ m)U© 1) =3-WO. 1,

(ﬁl + ﬁE o 21“)¢(1l 1) '=w(10 1) '

where the constraints (2.6) are used. We note that according
to (3.6) in the r.h.s. of egs. (3.7) the nondynamical components
are present. The last components can be eliminated from (3.7)
for any quasipotential.

- 1t should be pointed out that eqs. (3.5) as well as (3.7)
have a more simple form in the same fixed reference frame.
As such systems there can be considered the c.m.s. (p=0) in
which case egs. (3.7) have the form i

EQ}EQ ~32 —mg)wsg;o.m =

--BWE 0,0 -LWE q:20) - LWE. G 0.2),

EQEyD -ay®amy, @10 =5 WE 41,0,



EGEy® +ay®+m)y_(a:0.1) = WE 0,1, -

Elp-EG +y@)+ayWey ezmly (g1, D =¥E ¢1,1),

where E =p, and

W(E, g ab) =

= (4% V(E, g ki3 b6, 6,)0d% )0 [a% Jy (ki 0, 0,) .

The 1.h.s. of the first eq. (3.7) coincides with the corres-
ponding equation for scalar particles. It may be pointed out
that, as follows from (3.6), in the r.h.s. of any of the egs.
(3.5) all the components of ¢ (a, b) are present. The contents
of ¥(a,b) in W(a, b) depends on the explicit form of the quasi-
potential v, which can be found as a perturbative series (see
(3.3) and (3.4)). To find this dependence, we consider two
particular cases for equal-mass particles interacting via the
Lagrangians:

I. A massive scalar chiral superfield ®(x, 6),which interacts
with a massless chiral field y(x 6). In this case the interac-
tion Lagrangian has the following form:

im=gfatxifa® @ G 02y (x 0)+ e

+ [a% @ (x, 0)%x " (x, 0.
From (3.4) and (3.7), it follows that the nonzero elements of
the Born term of the quasipotential are given by

@1—03)2+ic

5@, - 6,)6®@, - ,) x
)
XB (pl +p2—ps"P4) ’ (3'9)
—iye exp[20; (0~ pg) fp) =
g (R 1Py EDS) el 52y, -
(pl-pﬂ) + 1e

v 0950, - 0,) x

X 3(4)(1)1 +92~D3-[)4).

Here 8®(@) 1is the Grassmann & —function /8/  Substituting
(3.9) into (3.6), we get the r.h.s. of egs. (3.5) in thila Born
approximation. After integration over 64 and 64, we obtain

4

w+_ L o 2 iﬂg— *= k;o.o i

1T 0.0 =gt Ry T 0.0)
4

WiT(, 0) = g2 SEAIN o1, 0),
(q-k)*+ ie P

4 -—
Wit - ger(—‘:—_'%%:(p; (k: 0, 1),
4
gy LEOOD yi= .5, 0y,
(q —-k)“+ f¢

4
g® [d_mk_)__.p;"(k;u. 2),

(q-k)2+ i€

Wi 0

!

Wi 0,2

d*k 5 (pk)
(q - k)’2 * ?c
d*k 5 (pk)
(- k)2+ ie

W,T, ) =g

I

[2(g - k)%, (& 0, 0) + 4 (k. 1, DI,

Wit D =g?f [y 2, 1) + @ - ©y) (0, 1),

4
Wr(L, 2) = g2 [ S KAPK) [Fm 1,2y 4 (- gt TR Y, 2,
L 14,3 gf(q_k)2+“&p( +(@ -k,

a*x 5 (o)

(a-K%+ ie Iy~ 2.2) +

+- -
it Balihebl (3.10)

He(g- ML E LD + @D 0]

Analogously one can find W: .From (3.10) it follows that the
first term of the quasipotential and egs. (3.5) are local.
Solutions to eqs. (3.5) can be found iteratively. From
(3.5) and (3.10) it follows that in any order in the coupling
constant the nondynamical auxiliary components of the wave
functions ¢ (2, a) W (a,2) (a = 0,1,2) can be expressed only in
terms of the dynamical components ¢({§,k) (§.k = 0.1 )
2. Self-interaction of massive chiral superfield. In this

case the interaction Lagrangian is given by

© . -gla%xira® @ @ on® +ra% @ x an’l. (3.11)

int



Then the Born term of the quasipotential is given by

+H,++ mg ©

v, -
(q-k)B-m24ie

52(0, -05)8%6, - 05)8%6;, -6 ),
(3.12)

ot g8 emloi@-pi) o

B =
(q= K% -m°+1¢ (6;-65)8" (62~ 84).

Inserting (3.12) into (3.6), we get the r.h.s. of egs. (3.5).
Because of a combersome structure of Wy, they are not written
here. It should be pointed out that in the second case,too,the
quasipotential in the lowest order in the coupling constant

and the corresponding equations are local and that the auxiliary
components of the wave function can be expressed only in terms
of its dynamical components.
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APPENDIX

Generators of the supertransformations for the left (right)

chiral superfields ®*(x, ) (0™ (x, §)) in the two-component
spinor formalism are given by

+ 3 = E 2
Sy =-t—sy 8 moios e 2000),
(A.1)
B ~x-L om0y, Bl wi-d.,
308 ~ 8 B 90 &

Then, it can be checked that the supersymmetric propagator is

ad 2(61 - fg) b exp (20, p )
D= _ o = ] @2 -n® +10)?,
c exp(20, 7 6,) 45%(@, - )

10,

where 8, b,c, d are the normalization comnstants and

B

D™ (x, ~x,:6,,0,) = <OIT@" (x,,0,)0",.0,)0>.

I1f we put
a=d=m, b=c= é—

we have

(D@, 0,,0,)(d%0)1K(®, 05,05) ==5(8, -63),

where
md2(0, -05) - %exp(zﬂlp@-z)
K =-D"'2 - (A.2)
—%-0!{)(251;62) m82(8_1 -52)
and
, a2 o 8 ) 0 (A.3)
[a°9] = 5 =
2= 5=
0 d*e 0 &§7(9)

Consequently, Q@ is the time-ordered Green function for the
equation

k(a0 =R, 0). (A.4)
It can be checked that the 1.h.s. of eq. (A.4) is equivalent to

the corresponding eguations written down by the spinor cova-
riant derivatives’® .
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3aiikon P.II, E2-83-49
CynepcHMMe TpHUHBIE KBASHIOTEHIHAJIbHEE YDABHEHHS .
Cynepcummerpuunoe oGobuenue ypasHenus TomopoBa

Paccumorpeno cynepcumMeTpHuHoe o6oblleHHe KBas3HIOTeHIHAIBHOTO
ypaBHenun B kainubposke Mapkosa-Wkapew. HaknagsiBas Ha ABYyX4YacTHU-
Hyio amniauTyny B=C cynepcuMMeTpHuHoe yenosHe Mapkosa~Hkanbl
nosydaeM  yoJiopHsa, pgawide rnepexon K ofHOBpeMeHHOH BOITHOBOH

dyukumn. Jhism 9Toil BONHOBOH GYHKUMH 3amHCAHO CYNEDPCHMME TPHUHOE
TPexMepHoe ypasHeude, Haiinen GOpPHOBCKHIT ulen KBas3HIOTEHLHAIA
AMA CaMoJleHCTRYIEero KHPallbHOTO CYNeprois, a Takke [Jif B3aHMo—
neiicteun ¢ OGeaMaACCOBBLIM KHpaJIbHBIM CYIIepriojieMm.

Pabora wunonnena B JlaBopaTopuu TeoperTHueckoil duaukd OHAW.

Mpenpuut O6beAMHEHHOTO WHCTUTYTa AQEPHHX HCCNenoBanwi . [lyGna 1983

Zaikov R.P. E2-83-49
Supersymmetric Quasipotential Equations. Supersymmetric
Generalization of the Todorov-Type Equations

A supersymmetric extension of the Todorov-type quasipoten-
tial equations is considered. Applying to the two-particle
Bethe-Salpeter amplitude the supersymmetric Markov-Yukawa
condition, the corresponding constraints are found which give
the transition to the one-time wave function. The correspon-
ding supersymmetric three-dimensional equations are written
down. The Born terms of the quasipotential in the case of a
self-interacting chiral superfield as well as of interaction
with one massless chiral superfield are given.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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