


1. INTRODUCTION
In this second part we continue our treatment of the Casimir
effect’! with more physical questions. Whereas in ref.’2/ we
have considered the general formalism, the perturbation theory
and explicit expressions for the Casimir force up to second
order of perturbation theory (all these results are more or less
formal), we will investigate here these results more concretely.
At first we will compare our closed expression for the photon
Green function with corresponding Green functions of massless
scalar field theory, repeat the calculation of the Casimir
force in zeroth order, and then give an absolutely convergent
expression in second order of perturbation theory. It turns
out that this force as a directly measurable quantity (contrary
to the energy) is finite without any renormalization. This is
a very surprising result also if one has in mind that for loop
diagrams the Z-factors of multiplicative renormalization
cancel out and, maybe, the Z-factor of the energy operator
is essential one. It is, however, worthwile to note that the
surface anersw denzity 15 not a {inile yuanticy, but 1ts di-
vergent part is independent of the distance a between two
plates, so that it does not influence the Casimir force.
Technically, we proceed in the following way. The investiga-
tion of the photon Green function and the calculation of the
Casimir force in zeroth order are done in X-space. A more
complicated expression in second order of perturbation theory is
transformed into momentum space, after a Wick rotation we
obtain an absolutely convergent expression which is suited
for further detailed investigations. We restrict ourselves here
to the calculation of the Casimir force in the limit a-se. At
first sight this seems to be a strange and unphysical limit.
But if we take into account that the essential physical length
in electrodynamics is the Compton wave length of the electron
and compare it with the macroscopic values of distances availab-
le in Casimir experiments, then it is reasonable to study
such a limit.
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2. GREEN FUNCTIONS WITH BOUNDARY CONDITIONS .

In ref.”?” we have shown that in QED the standard perturba-
tion theory remains also in the presence of boundary conditions,
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we have only to replace the usual free photon propagator D',’wby
a more complicated one which satisfies the necessary boundary
conditions

DL(x—y) - ", (%, ¥) —D L (x-y) + D¢ o (%0 Y) (2.1)
with
- adp i ipg (x =) il|xg~a,l iClyg~a;l
c ~i ipg (x—y) illxg—a;t _; Y3=aj
D#y(er) f—" 3 2F P’J.V (p)e € h]] € ’
(2.2)
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Here PMV(D) is a prOJectlon operator defined in momentum space
by

p,pP
uP v
wo - - for pv £3 (2.3)

Py @ =
0 for pu=0 or v=3,

It 1s 1mportant and simplifies all calculations that in all
our expression the contracted part

D°(x, y) = % w & ¥) =
(2.4)
L d3p —i eipa(;—y)aeil—'[xs-ai( -1 eir Iys —ajl
= =2 i
(2m?3 er

of the additional term to the photon propagator appears. We
will show here that

5D°(x, y) = D°(x-y) + D (x,y) ,
2.5)
Dc( ) d4p eip(x~y) ( dsp i eipa(x—y)aﬂl‘lxa-yaI
X~y) = = , — .
@m*t -pf - ie 2m)® 2l

f

is the propagator of a scalar massless field theory. (Note that
this is not the case for the directly contracted modified
photon propagator (2.1))

gh ®D2 (x,y) = 4~ (1-a)D® (x~y) + 2D°(x, y) . (2.6)

We prove the following properties of the propagator which deter-
mine it uniquely.

o°DC(x,y) =8(x-y) (x¥ ES) , (2.7a)

*D°(x,y) =0 for x€S8 or y<S. (2.7b)

Let us first consider the boundary condition

5 ¢ a3y i ipg (x=y)" +1l 2, =y o
D" (x,y)] = f SR e k=78l
1372y (@m)® or
(2.8)
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It is easy to see that the first term cancels the second if we
take into account the definition hy -expxrﬂal—-ajl Second, we
have to show that the differential equation (2.7a) is fulfilled.
Because of oD®(x~y) =8(x -~ y)we have to show

ob°(xy) =0 (xy cS).
This can be done is each region of the variables separately.

Consider for instance the region Xg22, Yg 23, . Then we
have

a
lp (x~y)
oD’(x,y) = [P a% @
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because of

a 2 2 2 2 2 2 2
=09 +I'" =-qy+q7 +q, +a'j-q; -a), =0.



It is interesting to remark that our Green function represents
three in principle separately defined Green functions: the
first defined to the left of the left plate, the second one
defined in between the two plates, and the third one defined to
the right of the right plate. From this point of view it is
very surprising that such a compact expression as eq. (2.2)
does exist .

Now it is possible to write down other representations of
the scalar propagator. The most useful, besides our momentum
space representation,is the ZX-space representation obtained
by the reflection principle. In this manner the following
representation can be received
1 Xq <38

Dc(xa-ya;xa—ys) -Dc(xa-~ya;1;3+y3 -2ao) for 3="0
Y3 < 8

c »
e n}_lb (x ~Y, Xs-¥3+2&n)—D (Xa-%.xs+ys+2an)] (2.9)
Prxy) = 9 3 <3558y
for
3 0<¥g<ay
d41<xg

8y1<Vyg

D®(Xg~YqiXg~¥g) =~ D°(X; ~ygiXg+yq~2a,) for_

Ofor all other regioms

L L PN

HCYS 15 a = ,g ~a. i, .o\g. Tuis icyica:uLaLluu is veLry sulied
for dlscu551on o% the x- space behaviour and the regularity
structure in this space. On the other hand, our momentum space
representation as a closed representation is very suited for
Feynman diagram calculations. Such calculations would be very
complicated if we would apply such infinite sums.

Let us add some remarks concerning the connection of the
vector and scalar theory. In all calculations (see ref.’2/
eqs. (3.19)) the vector propagator turns finally to the scalar
propagator. Thereby that part of the propagator which corres-
ponds to the full space without boundary conditions drops out.
In this sense the determination of the Casimir force for the
electromagnetic field reduces to the corresponding scalar
problem, and there appears the factor 2 corresponding to the
two degrees of freedom of the electromagnetic field.

3. FINITENESS OF THE CASIMIR FORCE

Here we will show that the Casimir force is finite without
any subtractions up to second order of perturbation theory.
In zeroth order this will be shown by explicit calculationms.
In second order we first show that the usual divergent renorma-
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lization constants compensate each other, later on we transform
the full expression in momentum space where it appears finally
as an absolutely convergent integral expression.

a) Casimir Force in Zeroth Order of Perturbation Theory

. . . . . 2/ ..
OQur starting point is the(derived in ref. ) explicit ex-—
pression for the -energy per unit surface element

E@) = lim [ dx 31D, (0i Xg, X g+ 8), Sp‘;(x,y) =-9xy5°(X-y)- 3.1

40 oo

Using the representation of the Green function (2.8) we have

2o
Ea(a)=-i { dx (o2x +8 - 2a)-1(de (o,2x+8-—2a)+
-0 3 'rx a1
P ¢ ¢ pan + )] (3.2)
+1‘i’dx3[n2£0Dpp(0,-6+2an)-%Dpp(o.2x3+ an +9)] =

00

=1(a-a) 2 D (0 8+2an)—21fdx3D (0;2x3).

Here we have used

ll 00
[ C
’ = ;2 ’
‘f dxsg.t Dpp(0.2x3+2a.n+8) -destp(O x3)
0

a-independent terms are dropped everywhere. The limit 5.0
can be performed, so that we are able to determine the force
to

d d ‘n% (o
F(a) =-E;E(a) =-Ea—anz£oxbpp(0.2an)- (3.3)

This is the well-known result and shows that the Casimir force
is finite without any subtractions. Note that this is obviously
not the case for other quantities.,



b) Compénsation of Divergences in Second Order
of Perturbation Theory

It is a more difficult problem to show that also the expres-
sion for the Casimir force up to second order of perturbation
theory

) ) .2
. d 4 . 2., d Jd ;2 2., d
F o= dim (= <991 7 aters@ =M e o, (-2 9 2 M (¢*1-2
510 faete R &, &P Fa
o0 - : %0 (3.4)
x [ ax B, g rngag+d)= (a7 €50y [ a2 [ axyx
xsc(z’;z' X +8)i~é—ac(§+z'+n i€ +vzn, X+ 1, +8) .}
a 3’73 & agk a a a'>3 3’738 3 =0

u

is a finite quantity. For completeness we have included the
expression of zeroth order which was already discussed. At
first we remark: the only region where divergences may appear
(after the limit 8-+0) is the neighbourhood of the point
£2 = 0 because just there the polarization operator as well as
the photon Green function are singular. More correctly we
have singularities at the point £ = O (we use time-ordered
Green functions which have some arbitrariness at this point)
and on the light-cone. We will show that the singularities at
£ = 0 cancel out for the Casimir force. From standard pertur-
bation theory it is well known that the polarization operator
can be represented by

Te? = asE) +M ™D, 4 (3.5)

whereby A is a divergent constant and N '®® a well defined dis-
tribution. For the renormalized polarization operator there
exists a similar expression TV " =a5¢? + N .Here dis a finite
constant which depends on the renormalization conditions. For
our purpose it is sufficient to take the ansatz

&2y - as(8)

and insert it into the expression (3.4) for the Casimir force.
Then we see:
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1. The second T\ -containing term vanishes

. . "2
(-9 9 29 1£2a58(¢) =0.
&, %P x*

2. Because of

,xs),ﬁ_ —i—ﬁc(za;z y X, +7) =

f&zﬁca 14
a az” az” 3 3 (3-6)
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= —SC(O,xs.x3+n)

the third TV -depending term takes the form

ra“an(f)a&, r ax, B, € v x g g+ D).

Therefore the remaining contributions compensate each other, so
that the typical perturbation theoretical divergences drop
out. Of course, also the similar finite terms d&(£) do not
contribute. That means: Up to second order of perturbation
theory the Casimir force is not influenced bv the renormaliza-
tion procedure, renormalization conditions play no role.

c) Finiteness of the Casimir Force in Second Order
of Perturbation Theory

The finiteness of eq. (3.4) can be shown in x -space as well
as in momentum space. In x-space an essential point is the
discussion of the test function-like properties of

g f dx Bc(f 1 X +&q, Xo +8). We will, however, solve this
da_m3 a’®™ 3 >3' "3

problem in momentum space. Here we can see that all expressions
are finite, we arrive at absolutely convergent integrals which
are very suited for further investigations. The standard Fourier
transform leads us to the following expression

F =-—E,
- (3.7)
4, o 2
E = [ A7k T k2 [ 2k & 1 (1 - cosl'a. coskga) -
()4 k2-T'2 (sinl'a) 2



2k &2 % -ir

0 + 0 1 (e ne - coskga)] +
k2r2 (kg -T3®% I'sinla
3

4 ~ T 2.2 .

. d k 1‘ '(k2) kol __E___.(e'*ra - coskga), (3.8)
(em* kg-l‘e I sinl'a

T\ (k?) = [ d%x e”lkX N x?), T"(k2) = ﬁ%"n(kg) ’ (3.9)

The calculation is lengthy but without any difficulties. In

the Appendix we 1list some useful integral formulae which simpli-
fy the calculations. From this expression we subtract the

a ~independent divergent constant

4 T 4ik? | sik2rz
By, ==& —0_ L, 0 1;._
@m* k¢-r2 I @f.r®p T

~ 2.2
atx :."’.9‘ dikgl'® 1

) I TR Nal\
_ ] \K ) ————— — 22
(217)4 kg-r‘g F \ 7
without any change of the Casimir force. The result is
4 T k2
Foaod g @k T2y 20 & (1 ~cosla -cosk,a) -
da = (@m)¢ kg-r2 (sinl"a)?
2k ® 4k 2 i
- . 0o 1 (e'Fa— coskza)] +
k2 -I? (k2-1?)2 I" sinl"a
3 3
4, T -2k212
o TV w?) 20 1 (e coska)l . (3.11)

@r)t k2-T? T sinla

In comparison w_};h eq. (3.9) the sign of some exponentials has
been changed: e ®,e il'2 ,This however, is an essential point

because according to our prescriptionTl =\/kg— k12 - k22 + e

should have a positive imaginary part. The new expression allows
now an analytical continuation into the upper half-plane

i - 2, .2 2
Iy, y= VEG+ K+ k5,

. 2 _ .2 .2 2 . .2 _
k0-1k4, kE_k1+k2+k3+k4,kE—(k4,k1,k2,k3)

so that (3.11) takes the form

4 ~ 2
d'k Rak
F =.._(1_{jf E n(_kg)[ 4%4 _._1__..__.(]_ _chyacoskaa) -

da @m)t k%  (shya)?

- re (3.12)
k%} (k2)? yshya(e cosk ga)l  +
A4k, % 2
E Y -
+1 [ T -k 2) 4 1 (e ya - coskgqa)} .
@) k%2 yshya

If we take into account
~ ~4
™ ” o A
") =0, [ 1V (=o0) | < \k;l) , O lnite,

then it is obvious that (3.12) is an absolutely convergent ex-—
pression. This proves finally the finiteness of the Casimir
force in second order of perturbation theory.

4, SECOND-ORDER CORRECTIONS TO THE CASIMIR FORCE

IN THE LIMIT a - o

The starting point for further considerations is the expres-—
sion (3.12) for the Casimir force. Its detailed investigation
needs explicit calculations. Here we will determine the leading
correction terms in the limit a - only. At first sight it
seems to be very strange to calculate such a useless quantity
because one measures the Casimir force for small distances,
otherwise it is impossible to measure anything. If we, however,
compare the experimentally realized distance of order lum with
a characteristic quantity of electrodynamics like the Compton
wave length of the electron then the experimentally realized
distances are very large as compared to this quantity.

For practical calculations of the a-+ o« asymptotics there
are several possibilities. We choose the most simple method
which consists in successive approximation of eq. (3.12).



At first we remark, that each expression contains the fac-
tor e Y&This gives for y# 0 an exponentially decreasing part.
Therefore the region y =0 only could lead to an asymptotic
power behaviour.

Second we see that in our expression (3.12) it is possible
to perform the kg-integration in the complex kgj-plane, we
close the original integration path —wg kg<~ in the upper
or lower half-plane in dependence on the convergence of the
corresponding infinite half-circles (the coskga —term must be
ik ~ik
decomposed as coskga = L™ 1 e7*8%) . Thereby we have to
respect the singularitles in the complex plane. There are

1

2+y2’
ks+y
1
(k2 +y?)2 '

poles at kg = tiy:
double poles at kg=1tiy:

cuts -y 2 -k2> 4m?,
3 e

So the original integral is represented by integrals over paths

around the singularities in the complex plane. By direct calcu-

lation it can be checked that we have no contributions from

the poles. The contributions of the simple poles compensate

terms shown in section 3b. The explicit considerations of

the double poles will be omitted here. So, there remain the

cut-contributions near y=0,At y= O the cut starts at kg =

=t 2imy. For the terms containing the exponential function

exp tikga coming from the term cosksa this leads again to an

exponentially decreasing term. So it is clear: Power-type

contributions should be expected from terms not containing the

coskga factor with the restricted integration region f[dkg4 [ d3kE ,
kg

kg: ki +ki~'+k22=y255.Here the following approximations are al-

lowed

2 2 2 2 a a a
ki =kz+y“=k;, FO)=a,y "+a,y Z+..~ ayy Y a;<a

1 < e )

2

Because of dx xPe 81 a1 tpe leading term for @+ is de-

[}
termined by the smallest power of x. Taking these leading terms
only we get

d3 kg

F@) -~ -Li%f faaMa-i0%) -Ma+10®) x4 4,
aso0 da @m* 2m, :

10

2ak ? 2k° -
4 1 + ; 1 eya)

, aq=1ik_. 4.1

x (-
q® (shya)® q® yshya

For the explicit evaluation of this expression we introduce

polar coordinates k4=ycos¢9 » k ;=ysinfsing , kg =ysinfcose »

d3kE=y2sin0d0d¢dy , 1lntegrate over 1.:he angles, use the sub-

stitution ya =x, and thus, the result is

~ ~
o - 4
F(a) d 1 °°d “(qg-ie)-“(q2+i¢) 4 1 fdx[xse rx J'
@ ance da ad om, d ) 3 @nt, shx (shy)
~ ~
oo . : 2 i
SRR S S A S T Mazeio-Navio . (4.2)
da at 8 4 2m,_ 9
o~

Because of N=o0 it is possible to transform the integral
over the discontinuity to an integral over the polarization
operator itself

-~
00 2
ra - -l g qun('Q). 4.3)
as0 da at 4 0 q®

At this place we have to take into account the explicit expres-—
sion for the polarization operator of standard perturbation

theory /8/

n uv(z -2z = —ie? Tr[yu Sz - z%)y, Sz~ )1,

a* ipx T
P ipx
T‘W(x) = [ Y e T‘#V ® .
~ (4.4)
2 2
M, -k, -5, e,
~ . kz
Ma?y - -2 [ axx(1-% In(t-x(1-x =),
@* o m?
o~
T © =0
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For the integrated polarization operator we obtain

~

oo 2 i 2 2

f dqn -q ) 1 fdxx(l-x) f—diln(1+ x(l—x)-——-—)
2 @2 o o q® m?

ie? 1 3r2

= (217)2 -m—e XTI 4.5)
So as a final result we receive
2 3 e?

F@a) = - fien a- ). (4.6)

a-oco 2402t 4.167 am,

Here we have included also the zeroth order. The correction
term seems to be too small for an experimental verification

at the present time and in near future. Remark that this
results can be interpreted as an example for an improved
convergence of perturbation theory.

APPENDIX

Here we will list some formulae that facilitate the Fourier
transform of eq. (3.4). Taking into account the definitions
(2.4), (2.5), (2.2), the explicit calculation yields
’ a

' il[€g~ayi iClxgal 195¢
3 9 =c,p . d3q icg=agl s"‘j
—— e———D (‘fa'f‘f' xs) =-]’(—2-;)~35(63—ai)e h“ e R

3 2 2
q
(5({ +X —ai)+ir(1 + 1+:2

F) 5“(5;5”,,{)4

)
g’ a3 @n)? e

. sa
eiF|x3+§3- ailh.i.jl . irlx3—a]|elqa‘f

1, &% @8 M1, +x,-a, |
-i-———D(ﬁ §+x,x)-f 3 qa 9 3*‘3%)(
®, &, (217) o
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x h-1 e

1rl18‘ljl
1j ’

fdx affn (f fa+x 'Xg) =

8.  1q &9 _¢¢ £ llaj—a ;£ gl
=f.d_9_eqa (.q__l._..__qg+i(1 +3ﬁt—t-l—z-.)rlai—aj—fsl)e s
re re

)8
= d a ~c ,a
_{adxa—-: TE;D (f '63'*‘!8 xs) =

iFIa-—a A
—-—(-— +la; - a ~&he i 8hu1

The matrix multiplication gives

=i - -

pel o dstimey 1 (coskga - o ifa y |

i i sinla

—1 -1 Mlay=-ay| _; a 1, ~cosla
l-il1 = hil Iaj-akle hh = -————-mr 5

2(sinla) -cosla, 1

Hr.leuiqs(ai-aj) —2 " (cosq g = —11":.).

i (sinTa) 2
REFERENCES .

Casimir H.B.G. Proc.Kon.Ned.Akad.Wetenschap, 1948, 51,
p. 793. De Witt B.S. Physics Reports, 1975, 19C, p. 295.
I'pn6 A.A., MamaeB C.I'., Mocrenanenxo B.M. KBauToBble
3ppexThl B HMHTEHCHBHBIX BHemHUX ITONAX.ATomusgmart,M., 1980.

. Bordag M., Robaschik D., Wieczorek E. JINR, E2-83-488,

Dubna, 1983.

. Boromo6os H.H., [lupxos [J.B. BBemeHune B TeOpHKW KBaHTOBAaHHHX

noneit. '"Hayka", M., 1976.

Received by Publishing Department
on July 11,1983.

-1
ij »

13






