


1, INTRODUCTION

An interesting feature of QCD is the nontrivial vacuum struc-
ture which is however very difficult to investigate/!/ Phenome-
nologically the vacuum structure is described by nonvanishing
vacuum expectation values of local operators, a situation which
contradicts the usual normal ordering applied in perturbation
theory. On the other hand, such a situation is already known in
physics and has experimental consequences. An example of this
type is the well-known Casimir effect/2/. Two conducting neutral
plates attract each other because the vacuum energy of the
electromagnetic field of this system is different from zero and
depends on the distance between the two plates. This effect
tests in principle the ordering of the energy operator and rules
out the usually applied normal ordering. In this sense this
effect is one of the basic effects of QED.

The treatment of this effect on a consequent field-theoreti-
cal level has several interesting theoretical aspects:

- The quantum field theory of gauge fields with boundary
conditions has to be formulated. This is a nontrivial task
if we apply a covariant gauge fixing term,

- The physical quantity to be calculated primarily is the
energy of the vacuum state as a function of the distance
between the two plates. This means one has to calculate
vacuum diagrams with operator insertions (energy operator).
The calculation of such bubble diagrams lies beyond the
usual applicability of renormalization procedure, and it
is also interesting in itself, An important point thereby
is the finiteness of physical quantities, As will be shown
in a subsequent paper, the Casimir force as an observable
quantity is finite without any renormalization up to se-
cond order of perturbation theory.

Besides these theoretical aspects, of course, there are prac-—
tical ones. How large are radiative corrections to the Casimir
force, could these be experimentally verified?

To calculate corrections we must fix our model, In the free
field theory we have to consider the electromagnetic field only,
the plates are realized by boundary conditions for the electro-
magnetic field strength at the places of the plates, For the
calculation of radiative corrections the electron field inter-
acting with the photon field has to be taken into account. So,
we must have some imaginations gkgyt the influence of the plates
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on the electron field., Therefore we propose the following phy-
sical simplifications: The physically superconducting plates
are infinitely thin, do not influence the electron field, in-
teract with the electromagnetic field via the boundary condi-
tions only. So, we postulate no boundary conditions for the
electron field (note: boundary conditions for the electron field
would lead to an additional not observed Casimir effect. More-
over the question appears: "Which kind of boundary conditions
could be realized experimentally?"). On the basis of this model
we calculate the radiative corrections to the Casimir force.
The present paper is organized in three sections, After the
introduction we derive in the second part the quantization of
the spinor electrodynamics with boundary conditions in a cova-
riant gauge., As a technical tool we use the path integral that
here also allows a simple derivation of modified Feynman rules,
In the third section we derive a closed but formal expression
for the energy and for the Casimir force up to second order of
perturbation theory. A further discussion of these expressions

including the proof of their finiteness in postponed to a second
paper/53/.

2., QUANTIZATION OF SPINOR ELECTRODYNAMICS
WITH BOUNDARY CONDITIONS

licte we will rormulate the quantization procedure for the
photon and electron fields with boundary conditions. We assume
that the space is divided into three regions by two infinite
large and infinite thin superconducting plates perpendicular
to the xj3 -axis atxg=agand Xx3=3a;.As boundary conditions for
the electromagnetic field we have n“FHV(x)x3=ai=0, where ﬂﬂ/
is the dual electromagnetic field strength tensor related to the
usual one by EY =ﬁwuBFuB;“ =(0,0,0, 1) is the normal vector of
the plates, For the spinor field ¢ we propose no boundary con-
dition., The classical Lagrangian of spinor electrodynamics in-
cluding the gauge breaking term with the gauge parameter g reads

f(x)=‘%I?1VF“”_§1&_(QMA“)2+-1/}(19—m+ e&)l[,, 2.1)

Ay denotes the electromagnetic potential, scalar products with
y ~—matrices, e.g., A y" are abbreviated by A. The corresponding
canonical energy momentum tensor T, has the form
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BI(x) « B0 + g0 (@B 0.12).
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In some sense this reflects the fact that there are only two

independent boundary conditions. In solving this problem in

a standard manner we introduce an additional gauge fixing term,

integrate over the volume of the gauge group, and rewrite (2.4)

in the form
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3 i (2.6)
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where Dc(xa—ya ,0) is the usual Green function of the massless
scalar field
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for the case of QED with boundary conditions. A further simplifi-
cation of this expression is desirable, however. Let us proceed
in the following way. First we eliminate the term linear in the

B -field by the follows shift of the integration variable A,
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with the gauge fixing term can be written as
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Th
lne electron propagator

In (2.17) Dy, is the usual free field propagator and Dy, is
constructed out of the kernel Tx::ﬂ" by taking into account

(2.16). It has the form
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Its momentum space representation reads
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The obtained result is quite remarkable: We have recovered for-

mally the standard perturbation theory of QED. There is only one

essential change: the photon propagator DY, has to be substi-

tuted by®Dj,. So the usual Feynman diagram technique remains.

This has to be expected for general reasons. The advantage of

our treatment is that it can be applied in principle to boun-

e of th dary-value nroblems on arbitrary manifolds and for non Abelian
€ two plates only, Because the va- gauée theories, too. ¢

) in the com- For further applications we list some important properties
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work out such a program rather restrict ourselves strictly to
the problem of the Casimir force, That means we are interested
in the properties of the vacuum state only. As an intermediate
step we calculate the energy density of the vacuum state. This
quantity can be determined from the known Z -functional (2.16)
and the explicit expression of the energy momentum tensor (2.2).
In a formal manner we get

<0| Ty (A, & w) | 0> = T (0., 2 3, Zgi.n, ) 3.1

00755 87 8n 24(0,0,0) i=n=n1=0

This expression contains Green functions with identified argu-
ments, so that it appears as a highly divergent quantity, and
some regularization procedure has to be introduced. As the simp-—
lest possibility we apply the point splitting for coinciding
arguments, Our final task, however, is the calculation of the
Casimir force which is a force per unit area., Its corresponding
energetical quantity is the energy density per unit area

o0

[ dx, <0] Ty, (A, &, )| 0>,

-0

E(a) = (3.2)
This expression depends on the distance of the plates a=la -a
The Casimir force appears as its derivative with respect to a,
Because we are interested in the Casimir force as a well de-
fined physical quantity only, we omit all a independent (diver-
geui or not divergent) terms in E(a).

il

a) Casimir Force in Zero Order

Let us consider the (e2)? approximation, i.e., the free field
approximation. Remember that we have posed no boundary condition
on the spinor field, so that its contribution does not depend
on the distance and can be omitted completely. There remains
the contribution of the electromagnetic field to the energy den-
sity
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For brevity we have introduced the scalar quantities

[-)c(x,y):—;—g“"l‘)-;u(x,y) and DS(x-y) (2.7). (3.4)

As a next step we have to calculate the energy per unit area,
thereby we introduce §-(0,0,0, §) as a point splitting parame-
ter so that
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The first term here contains the nornal free field Green func-
tion which does not depend on a, so it can be dropped. The se-
cond term can be rewritten as
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As it will be shown in ref.’%/, the Casimir force F(a)=_a£1_m(a)
a

is a finite quantity which needs no regularization or subtrac-
tions. This is contrary to energy expressions.

b) Radiative Corrections to the Casimir Force

As a next step we study the e? -approximation to the Casimir

force. Looking at the general expression for the energy density
(3.1), (2.2) we see that the inclusion of radiative corrections
means that we have to take into account higher approximations
for the Green functions. These are the electron and photon pro-
pagators with self-energy insertions. Note that the self-energy
part of the electron propagator contains the a -dependent modi-
fied photon propagator so that also the electron field contri-
butes now to the Casimir force. There are two diagrams
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A: electromagnetic part of

B: electron part of
the energy density

the energy density

The corresponding explicit expressions are

A
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and the polarization operator/7/
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The next step is the calculation of the energy per unit area.
After the x4 -integration we have

E((iz))= lim (=®) fd4f "(fz)éff fdxg Dc(fa; £q+Xq, Xq+0)

o-v
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Of course, all these expressions are divergent because of the
well~known W -divergences.

gularization procedure which
what follows it can be seen that the gauge parameter depending

so that they are in fact not present.

Let us first discuss the expression A, If we use explicitly
the representation of the photon propagator (2.17), then it
splits into three contributions

(A) 3 () {L
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This has to be inserted into the formula for the Casimir force

d (3.14)
= e —.--:E .
F(a) o (a)

Let us now discuss the second contribution B to the ener%y densi~
ty, that contains the self-energy part ofsthf ?1§ctEﬁP: bzcause
eq. (3.8)we replace the photon propégat9r I)H“ y f“

this is the only a -dependent quantity in this formula

(3.15)
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This leads us to formula

E(B’ =lim [ dz dz’ D (2.2 )rdx T

a) 00p A (X 2 X+ 0 -2)

5+0 (3.16)
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for the energy per unit area. As an auxiliary quantity we have
introduced

ron (6) = 1d% 0 Tog a(=€=n,=n). (3.17)

In the Appendix we derive a special representation of r_, which
is very suited (and also restricted) for our investigations

(6 =e 1o Meh) e & L —-—-f Mg (3.18)
A ¥k, &P 4¢2
which relates all quantities to be calculated in perturbation
theory to the standard polarization operator,
Let us collect finally all contributions to the Casimir force
into the final expression
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da 34

d 2
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In the subsequent paper we will explicitly show that this
expression is finite and calculate its values in the physical
reasonable limit a -»o.

APPENDIX

The aim of this appendix is the foundation of eq. (3.18)

T =~-1L- 2 a —‘z—v——-- .]
o2 (O =58, 0 R(ED) + 55 4o 625 L(CY (a.1)
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for the quantity THA We start with the investigation of the
more general expression

(&) =[a% T\ (om=m), 1 = @)
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TyvpA is given by the Feynman diagram
T 2, x-2")=-ie2Tr{y 9. S(x-2)y S(z-2")y S(z" A.3
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and satisfies the relation
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which connects Tpa with the polarization operator N . We ba-

sically use this relat1on for the proof of eq. (3.18).VIf we
consider eq. (A.4) as a differential equation for T, ,\» then
its general solution appears as a sum of a special solution of
this equation and the general solution of the homogeneous equa-
tion .é.?‘.._’r s k=0 To this representation of Tqut\’Tqu)\+Tu1/p)\
there cérresponds via eq. (A.2) an analogous splitting of

P (O =il (B (O (A.5)
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At first we prove Q%pk =0. This would follow from TBOpAzo' For
simplicity we perform the argumentation in momentum space.
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The homogeneous differential equation now reads
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This equation is true in all systems of references, of course,
also in the system with (p+p’)k = 0. If there are no singulari-
ties at this point (as it should be because T,,,\ originates
from a Feynman diagram), then we have
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h
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relation also to p0+p’0=0, then we have again to take into ac- F )
count that Ty, 1is a Feynman expression whigch excludes pos- which leads for s=t, u=0 to
sible terms of the type 5(pp'0). So, we get T, \ (p,p") s 1k_g=0. -
OvpA (p+p ) =0 bl+b2—b3—b4 = —(fi(s) +sﬁ’(s)) (A.16)
Let us now consider the remaining inhomogeneous equation in )
momentum space then both equations (A.12), (A.13) coincide and give
1 o~
~ ~ - h(s) = ==sT(s). (A.17)
i P 1 . A.8 2
(P+p )" T (Bp) = = Lo/ M () = Lo B, 07 (A.8) _
This leads finally to
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e (2m) w T> - —p - - T (p? A.18
oo (PP =B, [(8, =P =2 D )T (D) = b p°T'(p)] (a.18)
The special solution will be constructed by explicitly using . . ) b
a kinematical decomposition of T voA* Here_ we take into account which gives together with T00pA = 0 the desired result.
that r ;)\  appears only in connectibn with Dy, which is trans-
versal, so that terms proportional to p_,p) can be omitted.
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The insertion of (A.l1) in eq. (A.8) gives the following rest- noseit, '""Hayka', Mockma, 1976.
rictions on the coefficients
h——l-»[u(b b,) + (s=t) (b, —b,)] Ll (A.12)
=% 1+ Dby + 1 7P e 5t y
- -L - - 1 A.13
h = 2[u(b2+b3)+(s t) (b, b2)1+_2.sn'(s) . (A.13)
s=p2, t=p2 u=(p+p)Z
Therefore T:Vp)‘(p, —-p) can be represented by
e s
Toon (B 2) =g\ [8,, By +p, P (by+ Dy =by—bpll_ y_o (ATH) .
We are left to determine h and b;+b, ~by ~b, for s=t and u=0
The compatibility of eq. (A.12) and (A.I3) gives
u(by —by ~by+b, ) 4(s=t) (b +by—by=b =t ﬁ(t) —si( s) (A.15) Received by Publishing Department
; 4
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