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I . INTRODUCTION 

In this second part we continue our treatment of the Casimir 
effect 111 with more physical questions. Whereas in ref/21 we 
have considered the general formalism, the perturbation theory 
and explicit expressions for the Casimir force up to second 
order of perturbation theory (all these results are more or less 
formal), we will investigate here these results more concretely. 
At first we will compare our closed expression for the photon 
Green function with corresponding Green functions of massless 
scalar field theory, repeat the calculation of the Casimir 
force in zeroth order, and then give an absolutely convergent 
expression in second order of perturbation theory. It turns 
out that this force as a directly measurable quantity (contrary 
to the energy) is finite without any renormalization. This is 
a very surprising result also if one has in mind that for loop 
diagrams the Z-factors of multiplicative renormalization 
cancel out and, maybe, the z -factor of the energy operator 
is essential one. It is, however, worthwile to note that the 
~11rf~':~ e~~!";;:,T :!~~=itj" i.:; liU~ ci. r~u~L~ y_uanr:ir:y, Out: its Cll
vergent part is independent of the distance a between two 
plates, so that it does not influence the Casimir force. 

Technically, we proceed in the following way. The investiga
tion of the photon Green function and the calculation of the 
Casimir force in zeroth order are done in x-space. A more 
complicated expression in second order of perturbation theory is 
transformed into momentum space, after a Wick rotation we 
obtain an absolutely convergent expression which is suited 
for further detailed investigations. We restrict ourselves here 
to the calculation of the Casimir force in the limit a .. ""· At 
first sight this seems to be a strange and unphysical limit. 
But if we take into account that the essential physical length 
in electrodynamics is the Compton wave length of the electron 
and compare it with the macroscopic values of distances availab
le in Casimir experiments, then it is reasonable to study 
such a 1 imi t. ._. ...... 

I -- -........ ~~ ......... '' 
:.·~ .t· !':.' : 

. "' ~-

2. GREEN FUNCTIONS WITH BOUNDARY CONDITIONS 

In ref.121 we have shown that in QED the standard perturba
tion theory remains also in the presence of boundary conditions, 
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we have only' to replace the usual free photon propagator D C:W by 
a more complicated one which satisfies the necessary boundary 
conditions 

D c (x - y) -+ 
8 D c (x, y) = D c (x - y) + D c (x, y) 

IW !-IV llV IW 
(2. I) 

with 

(2. 2) 

r = y p2- p2- p 2 + iE, a= 0, 1, 2, 
0 1 2 

Here PIW(p) 1s a projection operator defined in momentum space 
by 

for ""v f, 3 

PIW (p) = 

for 1-1 "' 0 or v= 3, 

lt 1s 1mportant and s1mpl1t1es all ca1cu1at1ons that 1n all 
our expression the contracted part 

(2.3) 

(2.4) 

of the additional term to the photon propagator appears. We 
will show here that 

c 
D (x- y) 

2 

is the propagator of a scalar massless field theory. (Note that 
this is not the case for the directly contracted modified 
photon propagator (2.1)) 

gf'Vsoc (x,y) = (4-(1-a))Dc (x-y) +2Dc(x,y). 
!-IV (2.6) 

We prove the following properties of the propagator which deter
mine it uniquely 

0 8 0 c (X, y) = 8 (X - y) (X, Y I;; 8) , (2.7a) 

for x ~;; S or y ~;; S • (2.7b) 

Let us first consider the boundary condition 

(2.8) 

It is easy to see that the first term cancels the second if we 
take into account the definition htj =expirla 1 -ajl· Second, we 
have to show that the differential equation (2.7a) is fulfilled. 
Because of oD c (x- y) = 8 (x- y)we have to show 

-
(x, y ~;; S) • 

This can be done is each region of the variables separately. 
Consider for instance the region x 3 2: a1 , Y 3 2: a 1 • Then we 
have 

- c 
oD (x, y) -i( a r2) - -P p + X 2r a 

becau-se of 

a 2 2 2 2 2 2 2 
-qaq +r =-qo + ql +q2 +qo -q1 -q2 "' 0 · 
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It is interesting to remark that our Green function represents 
three in principle separately defined Green functions: the 
first defined to the left of the left plate, the second one 
defined in between the two plates, and the third one defined to 
the right of the right plate. From this point of view it is 
very surprising that such a compact expression as eq. (2.2) 
does exist • 

~ow it is possible to write down other representations of 
the ~calar propagator. The most useful, besides our momentum 
space representation,is the ¥-space representation obtained 
by the reflection principle. In this manner the following 
representation can be received 

3 o$Ys.$&1 

a 1 S xa 

a 1 :S Ys 
Ofor all other regions 

TT-- - ! - _ I _ I - . - 1 ~ _ _ _. • . • • . 1 
.._..,._,_,._ ~o Q'"'"" fGQ-6lf, • O' •t• 111.1.., .l.C.}JI.t:QCU\...dL.LUU .Lb Vt:!LJ ~U.l.Lt:!U 

for discussion of the x-space behaviour and the regularity 
structure in this space. On the other hand, our momentum space 
representation as a closed representation is very suited for 
Feynman diagram calculations. Such calculations would be very 
complicated if we would apply such infinite sums. 

Let us add some remarks concerning the connection of the 
vector and scalar theory. In all calculations (see ref. 121 

eqs. (3.19)) the vector propagator turns finally to the scalar 
propagator. Thereby that part of the propagator which corres
ponds to the full space without boundary conditions drops out. 
In this sense the determination of the Casimir force for the 
electromagnetic field reduces to the corresponding scalar 
problem, and there appears the factor 2 corresponding to the 
two degrees of freedom of the electromagnetic field. 

3. FINITENESS OF THE CASIMIR FORCE 

Here we will show that the Casimir force is finite without 
any subtractions up to second order of perturbation theory. 
In zeroth order this will be shown by explicit calculations. 
In second order we first show that the usual divergent renorma-

4 

lization constants compensate each other, later on we transform 
the full expression in momentum space where it appears finally 
as an absolutely convergent integral expression. 

a) Casimir Force in Zeroth Order of Perturbation Theory 

. . . h (d . d . f 121 ) 1. . Our start1ng po1nt 1s t e er1ve 1n re . exp 1c1t ex-
pression for the energy per unit surface element 

Using the representation of the Green function (2.8) we have 

(3.2) 

00 

= i (a 1- a0 ) "1 
0 

o;f (O; -8 + 2an) - 2i-~ dx 3 o;P(O; 2x 3). 

Here we have used 

a1 
( dx 

3 
I. D c (0; 2x 

3 
+ 2an + 8) 

& 'II. pp 
0 

a- independent terms are dropped everywhere. The limit 8-+ 0 
can be performed, so that we are able to determine the force 
to 

d 
F(a) = - - E(a) 

da 

d c 
= - - a I. i D PP ( 0; 2an) 

cia n"'O 
(3. 3) 

This is the well-known result and shows that the Casimir force 
is finite without any subtractions. Note that this is obviously 
not the case for other quantities. 
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b) Compensation of Divergences in Second Order 
of Perturbation Theory 

It is a more difficult problem to show that also the expres
sion for the Casimir force up to second order of perturbation 
theory 

F 

is a finite quantity. For completeness we have inciuded the 
expression of zeroth order which was already discussed. At 
first we remark: the only region where divergences may appear 
(after the limit 8 ... O) is the neighbourhood of the point 
~2 =0 because just there the polarization operator as well as 

the photon Green function are singular. More correctly we 
have singularities at the point ~ = 0 (we use time-ordered 
Green functions which have some arbitrariness at this point) 
and on the light-cone. We will show that the singularities at 
~ = 0 cancel out for the Casimir force. From standard pertur
bation theory it is well known that the polarization operator 
can be represented by 

(3.5) 

whereby A is a divergent constant and~ ren a well defined dis
tribution. For the renormalized polarization operator there 
exists a similar expression 1t ren = d8(~ 2) + 1\'. Here d is a finite 
constant which depends on the renormalization conditions. For 
our purpose it is sufficient to take the ansatz 

and insert it into the expression (3.4) for the Casimir force. 
Then we see: 

6 

I. The second TI -containing term vanishes 

a ...-- + 
~p 

2. Because of 

4 -c a a -c ) f d z D (z a ; z 
3 

, x 
3

) -. - -.- D ( z a ; z 3 , x 3 + 11 
az,.,. az"' (3. 6) 

- c -D (O,x 3 , x 3 +77) 

the third n -depending term takes the form 

Therefore the remaining contributions compensate each other, so 
that the typical perturbation theoretical divergences drop 
out. Of course, also the similar finite terms d8(~) do not 
contribute. That means: Up to second order of perturbation 
theory the Casimir force is not influenced bv the renormaliza
tion procedure, renormalization conditions play no role. 

c) Finiteness of the Casimir Force in Second Order 
of Perturbation Theory 

The finiteness of eq. (3.4) can be shown in x -space as well 
as in momentum space. In x-space an essential point is the 
discussion of the test function-like properties of 

d 00 - c - fdx
3

D (~a; x 3 +~3 • x
3 

+8). We will, however, solve this 
da-oo 

problem in momentum space. Here we can see that all expressions 
are finite, we arrive at absolutely convergent integrals which 
are very suited for further investigations. The standard Fourier 
transform leads us to the following expression 

F =-~E 
da 

E = 
1 ----{1 - cosra. cosk 3a) -

(sinra) 2 

(3.7) 
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2k~ 
-(-- + 

k2f' 2 
3 

4k2f'2 0 ) 1 -if' a 
(k2 _f'2)2 f'sinf'a (e -cosk3 a)] + 

8 

d
4 ....., 

+ r-k __ n' 
(277)4 

-
(k 2) -2k~r 2 

k:- r2 

1 ( -if'a 
-- e 

r sinf'a 

T\ (k 2) r d 4x e -ikx 1\ (x 2)' 
-, n (k 2 ) 

- eosk 3a), 

,... 
2-·n Ck 2 ) 
ak 2 

(3. 8) 

(3. 9) 

The calculation is lengthy but without any difficulties. In 
the Appendix we list some useful integral formulae which simpli
fy the calculations. From this expression we subtract the 
a -independent divergent constant 

E div =-

,... 
r d4 k TI (k 2 ) r 4ik 5 ...!. + sika r 2 

(217)4 k;-r2 r (k~-r2)2 

rl4 k 

(277) 4 

,..., 
ii . 9. 
II ~K ) 

1 

r 

_l] 
r 

without any change of the Casimir force. The result is 

,..,. 2 

I' "l 1 A\ 
\.J• 1VJ 

F = - .A_ I f d 4k 7f (k 2) [ ~ 
da (2rr ) 4 k 2- r 2 

8 

_L-(1 - cosra. cosk 3 a) -
(sinf' a )2 

2k 2 

- ( + 
4k~f'2 ) 1 ( ila 

(ki- ['2) 2 r sinia e - cosk3a)] + 
k~ -r2 

r d 4 k n' 2 -2k~r 2 

+ -- " (k ) ---
(217 )4 k 2_12 

3 

1 ---- ( e if' a 
r sima - cosk 3a) I (3. II) 

In comparison w.p;h eq_. (3.9) the sign of some exponentials has 
been changed: e-1 a,. e ,ra . This however, is an essential point 

because according to our prescription r = /k2- k2- k2 + if 
0 1 2 

8 

·~ 

' 

should have a positive imaginary part. The new expression allows 
now an analytical continuation into the upper half-plane 

r .... iy, y = v k 2 + k2 + k 2 
4 1 2 ' 

- 2 2 2 2 2 ) k 0 = ik 4 ' k E = k 1 + k 2 + k 8 + k 4 ' kE = (k 4 , k 1 , k2 ' k 3 

so that (3. I I) takes the form 

d ct
4

kE ,...,n 2 2ak~ 1 
F = -- 1i f -- (-k E ) [ -- ---- (1 - chy a cosk 3a) -

da (2rr) 4 k ~ (shya) 2 

2 2 
2k~ 4k4y ) __ 1_(

6
-ya _ cosk

3
a)] 

- ( - 2- - (k 2 ) 2 y shya + (3. 12) 

kE E 

+ i 
d4k E 

r -----4 
(2rr) 

-, n <-k2) 2k~y2 
E ------

k2 
E 

If we take into account ,..., .,.. 
I\ (0) = 0, 

-:;:: " ::; 
I 1\ ~-ooJ I < ~k- ) 

E 

1 -y ---(e a 
Y shya - cosk3a) I . 

o llnlte, 

then it is obvious that (3. 12) is an absolutely convergent ex
pression. This proves finally the finiteness of the Casimir 
force in second order of perturbation theory. 

4. SECOND-ORDER CORRECTIONS TO THE CASIMIR FORCE 
IN THE LIMIT a -> oo 

The starting point for further considerations is the expres
sion (3. 12) for the Casimir force. Its detailed investigation 
needs explicit calculations. Here we will determine the leading 
correction terms in the limit a_, oo only. At first sight it 
seems to be very strange to calculate such a useless quantity 
because one measures the Casimir force for small distances, 
otherwise it is impossible to measure anything. If we, however, 
compare the experimentally realized distance of order 1~m with 
a characteristic quantity of electrodynamics like the Compton 
wave length of the electron then the experimentally realized 
distances are very large as compared to this quantity. 

For practical calculations of the a_, oo asyrnptotics there 
are several possibilities. We choose the most simple method 
which consists in successive approximation of eq. (3. 12). 
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At first we remark, that each expression contains the fac
tor e-Ya.This gives for y f. 0 an exponentially decreasing part. 
Therefore the region y "'0 only could lead to an asymptotic 
power behaviour. 

Second we see that in our expression (3.12) it is possible 
to perform the k 3 -integration in the complex ka -plane, we 
close the original integration path -co~ k3 <;;.. oo in the upper 
or lower half-plane in dependence on the convergence of the 
corresponding infinite half-circles (the coskaa -term must be 

1 ik3 a -tk3 a 
decomposed as cosk3 a = y(e + e ) • Thereby we have to 
respect the singularit1es in the complex plane. There are 

poles at k 3 = ± iy: 1 
k2 + y 2 

3 

1 
double poles at ka= ± iy: 

(k ~ + y2) 2 

cuts -y 2 - k 2 > 4m 2 • a- e 

So the original integral 1s represented by integrals over paths 
around the singularities in the complex plane. By direct calcu
lation it can be checked that we have no contributions from 
the poles. The contributions of the simple poles compensate 
parh nthPr th~t rl~r~~tl~r rnrr~~~0~d~ t0 t~~ ~~~~~ll~ti~~ ~f 

terms shown in section 3b. The explicit considerations of 
the double poles will be omitted here. So, there remain the 
cut-contributions near y"' 0. At y • 0 the cut starts at k 3 = 
= ± 2im e. For the terms containing the exponential function 
exp ±ik 3a coming from the term cosk3a this leads again to an 
exponentially decreasing term. So it is clear: Power-type 
contributions should be expected from terms not containing the 
cosk 3a factor with the restricted integration region fdk3 ( d3kE , 

ko 
k0 : k~ +k~+kf=r2.::;o.Here the followinp, approximations areal-

lowed 

ki =k; +y2 k~, F(y)= a1ya1 +a2ya2+ ..... a1yal (al::;a2~ ... ). 

Because of roo dx A -ax -A-1 x e -a the leading term for a-+ oo is de-
0 

termined by the smallest power of x. Taking these leading terms 
only we get 

F(a) (4. I) 

10 

x(- 1 2k! 
--"--- + --

1 -ya 
---e ) , (4. I) 

(shya) 2 q 2 yshya 

For the explicit evaluation of this expression we introduce 
polar coordinates k 4 = ycosO , k 1= ysinOsin<P, k 2 = ysinOcos<P • 
d3kE=y2sin0d0d</ldy, integrate over 7he angles, use the sub
stitution ya = x, and thus, the result 1s 

F(a) d 

da 

oo 3 -x 4 
.!. _!_ r dx[~-..L.J-
a (2rr)4 0 shx (shx) 

d 

da 

(4. 2) 

N 

Because of n (0) .. 0 it is possible to transform the integral 
over the discontinuity to an integral over the polarization 
operator itself 

FYa) -
d 1 00 n (-q2) 

!!.. i I R I f do . 
da a4 4 4 0 q2 

(4. 3) 

At this place we have to take into account the explicit expres
sion for the polarization operator of standard perturbation 
theory 131 

n (z - z ') = - ie 2 Tr[ y S (z - z' )y v S (z '- z)] , 
~v ~ 

n (x) 
~v 

(4.4) 
,... 

n (LV (k) 

2 1 k 2 
e ( dX X ( 1 - X) ln (1 - X (1 - X) - ) 

(277) 2 o m~ 
,..J 

1l (0) 0. 
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For the integrated polarization operator we obtain 
,v 

00 n (- q2 ) ie 2 1 .., dq q 2 
( dq ___ :..._;_ = -- ( dX X (1 - X) ( - ln(l + X (1 - X) - ) 

q 2 (217) 2 o o q 2 m~ 

ie2 

(217) 2 
(4. 5) 

So as a final result we receive 

F(a) = - 1~':.: (l - --~--- _!.:.. ) . 
240a4 4-16 rr am e &-+00 

Here we have included also the zeroth order. The correction 
term seems to be too small for an experimental verification 

(4. 6) 

at the present time and in near future. Remark that this 
results can be interpreted as an example for an improved 
convergence of perturbation theory. 

APPENDIX 

Here we will list some formulae that facilitate the Fourier 
transform of eq. (3.4). Taking into account the definitions 
(2.4), (2.5), (2.2), the explicit calculation yields 

-c a t:J: 0 (I; ; I; + X , X ) 
.,., a 3 3 3 

d
3 q2 2 

( _q_ (l) (I; + X -a . ) + if (l + l + q 2 ) ) X 
(2rr)3 3 3 I l2 

12 

= f 
d 3q 

8
ta ~:a iqo2 (.!._ tila -a _1: I 1 'a.. I /: I) 1 J "'3 h-+ at -aJ - .. 3 e !J 

(2n-)s 2r r 

The matrix multiplication gives 

1 (cosk
3

a - e -tra ) , 
1 sinra 
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6opAar H., Po6awHK A. E2-83-489 
3~eKT Ka3HMHpa c TO~KH 3PeHHA KaaHToaoH TeopHH nonA. KoHe~HOCT~ cHnw 
Ka3HMHpa ao BTOPOM nOPRAKe no TBOP~H a03My~eHHH 

HccneAyeTcA ¢opManbHOe awpa*eHHe AnR cHnw Ka3HMHpa ao aTopoM nopRAKe 
no TeopHH ao3My~eHHH, awaeAeHHoe a npeAWAY~eH pa6oTe 121• 0oKa3aHo, ~To o6w~ 
HWe B TeopHH a03M~eHHH yn~Tpa~HoneToawe paCXOAHMOCTH H COOTaeTCTBY~He 
Z-~aKTOpW COKpa~a~TCR TaK 1 ~TO a 3TOM npH6nH*eHHH He Tpe6yeTCR nepeHOPMH
POBKH. 3a&HC~He OT paCCTORHHA /a/ ~neHW a COOTBeTCTay~eM awpa*eHHH AnR 
3HeprHH BaKyyMa KOHe~HW, TaK ~TO CHna Ka3HMHpa KaK HenocpeACTaeHHO H3Me
pAeMaR aenH~HHa TaK*e KOHe~Ha. OnpeAenReTcR cHna Ka3HMHpa a npeAene a ••, 
KOTOPWH TOnbKO H HMeeT ~H3H~eCKHH CMWCn. 

Pa6oTa awnonHeHa a fla6opaTopHH TeopeTH~ecKoH ~H3HKH OH~H . 

Bordag H., Robaschlk D. E2-83-489 
Quantum Field Theoretic Treatment of the Casimir Effect. Finiteness 
of the Casimir Force up to Second Order of Perturbation Theory 

Here we Investigate the formal expression for the Casimir force up to 
order e 2 derived In a foregoing paper 121• At first we show that the usual 
perturbation theoretical UV-dlvergences and the corresponding Z-factors 
cancel so that there Is no renormallzatlon In this approximation . Moreover 
It turns out that the distance (a) dependent parts of suitable vacu.um 
energy expressions are finite, so that the Casimir force as directly mea
surable quantity Is also finite. Finally we determine the Casimir force 
In the physical limit ..... 

The Investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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