

сообщения обьединенного
 института ядерных исследовании
 дубна

$5754 / 83$
E2-83-488
M.Bordag, D.Robaschik, E.Wieczorek

QUANTUM FIELD THEORETIC TREATMENT OF THE CASIMIR EFFECT.

Quantization Procedure and Perturbation Theory in Covariant Gauge

1．INTRODUCTION

An interesting feature of $Q C D$ is the nontrivial vacuum struc－ ture which is however very difficult to investigate／I／Phenome－ nologically the vacuum structure is described by nonvanishing vacuum expectation values of local operators，a situation which contradicts the usual normal ordering applied in perturbation theory．On the other hand，such a situation is already known in physics and has experimental consequences．An example of this type is the well－known Casimir effect／2／．Two conducting neutral plates attract each other because the vacuum energy of the electromagnetic field of this system is different from zero and depends on the distance between the two plates．This effect tests in principle the ordering of the energy operator and rules out the usually applied normal ordering．In this sense this effect is one of the basic effects of QED．

The treatment of this effect on a consequent field－theoreti－ cal level has several interesting theoretical aspects：
－The quantum field theory of gauge fields with boundary conditions has to be formulated．This is a nontrivial task if we apply a covariant gauge fixing term．
－The physical quantity to be calculated primarily is the energy of the vacuum state as a function of the distance between the two plates．This means one has to calculate vacuum diagrams with operator insertions（energy operator）． The calculation of such bubble diagrams lies beyond the usual applicability of renormalization procedure，and it is also interesting in itself．An important point thereby is the finiteness of physical quantities．As will be shown in a subsequent paper，the Casimir force as an observable quantity is finite without any renormalization up to se－ cond order of perturbation theory．
Besides these theoretical aspects，of course，there are prac－ tical ones．How large are radiative corrections to the Casimir force，could these be experimentally verified？

To calculate corrections we must fix our model．In the free field theory we have to consider the electromagnetic field only， the plates are realized by boundary conditions for the electro－ magnetic field strength at the places of the plates．For the calculation of radiative corrections the electron field inter－ acting with the photon field has to be taken into account．So， we must have some imaginations about the influence of the plates
on the electron field. Therefore we propose the following physical simplifications: The physically superconducting plates are infinitely thin, do not influence the electron field, interact with the electromagnetic field via the boundary conditions only. So, we postulate no boundary conditions for the electron field (note: boundary conditions for the electron field would lead to an additional not observed Casimir effect. Moreover the question appears: "Which kind of boundary conditions could be realized experimentally?"). On the basis of this model we calculate the radiative corrections to the Casimir force.

The present paper is organized in three sections. After the introduction we derive in the second part the quantization of the spinor electrodynamics with boundary conditions in a covariant gauge. As a technical tool we use the path integral that here also allows a simple derivation of modified Feynman rules. In the third section we derive a closed but formal expression for the energy and for the Casimir force up to second order of perturbation theory. A further discussion of these expressions including the proof of their finiteness in postponed to a second paper/5/.
2. QUANTIZATION OF SPINOR ELECTRODYNAMICS WITH BOUNDARY CONDITIONS
iif\&e we wiil tormulate the quantization procedure for the photon and electron fields with boundary conditions. We assume that the space is divided into three regions by two infinite large and infinite thin superconducting plates perpendicular to the x_{3}-axis at $x_{3}=a_{0}$ and $x_{3}=a_{1}$. As boundary conditions for the electromagnetic field we have $n^{\mu} F_{\mu \nu}^{*}(x)_{x_{3}=a_{i}}=0$, where $F_{\mu \nu}^{*}$
is the dual electromagnetic field strength tensor related to the usual one by $\mathrm{F}_{\mu \nu}^{*}=\epsilon_{\mu \nu a \beta} \mathrm{~F}^{\alpha \beta} ; \mathrm{n}_{\mu}=(0,0,0,1)$ is the normal vector of the plates. For the spinor field ψ we propose no boundary condition. The classical Lagrangian of spinor electrodynamics including the gauge breaking term with the gauge parameter a reads

$$
\begin{equation*}
\mathscr{L}(x)=-\frac{1}{4} \mathrm{~F}_{\mu \nu} \mathrm{F}^{\mu \nu}-\frac{1}{2 a}\left(\partial_{\mu} \mathrm{A}^{\mu}\right)^{2}+\bar{\psi}(\mathrm{i} \hat{\partial}-\mathrm{m}+\mathrm{e} \hat{\mathrm{~A}}) \psi . \tag{2.1}
\end{equation*}
$$

A_{μ} denotes the electromagnetic potential, scalar products with γ-matrices, e.g., $A_{\mu} \gamma^{\mu}$ are abbreviated by \hat{A}. The corresponding canonical energy momentum tensor $\mathrm{T}_{\mu \nu}$ has the form

$$
\mathrm{T}_{\mu \nu}=-\frac{\partial \mathrm{A}^{\lambda}}{\partial \mathrm{x}^{\nu}} \mathrm{F}_{\lambda \mu}-\frac{1}{a} \frac{\partial \mathrm{~A}_{\mu}}{\partial \mathrm{x}^{\nu}} \frac{\partial \mathrm{A}^{\rho}}{\partial \mathrm{x}^{\rho}}-\mathrm{g}_{\mu \nu}\left\{-\frac{1}{4} \mathrm{~F}_{\rho \lambda} \mathrm{F}^{\rho \lambda}-\frac{1}{2 a} \frac{\partial \mathrm{~A}^{\rho}}{\partial \mathrm{x}^{\rho}} \frac{\partial \mathrm{A}^{\lambda}}{\partial \mathrm{x}^{\lambda}}\right\}+
$$

$$
+\frac{i}{2}\left[\bar{\psi} \gamma_{\mu} \frac{\partial \psi}{\partial x^{\nu}} \rightarrow \frac{\partial \bar{\psi}_{-}}{\partial x^{\nu}} \gamma_{\mu} \psi\right]
$$

The quantum field theory is fixed by knowing the set of all complete Green functions. Within the path-integral formalism the generating functional of all these Green functions is represented by the functional integral

$$
\begin{equation*}
\mathrm{Z}(\mathrm{j}, \vec{\eta}, \eta)=\mathrm{C} \int \operatorname{DAD} \bar{\psi} \operatorname{D} \psi \exp \mathrm{i} \int \mathrm{~d}^{4} \times\left[\mathcal{L}(\mathrm{x})+\mathrm{j}_{\mu} \mathrm{A}^{\mu}+\vec{\eta} \psi+\ddot{\psi} \eta\right] \tag{2,3}
\end{equation*}
$$

C is a normalization factor, $j_{\mu}, \stackrel{\rightharpoonup}{\eta}, \eta$ denote the sources of the electromagnetic potential and the spinor fields. The integration runs over all fields satisfying the usual asymptotic conditions*. In this way QED is defined formally. If we want to set up a quantum field theory with boundary conditions, then the functional integral has additionally to respect these boundary conditions; the integration has to be performed only over fields that satisfy the boundary conditions. This restriction is mimply guaranteed by insertion of δ-functions directly into the functional integral

$$
\delta\left(\mathrm{n}^{\mu} \mathrm{F}_{\mu l}^{*},\left.(\mathrm{x})\right|_{\mathbf{x}_{3}=\mathbf{a}_{0}}\right) \delta\left(\left.\mathrm{n}^{\mu} \mathrm{F}_{\mu l^{\prime}}^{*}(\mathrm{x})\right|_{\mathbf{x}_{3}} \mathbf{x a}_{\mathbf{a}}\right)
$$

The integration over A_{μ} than runs over all fields as above. It is important that lite inituunciion of such onvgo invariant conditions does not change the usual integration over the volume of the gauge group, so that the original Faddeev-Popov procedure. σ_{i}^{\prime} is not changed. For further calculations it is convenient to represent the δ-functions by functional integrals
with

$$
\begin{equation*}
d S_{i}(x)=d^{4} x \quad \delta\left(x_{3}-a_{i}\right) \tag{2.5}
\end{equation*}
$$

$$
\mathrm{H}_{a \mu}\left(\mathbf{x}, \partial_{\mathbf{x}}\right)=-\mathrm{n}^{\lambda} \epsilon_{\lambda \alpha \mu y} \frac{\partial}{\partial \mathbf{x}_{\gamma}}
$$

and C a normalization factor. $B^{i \alpha}(x)$ are auxiliary fields which exist on the plate i only, i.e., they depend on the variables $\mathbf{x}^{a}(a=0,1,2)$.

Now the integrand $B^{i a}(x) H_{\alpha \mu}\left(x, \partial_{x}\right) A^{\mu}(x)$ is invariant under the gauge transformation
*For the asymptotic conditions see, for example, refs./3,4/.

$$
\mathrm{B}^{\mathrm{i} a}(\mathrm{x}) \rightarrow \mathrm{B}^{\mathrm{i} a}(\mathrm{x})+\frac{\partial}{\partial \mathrm{x}^{\alpha}} \phi\left(\mathrm{x}^{\beta}\right) \quad(\alpha, \beta=0,1,2) .
$$

In some sense this reflects the fact that there are only two independent boundary conditions. In solving this problem in a standard manner we introduce an additional gauge fixing term, integrate over the volume of the gauge group, and rewrite (2.4) in the form

$$
\begin{aligned}
& \delta\left(\left.\mathrm{n}^{\mu} \mathrm{F}_{\mu \nu}^{*}(\mathrm{x})\right|_{\mathbf{x}_{3}=\mathrm{a}_{\mathrm{i}}}\right)=\mathrm{C} \int \mathrm{DB}^{\mathrm{i}} \exp \mathrm{i}\left[\int \mathrm{dS}(\mathrm{x}) \mathrm{B}^{\left.\mathrm{i} q(\mathrm{x}) \mathrm{H}_{a \mu}\left(\mathrm{x}, \partial_{\mathrm{x}}\right) \mathrm{A}^{\mu}(\mathrm{x})+{ }_{(2,6)}\right) .}\right. \\
& \left.+\frac{1}{2 \beta} \int d S_{i}(x) d S_{i}(y) B^{i a}(x) \frac{\partial}{\partial x^{a}} \frac{\partial}{\partial y \beta} D^{c}\left(x_{a}-y_{a}, 0\right) B^{i \beta}(y)\right],
\end{aligned}
$$

where $\mathrm{D}^{\mathrm{c}}\left(\mathrm{x}_{\alpha}-\mathrm{y}_{a}, 0\right)$ is the usual Green function of the massless scalar field

$$
\begin{equation*}
D^{c}(x-y) \equiv D^{c}\left(x_{a}-y_{a}, x_{3}-y_{3}\right)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p(x-y)}}{-p^{2}-i \epsilon}, \tag{2.7}
\end{equation*}
$$

taken at $x_{3}-y_{3}=0$.
Having in mind these considerations the generating functional reads now

$$
\begin{align*}
& \left.+\mathrm{j}_{\mu} \mathrm{A}^{\mu}+\bar{\eta} \psi+\bar{\psi} \eta\right]+ \tag{2.8}\\
& +\int \mathrm{dS}_{\mathrm{i}}(\mathrm{x}) \mathrm{B}^{\mathrm{j}}(\mathrm{x}) \mathrm{H}_{a \mu}\left(\mathrm{x}, \partial_{\mathrm{x}}\right) \mathrm{A}^{\mu}(\mathrm{x})- \\
& \left.-\frac{1}{2 \beta} \int \mathrm{dS}_{\mathrm{i}}(\mathrm{x}) \mathrm{dS}_{\mathrm{i}}(\mathrm{y}) \mathrm{B}^{\mathrm{j}}(\mathrm{x}) \frac{\partial}{\partial \mathrm{x}^{a}} \frac{\partial}{\partial \mathrm{y} \beta} \mathrm{D}^{\mathrm{c}}\left(\mathrm{x}_{a}-\mathrm{y}_{\alpha}, 0\right) \mathrm{B}^{\mathrm{i} \beta}(\mathrm{y})\right\}
\end{align*}
$$

for the case of QED with boundary conditions. A further simplification of this expression is desirable, however. Let us proceed in the following way. First we eliminate the term linear in the B-field by the follows shift of the integration variable A_{μ}
and receive a term quadratic in the B-field. This term together with the gauge fixing term can be written as

$$
\cdots \frac{1}{2} \int \mathrm{dS}_{j}(\mathrm{x}) \mathrm{dS} \mathrm{i}_{\mathrm{i}}(\mathrm{y}) \mathrm{B}^{\mathrm{i} a}(\mathrm{y}) \mathrm{H}_{\alpha \mu}\left(\mathrm{y}, \partial_{y}\right) \mathrm{D}^{\mathrm{c} \mu}(\mathrm{y}-\mathrm{x}) \mathrm{H}_{\nu}\left(\beta^{\left.\mathrm{x}, \partial_{\mathrm{x}}\right)} \mathrm{B}^{\mathrm{j} \beta}(\mathrm{x}) \ldots\right.
$$

$$
\begin{align*}
& -\frac{i}{2 \beta} \int d S_{i}(x) d S_{j}(y) B^{i a}(x) \frac{\partial}{\partial x^{a}} \frac{\partial}{\partial y \beta} D^{c}\left(x_{a}-y_{a} ; 0\right) B^{i \beta}(y) \equiv \tag{2.9}\\
& \equiv \frac{i}{2} \int d S_{i}(x) d S_{j}(y) B^{i a(x)} \tilde{k}_{a \beta}^{i j}(x-y) B^{j} \beta(y)
\end{align*}
$$

It is clear from the construction that the just defined funcion (2,9) $\tilde{k}_{t}^{i} \dot{B}(x-y)$ is defined on the three-dimensional subspace $\mathrm{x}^{\boldsymbol{a}}(a=0,1,2)$ only. The momentum space representation is
with

$$
\Gamma=\sqrt{\mathrm{p}_{a} \mathrm{p}^{\alpha}+\mathrm{i} \epsilon}, \quad \mathrm{Im} \Gamma>0
$$

and $h_{i j}=\exp \mathrm{C}\left|\mathrm{a}_{\mathrm{i}}-\mathrm{a}_{\mathrm{j}}\right|$ as a 2×2 matrix. This leads us to a final closed expression for the functional Z_{1}

$$
\begin{align*}
& Z_{B}(\mathrm{j}, \bar{\eta}, \eta)=\mathrm{G} \int \operatorname{DADBD} \bar{\psi} \mathrm{D} \psi \exp \mathrm{i}\left|\int \mathrm{~d}^{\mathbf{t}} \mathbf{x}\right| \frac{1}{2} \mathrm{~A}_{\mu}(\mathrm{x}) \mathrm{K}^{\mu \nu}\left(\partial_{\mathbf{z}}\right) \mathrm{A}_{\nu}(\mathrm{x})+ \\
& \left.+\bar{\psi}_{i}(\mathrm{i} \hat{\partial}-\mathrm{m}) \psi\right]+-\frac{1}{2} \int \mathrm{dS}_{\mathrm{i}}(\mathrm{x}) \mathrm{dS}_{\mathrm{i}}(\mathrm{y}) \mathrm{B}^{\mathrm{i} a_{(x)}} \tilde{\mathrm{k}}_{a}^{\mathrm{i} j}(\mathrm{x}-\mathrm{y}) \mathrm{B}^{\mathrm{j}} \beta_{(\mathrm{y})}+ \tag{2.11}\\
& +\int \mathrm{d}^{4} \mathrm{x}\left(\mathrm{j}^{\mu}+\vec{\psi} \gamma^{\mu} \psi^{4}\right)\left(\mathrm{A}_{\mu}(\mathrm{x})-\int \mathrm{dS}_{\mathrm{i}}(\mathrm{z}) \mathrm{B}^{\mathrm{i} a}(\mathrm{z}) \mathrm{H}_{a \nu}\left(\mathrm{z}, \partial_{z}\right) \mathrm{D}^{\mathrm{c} \nu \mu}(\mathrm{z}-\mathrm{x})\right)+ \\
& +\int \mathrm{d}^{4} \mathrm{x}\left(\bar{\psi}_{\eta}+\bar{\eta} \psi\right) .
\end{align*}
$$

For concrete calculations, however, we have to do with perturbative calculations which usually work remarkably good in QED. A formulation suited for perturbation theory can be developed along standard methods. We perform the Gauss integrations in (2.11) and obtain

$$
\begin{align*}
& \mathrm{Z}_{\mathbf{B}}(\mathrm{j}, \bar{\eta}, \eta)=\exp \left(\frac{1}{2} \frac{\delta}{\delta \mathrm{~A}_{\mu}} \mathrm{i} \mathrm{D}_{\mu \nu}^{\mathrm{c}} \frac{\delta}{\delta \mathrm{~A}_{\nu}}+\frac{1}{2} \frac{\delta}{\left.\delta \mathrm{~B}^{\mathrm{i} a} \tilde{\mathrm{ik}}_{a \beta}^{-1 \mathrm{ij}} \frac{\delta}{\delta \mathrm{~B}^{\mathrm{j}} \beta}+\frac{\delta}{\delta \bar{\psi}} \frac{1}{\mathrm{i}} \hat{\mathrm{~S}}^{\mathrm{c}} \frac{\delta}{\delta \psi}\right)}\right. \\
& \times \exp \mathrm{i} \mid\left(\mathrm{j}_{\mu}+\mathrm{e} \bar{\psi} \gamma_{\mu} \psi\right)\left(\mathrm{A}^{\mu}-\mathrm{D}^{\mathrm{c} \mu \nu} \mathrm{H}_{\nu \alpha} \mathrm{B}^{\mathrm{ia}}\right)+ \tag{2.12}\\
& \left.+\bar{\eta} \psi+\bar{\psi}_{\eta}\right\}\left.\right|_{\mathrm{A}=\mathrm{B}=\bar{\psi}=\psi=\mathbf{0} .} .
\end{align*}
$$

Here the corresponding integrals over all variables are dropped.
furthermore we have The electron propagator the following notation:

$$
\begin{equation*}
\hat{S}^{c}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}-p^{2}+m^{2}-i_{\epsilon}} e^{-i p(x \rightarrow)} . \tag{2.13}
\end{equation*}
$$

The inversed kernel $\tilde{\mathrm{k}}_{\alpha \beta}^{-1 \mathrm{ij}}$ defined by

$$
\int \mathrm{dS}_{\mathrm{j}}(\mathrm{y}) \tilde{\mathrm{k}}_{a \beta}^{\mathrm{i} j}(\mathrm{x}-\mathrm{y}) \tilde{\mathrm{k}}_{\beta,-1 \mathrm{j}}(\mathrm{k}-\mathrm{z})=\mathrm{g}_{a_{r}} \delta_{i \mathrm{k}} \delta\left(\mathrm{x}_{a}-z_{a}\right)
$$

reads

The inverse matrix

$$
h_{i j}^{-1}=\frac{-1}{2 i \sin \Gamma\left|a_{0}-a_{1}\right|} \quad\left(\begin{array}{cc}
e^{-i \Gamma\left|a_{0}-a_{1}\right|} & -1 \tag{2.15}\\
-1, & e^{-i \Gamma\left|a_{0}-a_{1}\right|}
\end{array}\right)
$$

depends on the distance of the two plates only. Because the vabination $A_{\mu}-D_{\mu \nu} H_{\nu a} B_{a}^{i}$ onter into the expression (2.12) in the com-

$$
\begin{equation*}
\left.\frac{\delta}{\delta \mathrm{B}_{\alpha}^{\mathrm{i}}} \mathrm{~F}\left(\mathrm{~A}_{\mu}-\mathrm{D}_{\mu \nu} \mathrm{H}_{\nu a \cdot} \mathrm{~B}_{a}^{\mathrm{i}}\right)\right|_{\mathrm{B}=0}=\mathrm{H}_{\alpha \nu}^{i} \mathrm{D}_{\nu \mu \mu}-\frac{\delta}{\delta \mathrm{A}_{\mu}} \mathrm{F}(\mathrm{~A}) \tag{2.16}
\end{equation*}
$$

in the whole expression appears the combination of propagators

$$
\begin{equation*}
{ }^{s} D_{\mu \nu}^{c}(x, y)=D_{\mu \nu}^{c}(x-y)+\tilde{D}_{\mu \nu}^{c}(x, y) \tag{2,17}
\end{equation*}
$$

only, and the generating functional reads

$$
\mathrm{Z}_{\mathbf{B}}(j, \bar{\eta}, \eta)=
$$

$$
\begin{equation*}
=\exp \left(\frac{1}{2} \frac{\delta}{\delta \mathrm{~A}_{\mu}} \mathrm{i}^{\mathrm{s}} \mathrm{D}_{\mu \nu}^{\mathrm{c}} \frac{\delta}{\delta \mathrm{~A}_{\nu}}+\frac{\delta}{\delta \psi} \frac{1}{\mathrm{i}} \hat{\mathrm{~S}}^{\mathrm{c}} \frac{\delta}{\delta \psi}\right) \times \tag{2.18}
\end{equation*}
$$

$\left.x \exp i\left(e \bar{\psi} \hat{A} \psi+j_{\mu} A^{\mu}+\bar{\psi} \eta+\bar{\eta} \psi\right)\right|_{A}=\bar{\psi}=\psi=0$

In (2.17) $D_{\mu \nu}^{c}$ is the usual free field propagator and $\tilde{\mathrm{D}}_{\mu \nu}^{\mathrm{c}}$ is constructed out of the kernel $\mathrm{k}_{\alpha \beta}^{-1} \mathrm{i}_{\mathrm{j}}$ by taking into account (2.16). It has the form

$$
\begin{align*}
& \tilde{\mathrm{D}}_{\mu \nu}^{\mathrm{c}}(\mathrm{x}, \mathrm{y})= \tag{2.19}\\
& =\int \mathrm{dS}_{\mathrm{i}}(\mathrm{z}) \mathrm{dS} \mathrm{j}_{\mathrm{j}}\left(\mathrm{z}^{\prime \prime}\right) \mathrm{D}_{\mu \rho}^{\mathrm{c}}(\mathrm{x}-\mathrm{z}) \mathrm{H}_{\rho \alpha}(\mathrm{z}, \partial) \overrightarrow{\mathrm{k}}_{\alpha \beta}^{-1 i j}\left(\mathrm{z}, z^{\prime}\right) \mathrm{H}_{\beta \rho^{\prime}}\left(z^{\prime}, \dot{\partial}_{z^{\prime}}\right) \mathrm{D}_{\rho^{\prime} \nu}^{c}\left(z^{\prime}-y\right) .
\end{align*}
$$

Its momentum space representation reads

$$
\begin{align*}
& \tilde{D}_{a \beta}^{c}(x, y)= \\
& \quad \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{-i}{2 \Gamma}\left(g_{a \beta}-\frac{p_{a} p_{\beta}}{\Gamma^{2}}\right) e^{i p_{a}(x-y)^{a}} \tag{2.20}\\
& \quad \times e^{i \Gamma\left|x_{3}-a_{i}\right| h_{i j}^{-1} e^{i \Gamma y_{3}-a_{j}}!} \\
& \tilde{D}_{a 3}^{c}=\tilde{D}_{3 \beta}^{c}=\tilde{D}_{33}^{c}=0 .
\end{align*}
$$

The obtained result is quite remarkable: We have recovered formally the standard perturbation theory of QED. There is only one essential change: the photon propagator D_{μ}^{c}, has to be substituted by ${ }^{5} \mathrm{D}_{\mu \nu}^{c}$. So the usual Feymman diagram technique remains. This has to be expected for general reasons. The advantage of our treatment is that it can be applied in principle to bounda: $-\because=1,0$ problems on arbitrary manifolds and for non Abelian gauge theories, too.

For further applications we 1 ist some important properties of the new contribution $\tilde{\mathrm{D}}_{\mu \nu}^{c}$ to the propagator:

$$
\begin{align*}
& \frac{\partial}{\partial x_{\mu}} \tilde{D}_{\mu \nu}^{c}(x, y)=\frac{\partial}{\partial y_{\nu}} \tilde{D}_{\mu \nu}^{c}(x, y)=0 \tag{2.21}\\
& \int d^{4} y^{s} D_{\mu \nu}^{c}(x, y)\left(g^{\nu \rho} \partial^{2}-\partial^{\nu} \partial^{\rho}\right)^{s} D_{\rho \lambda}^{c}(y, z)={ }^{s} D_{\mu \lambda}^{c(a=0)}(x, z)
\end{align*}
$$

These relations can be proved by explicit calculations in momentum space or directly from its definition. Note that the validity of these relations is not restricted to the considered case of parallel plates.

3. CASIMIR FORCE

In the foregoing section we have derived the perturbative formulation of QED so that in principle arbitrary processes would be calculable. Of course, one has to check, that some version of renormalization theory works. However, we will not
work out such a program rather restrict ourselves strictly to the problem of the Casimir force. That means we are interested in the properties of the vacuum state only. As an intermediate step we calculate the energy density of the vacuum state. This quantity can be determined from the known Z-functional (2.16) and the explicit expression of the energy momentum tensor (2.2). In a formal manner we get

$$
\begin{equation*}
<0\left|\mathrm{~T}_{00}(\mathrm{~A}, \overrightarrow{\mathrm{u}}, \psi)\right| 0>=\left.\mathrm{T}_{00}\left(\frac{\delta}{\delta \mathrm{j}}, \frac{\delta}{\delta \bar{\eta}}, \frac{\delta}{\delta \eta}\right) \frac{\mathrm{Z}_{\mathbf{B}}(\mathrm{j}, \vec{\eta}, \eta)}{\mathrm{Z}_{\mathrm{B}}(0,0,0)}\right|_{\mathrm{j}=\bar{\eta}=\eta=0} \tag{3.1}
\end{equation*}
$$

This expression contains Green functions with identified arguments, so that it appears as a highly divergent quantity, and some regularization procedure has to be introduced. As the simplest possibility we apply the point splitting for coinciding arguments. Our final task, however, is the calculation of the Casimir force which is a force per unit area. Its corresponding energetical quantity is the energy density per unit area

$$
\begin{equation*}
\mathrm{E}(\mathrm{a})=\int_{-\infty}^{\infty} \mathrm{dx}_{3}\langle 0| \mathrm{T}_{00}(\mathrm{~A}, \bar{\psi}, \psi)|0\rangle \tag{3.2}
\end{equation*}
$$

This expression depends on the distance of the plates $a=!a_{0}-a_{1} \mid$. The Casimir force appears as its derivative with respect to a. Because we are interested in the Casimir force as a well defined physical quantity only, we omit all a independent (divorbeni or not divergent) terms in $E(a)$.

a) Casimir Force in Zero Order

Let us consider the ($\left.\mathrm{e}^{2}\right)^{0}$ approximation, i.e., the free field approximation. Remember that we have posed no boundary condition on the spinor field, so that its contribution does not depend on the distance and can be omitted completely. There remains the contribution of the electromagnetic field to the energy density

$$
\begin{aligned}
& \langle 0| \mathrm{T}_{00}|0\rangle\left(\mathrm{e}^{2}\right)^{0} \\
& =\left.\left[-\frac{1}{2}\left(-\frac{\partial}{\partial x_{\rho}}-\frac{\partial}{\partial y \rho}+2-\frac{\partial}{\partial x_{0}}-\frac{\partial}{\partial y_{0}}\right){g^{\mu \nu}}^{\mu}+\frac{1}{2}\left(1-\frac{1}{\alpha}\right)-\frac{\partial}{\partial x_{\mu}}-\frac{\partial}{\partial x^{v}}\right]^{s} D_{\mu \nu}^{c}(x, y)\right|_{x \rightarrow y} \\
& =-\left.\frac{1}{2}\left(-\frac{\partial}{\partial x_{\rho}}-\frac{\partial}{\partial y \rho}+2-\frac{\partial}{\partial x_{0}}-\frac{\partial}{\partial y_{0}}\right)\left[4 i D^{c}(x-y)+2 i D^{c}(x, y)\right]\right|_{x \rightarrow y}
\end{aligned}
$$

For brevity we have introduced the scalar quantities

$$
\begin{equation*}
\bar{D}^{c}(x, y)=\frac{1}{2} \cdot g^{\mu \nu} \tilde{D}_{\mu \nu}^{c}(x, y) \quad \text { and } \quad D^{c}(x-y) \tag{3.4}
\end{equation*}
$$

As a next step we have to calculate the energy per unit area, thereby we introduce $\delta=(0,0,0, \delta)$ as a point splitting parameter so that

$$
\begin{aligned}
& \mathrm{E}(\mathrm{a})=\lim _{\delta \rightarrow 0} \mathrm{E}_{\delta}(\mathrm{a})= \\
& =\left.\lim _{\substack{\delta \rightarrow 0}}^{\infty} \int_{-\infty} \mathrm{dx}\left(-\frac{1}{2}\right)\left(2 \frac{\partial}{\partial \mathrm{x}_{0}} \frac{\partial}{\partial y_{0}}-\frac{\partial}{\partial x_{\rho}}-\frac{\partial}{\partial y \rho}\right)\left[4 \mathrm{i} \mathrm{D}^{\mathrm{c}}(\mathrm{x} \rightarrow \mathrm{y})+2 \mathrm{i} \tilde{\mathrm{D}}^{\mathrm{c}}(\mathrm{x}, \mathrm{y})\right]\right|_{\mathrm{x} \rightarrow \mathrm{y}}
\end{aligned}
$$

The first term here contains the nornal free field Green function which does not depend on a, so it can be dropped. The second term can be rewritten as

$$
\begin{aligned}
& \mathrm{E}(\mathrm{a})=\lim _{\delta \rightarrow 0} \int_{-\infty}^{\infty} \mathrm{dx}_{3} \mathrm{i} \dot{\partial}_{\xi \xi} \tilde{\mathrm{D}}^{\mathrm{c}}\left(0 ; \mathrm{x}_{3}, \mathrm{x}_{3}+\delta\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{\xi \xi}=2 \frac{\partial^{2}}{\partial \xi_{0}^{2}}+\frac{\partial}{\partial \xi_{\rho}} \frac{\partial}{\partial \xi^{\rho}} .
\end{aligned}
$$

As it will be shown in ref. $/ 5 /$, the Casimir force $F(a)=-\frac{d}{d a} E(a)$ is a finite quantity which needs no regularization or subtractions. This is contrary to energy expressions.
b) Radiative Corrections to the Casimir Force

As a next step we study the e^{2}-approximation to the Casimir force. Looking at the general expression for the energy density (3.1), (2.2) we see that the inclusion of radiative corrections means that we have to take into account higher approximations for the Green functions. These are the electron and photon propagators with self-energy insertions. Note that the self-energy part of the electron propagator contains the a-dependent modified photon propagator so that also the electron field contributes now to the Casimir force. There are two diagrams

A: electromagnetic part of the energy density

B: electron part of the energy density

The corresponding explicit expressions are

$$
\begin{aligned}
& \langle 0| \mathrm{T}_{00}|0\rangle^{(\mathrm{A})} \\
& =-1\left[-\frac{1}{2} \partial_{r y} g^{\mu \nu}+\frac{1}{2}\left(1-\frac{1}{a}\right) \frac{\partial}{\partial x_{\mu}}-\frac{\partial}{\partial x_{\nu}}\right] \int \mathrm{dzdz}{ }^{\left.-S_{D_{\mu \mu}^{\prime}}^{c}(x, z)\right] \mu^{\prime \nu}\left(z-z^{\prime}\right)^{s} D_{\nu \nu^{\prime}}^{\mathrm{c}}\left(z^{\prime}, y\right) \mid}
\end{aligned}
$$

and

$$
\begin{equation*}
\left.<0\left|\mathrm{~T}_{00}\right| 0\right\rangle^{(\mathrm{B})}=-\mathrm{i} \int \mathrm{dzd} z^{\prime s} \mathrm{D}_{\rho^{\prime} \lambda^{\mathrm{c}}}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \mathrm{T}_{00 \rho} \lambda^{\left(\mathrm{x}-\mathrm{Z}, \mathrm{x}-z^{\prime}\right) \mathrm{g}^{\rho \rho^{\prime}} \mathrm{g}} \lambda \lambda^{\prime} \tag{3.8}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{T}_{\mu \nu \rho \lambda}\left(\mathrm{x}-\mathrm{z}, \mathrm{x}-z^{\prime}\right)=-\mathrm{i} \mathrm{e}^{2} \operatorname{Tr}\left\{\gamma_{\mu_{\partial \mathrm{x}^{\prime}}} \hat{\mathrm{S}}(\mathrm{x}-\mathrm{z}) \gamma_{\rho} \hat{\mathrm{S}}\left(\mathrm{z}-\mathrm{z}^{\prime}\right) \gamma_{\lambda} \hat{\mathrm{S}}\left(\mathrm{z}^{\prime}-\mathrm{x}\right)\right\} \tag{3.9}
\end{equation*}
$$

and the polarization operator $/ 7 /$

$$
\begin{equation*}
\left.\prod_{\mu \nu}\left(\mathrm{z}-\mathrm{z}^{\prime}\right)=-\mathrm{i} \mathrm{e}^{2} \operatorname{Tr} \mid y_{\mu} \hat{\mathrm{S}}\left(\mathrm{z}-\mathrm{z}^{\prime}\right) \gamma_{\nu} \hat{\mathrm{S}}\left(\mathrm{z}^{\prime}-\mathrm{z}\right)\right\} \tag{3.10}
\end{equation*}
$$

Of course, all these expressions are divergent because of the well-known uv-divergences. So one has to apply additionally a rewhat follows procedure which we will not denote explicitly. In contributions can be seen that the gauge parameter depending contributions either are independent of a or vanish (eq.2.20) so that they are in fact not present.

Let us first discuss the expression A. If we use explicitly the representation of the photon propagator (2.17), then it splits into three contributions
$\langle 0| T_{00}|0\rangle^{(A)}=\sum_{i=0}^{3} T^{(i)}$

$$
\begin{equation*}
\mathrm{T}^{(1)}=\left.\frac{1}{2} \partial_{x y} \mathrm{~g}^{\mu \nu} \int \mathrm{dz} \mathrm{dz}{ }^{\prime} \mathrm{D}_{\mu \mu^{\prime}}^{\mathbf{c}}(\mathrm{x}-\mathrm{z}) \Pi^{\mu^{\prime} \nu^{\prime}}\left(\mathrm{z}-\mathrm{z}^{\prime}\right) \mathrm{D}_{\nu^{\prime} \nu}^{\mathbf{c}}\left(\mathrm{z}^{\prime}-\mathrm{y}\right)\right|_{x \rightarrow y} \tag{3.11a}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{T}^{(2)}=\left.\frac{1}{2} \partial_{x y} g^{\mu \nu} \gamma \mathrm{dzdz} z_{\mu \mu}^{\mathrm{D}}(\mathrm{x}-\mathrm{z}) \prod^{\mu^{\prime} \nu^{\prime}}\left(\mathrm{z}-\mathrm{z}^{\prime}\right){\underset{\mathrm{D}}{\nu^{\prime} \nu}}_{\mathrm{c}}\left(\mathrm{z}^{\prime}, \mathrm{y}\right)\right|_{\mathrm{x} \rightarrow \mathrm{y}} \\
& T^{(3)}=\left.\frac{1}{2} \cdot \partial_{x y} g^{\mu \nu} \int d z d z^{\prime} \cdot \tilde{D}_{\mu \mu}^{c}(x, z) \Pi^{\mu^{\prime} \nu^{\prime}}\left(z-z^{\prime}\right) \tilde{D}_{\nu^{\prime} \nu}^{\mathbf{c}}\left(z^{\prime}, y\right)\right|_{x \rightarrow y} . \text { (3.11c) }
\end{aligned}
$$

The first expression contains the contributions of standard QED without boundary conditions and can be dropped (a -independent). Into the other terms we insert the usual representation of the polarization operator

$$
\begin{equation*}
\Pi_{\mu \nu}(z)=\left(g_{\mu \nu} \frac{\partial^{2}}{\partial z^{2}}-\frac{\partial}{\partial z^{\mu}} \frac{\partial}{\partial z^{\nu}}\right) \Pi\left(z^{2}\right) \tag{3.12}
\end{equation*}
$$

with the result

$$
\begin{align*}
& T^{(2)}=\left.2 \dot{\partial}_{x y} f d z \Pi(x-z) \bar{D}^{c}(z, y)\right|_{x \rightarrow y} \tag{3.13a}\\
& T^{(3)}=\left.\dot{\partial}_{x y} \int d z d z^{\prime} \tilde{D}^{c}(x, z) \Pi\left(z-z^{\prime}\right) \bar{D}^{c}\left(z^{\prime}, y\right)\right|_{x \rightarrow y} \tag{3.13b}
\end{align*}
$$

The next step is the calculation of the energy per unit area. After the \mathbf{x}_{3}-integration we have

$$
\begin{aligned}
& \mathrm{E}_{(\mathrm{a})}^{(\mathrm{A})}=\lim _{\hat{o} \rightarrow \mathrm{u}}(-2) \int \mathrm{d}^{4} \xi \pi\left(\xi^{2}\right) \partial \xi \xi \int_{-=:}^{\infty} \mathrm{d} \mathrm{x}_{3} \widetilde{\mathrm{D}}^{\mathrm{c}}\left(\xi_{a} ; \xi_{3}+\mathrm{x}_{3}, \mathrm{x}_{3}+\delta\right) \\
& E_{(a)}^{(A 3)}=\lim _{\delta \rightarrow 0}^{\left(--\frac{1}{2}\right)} \int \mathrm{d}^{4} \xi \pi\left(\xi^{2}\right) \partial_{\eta \eta} \int \mathrm{d}^{4} \mathrm{z}^{\prime} \int_{-\infty}^{\infty} \mathrm{dx} 3 \\
& \times\left.\tilde{D}^{c}\left(z_{a} ; z_{3}^{\prime}, x_{3}\right) \frac{\partial}{\partial \xi_{\lambda}} \frac{\partial}{\partial \xi^{\lambda}} \tilde{D}^{c}\left(\xi_{a}+z_{a}^{\prime}+\eta_{a} ; \xi_{3}+z_{3}^{\prime}, x_{3}+\eta_{3}+\delta\right)\right|_{\eta=a}
\end{aligned}
$$

This has to be inserted into the formula for the Casimir force

$$
\begin{equation*}
F(a)=-\frac{d}{d a} E(a) \tag{3.14}
\end{equation*}
$$

Let us now discuss the second contribution B to the energy density, that contains the self-energy part of the electron. In eq. (3.8) we replace the photon propagator ${ }^{s} D_{\mu \mu}^{c}$, by $\widetilde{D}_{\mu \mu}^{c}$, because this is the only a -dependent quantity in this formula
$\langle 0| T_{\mu \nu}|0\rangle \stackrel{(B)}{=} \int d z d z \cdot \tilde{D}_{\rho \lambda}^{c}\left(z, z^{\prime}\right) T_{\mu \nu \rho \lambda}\left(X-z, X-z^{\prime}\right)$.

This leads us to formula

$$
\begin{align*}
& \mathrm{E}_{(\mathrm{a})}^{(\mathrm{B})}=\underset{\delta \rightarrow 0}{\lim \int \mathrm{dzdz}} \overline{\mathrm{D}}_{\rho \lambda}^{\mathrm{c}}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \int_{-\infty}^{\infty} \mathrm{dx} \mathrm{~m}_{3} \mathrm{~T}_{00 \rho \lambda}(\mathrm{x}-\mathrm{z}, \mathrm{x}+\delta-\mathrm{z}) \tag{3.16}\\
& =\lim _{\delta \rightarrow 0} \int_{d^{4}} \xi_{\tau}^{\rho \lambda}(\xi) \int_{-\infty}^{\infty} \mathrm{dx}_{3} \tilde{\mathrm{D}}_{\rho \lambda}^{\mathrm{c}}\left(\xi_{a} ; \xi_{3}+\mathrm{x}_{3}, \mathrm{x}_{3}+\delta\right)
\end{align*}
$$

for the energy per unit area. As an auxiliary quantity we have introduced

$$
\begin{equation*}
\tau_{\rho \lambda}(\xi)=\int \mathrm{d}^{4} \eta \mathrm{~T}_{00 \rho \lambda}(-\xi-\eta,-\eta) \tag{3.17}
\end{equation*}
$$

In the Appendix we derive a special representation of ${ }_{\tau} \rho_{\rho}$ which is very suited (and also restricted) for our investigations

$$
\begin{equation*}
{ }_{\rho \lambda}(\xi)=\frac{1}{2} g_{\rho \lambda}\left|\partial_{\xi \xi} \Pi\left(\xi^{2}\right)+\frac{\partial}{\partial \xi_{\rho}} \frac{\partial}{\partial \xi^{\rho}}-\frac{\partial^{2}}{\partial \xi_{0}^{2}} \xi^{2} \Pi\left(\xi^{2}\right)\right| \tag{3.18}
\end{equation*}
$$

which relates all quantities to be calculated in perturbation theory to the standard polarization operator.

Let us collect finally all contributions to the Casimir force into the final expression

$$
\begin{align*}
& \mathrm{F}(\mathrm{a})=\lim _{\delta \rightarrow 0}(-1) \frac{\mathbf{t}}{\mathrm{da}}\left\{\Lambda \mid \mathrm{d}^{i} \xi\left(\mathrm{i} \delta(\xi)-\Pi\left(\xi^{\dot{2}}\right)\right) \partial_{\xi \xi}+\right. \\
& \left.+\left[\frac{\partial}{\partial \xi_{\rho}} \frac{\partial}{\partial \xi^{\rho}} \xi^{2} \boldsymbol{\Lambda}\left(\xi^{2}\right)\right]-\frac{\partial^{2}}{\partial \xi_{0}^{2}}\right] \times \int_{-\infty}^{\infty} \mathrm{dx}_{3} \tilde{\mathrm{D}}^{\mathrm{c}}\left(\xi_{a} ; \xi_{3}+\mathrm{x}_{3}, \mathrm{x}_{3}+\delta\right)- \tag{3.19}\\
& -\int \mathrm{d}^{4} \xi \pi\left(\xi^{2}\right) \partial_{\eta \eta} \int \mathrm{d}^{4}{ }^{\prime} \int_{-\infty}^{\infty} \mathrm{dx}_{3} \times \\
& \times\left.\overline{\mathrm{D}}^{\mathbf{c}}\left(\mathrm{z}_{a}^{\prime} ; \mathrm{z}_{3}^{\prime}+\mathrm{x}_{3}\right) \frac{\partial}{\partial \xi^{\rho}} \frac{\partial}{\partial \xi_{\rho}} \tilde{\mathrm{D}}^{\mathbf{c}}\left(\xi_{a^{\prime}}+\mathrm{z}_{a}^{\prime}+\eta_{a} ; \xi_{3}+\mathrm{z}_{3}^{\prime}, \mathrm{x}_{3}+\eta_{3}+\delta\right)\right|_{\eta=0} 1 .
\end{align*}
$$

In the subsequent paper ${ }^{/ 5 /}$ we will explicitly show that this expression is finite and calculate its values in the physical reasonable limit $a \rightarrow \infty$.

APPENDIX

The aim of this appendix is the foundation of eq. (3.18)

$$
\begin{equation*}
\tau_{\rho \lambda}(\xi)=\frac{1}{2} \cdot g_{\rho \lambda}\left\{\partial_{\xi \xi} \Pi\left(\xi^{2}\right)+\frac{\partial}{\partial \xi} \frac{\partial}{\partial \xi^{\rho}}-\frac{\partial^{2}}{\partial \xi_{0}^{2}} \xi \pi\left(\xi^{2}\right)\right\} \tag{A.1}
\end{equation*}
$$

for the quantity $\tau_{\rho \lambda}$. We start with the investigation of the more general expression

$$
\begin{equation*}
\tau_{\mu \nu \rho \lambda}(\xi)=\int \mathrm{d}^{4} \eta_{\mu \nu \rho \lambda}(-\xi-\eta,-\eta), \quad \tau_{\rho \lambda} \equiv \tau_{00 \rho \lambda} \tag{A.2}
\end{equation*}
$$

$\mathrm{T}_{\mu \nu \rho \lambda}$ is given by the Feynman diagram

$$
\begin{equation*}
\mathrm{T}_{\mu \nu \rho \lambda}\left(\mathrm{x}-\mathrm{z}, \mathrm{x}-\mathrm{z}^{\prime}\right)=-\mathrm{i} \mathrm{e}^{2} \operatorname{Tr}\left\{\gamma_{\mu} \frac{\partial}{\partial \mathrm{x}^{\nu}} \hat{\mathrm{S}}(\mathrm{x}-\mathrm{z}) \gamma_{\rho} \hat{\mathrm{S}}\left(\mathrm{z}-\mathrm{z}^{\prime}\right) \gamma_{\lambda} \hat{\mathrm{S}}\left(\mathrm{z}^{\prime}-\mathrm{x}\right)\right\} \tag{A.3}
\end{equation*}
$$

and satisfies the relation

$$
\frac{-\partial}{\partial x_{\mu}} \mathrm{T}_{\mu \nu^{\prime} \rho}\left(\mathrm{x}-\mathrm{z}, \mathrm{x}-\mathrm{z}^{\prime}\right)=-\frac{1}{2} \pi_{\rho \lambda^{2}}(\mathrm{x}-\mathrm{z})-\frac{\partial}{\partial x^{\nu}} \delta\left(\mathrm{x}-z^{\prime}\right)-\frac{1}{2} \pi_{\rho \lambda}\left(\mathrm{x}-z^{\prime}\right) \frac{\partial}{\partial x^{\nu}} \delta\left(\mathrm{x}-z^{\prime}\right)
$$

which connects $\mathrm{T}_{\mu \nu \rho \lambda}$ with the polarization operator $\pi_{\mu \nu}$. We basically use this relation for the proof of eq. (3.18). If we consider eq. (A.4) as a differential equation for $T_{\mu \nu \rho}$, then its general solution appears as a sum of a special solution of this equation and the general solution of the homogeneous equation $\frac{\partial}{\partial x_{\mu}}-T_{\mu \nu \rho \lambda}^{h}=0$. To this representation of $T_{\mu \nu \rho \lambda^{*}} T_{\mu \nu \rho \lambda^{+}}^{h} T_{\mu \nu \rho \lambda}^{s}$ there corresponds via eq. (A.2) an analogous splitting of

$$
\begin{equation*}
\tau_{\mu i \sim \cdot}(\xi)=\tau_{; i p l}^{h}(\xi)+\tau_{\mu i \cdot p l}^{s}(\xi) \tag{A.5}
\end{equation*}
$$

At first we prove $\tau_{00 \rho \lambda}^{\mathrm{h}}=0$. This would follow from $\mathrm{T}_{00 \rho \lambda}^{\mathrm{h}}=0$. For simplicity we perform the argumentation in momentum space.

$$
\begin{equation*}
\mathrm{T}_{\mu \nu \rho \lambda}\left(\mathrm{x}-\mathrm{z}, \mathrm{x}-\mathrm{z}^{\prime}\right)=\Gamma \frac{\mathrm{dp} \mathrm{dp}^{\prime}}{(2 \pi)^{8}} \mathrm{e}^{\mathrm{ip}(\mathrm{x}-\mathrm{z})+\mathrm{i} \mathrm{p}^{\prime}\left(\mathrm{x}-\mathrm{z}^{\prime}\right)} \tilde{\mathrm{T}}_{\mu \nu \rho \lambda}\left(\mathrm{p}, \mathrm{p}^{\prime}\right) \tag{A.6}
\end{equation*}
$$

The homogeneous differential equation now reads

$$
\left(\mathrm{p}+\mathrm{p}^{\prime}\right)^{\mu} \tilde{\mathrm{T}}_{\mu \nu \rho \lambda}^{\mathrm{h}}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)=0,\left(\mathrm{p}^{\mathbf{0}}+\mathrm{p}^{\prime}\right) \tilde{\mathrm{T}}_{\mathbf{0} \nu \rho \lambda}^{\mathrm{h}}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)=-\left({\left.\mathrm{p}+\mathrm{p}^{\prime}\right)}^{\mathrm{k}} \tilde{\mathrm{~T}}_{\mathrm{k} \nu \rho \lambda^{\mathrm{h}}}^{\left(\mathrm{p}, \mathrm{p}^{\prime}\right)}\right. \text {) }
$$

This equation is true in all systems of references, of course, also in the system with $\left(p+p^{\prime}\right)^{k}=0$. If there are no singularities at this point (as it should be because $\tilde{\mathrm{T}}_{\mu \nu \rho \lambda}$ originates from a Feymman diagram), then we have

$$
\left(\mathrm{p}^{0}+\mathrm{p}^{\prime 0}\right) \widetilde{\mathrm{T}}_{0 \nu \rho \lambda}^{\mathrm{h}}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)_{\left(\mathrm{p}+\mathrm{p}^{\prime}\right)^{\mathbf{k}}=0}=0
$$

and
$\tilde{\mathrm{T}}_{0 \nu \mu \rho}^{h} I_{\left(\mathrm{p}+\mathrm{p}^{\prime}\right)^{k}=0}=0$ for $\mathrm{p}^{0}+\mathrm{p}^{, 0} \neq 0$. If we want to extend this
relation also to $\mathrm{p}^{0}+\mathrm{p}^{\boldsymbol{0}}=0$, then we have again to take into account that $T_{\mu \nu \rho \lambda}$ is a Feynman expression which excludes possible terms of the type $\delta\left(p^{0}-p^{\prime} 0\right)$. So, we get $T_{0 \nu \rho \lambda}^{h}\left(p, p^{\prime}\right)_{\left(p+p^{\prime}\right)^{k}=0}=0$. Let us now consider the remaining inhomogeneous equation in momentum space

$$
\begin{align*}
& \left(\mathrm{p}+\mathrm{p}^{\prime}\right)^{\mu} \tilde{\mathrm{T}}_{\mu \nu \rho \lambda}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)=-\frac{1}{2} \mathrm{p}_{\nu}^{\prime} \tilde{\pi}_{\rho \lambda}(\mathrm{p})-\frac{1}{2} \mathrm{p}_{\nu} \tilde{\pi}_{\rho \lambda}\left(\mathrm{p}^{\prime}\right) \tag{A.8}\\
& \prod_{\mu J^{\prime}}(\mathrm{x})=\int \frac{\mathrm{d}^{4} \mathrm{p}}{(2 \pi)^{4}} \mathrm{e}^{i \mu \mathbf{x}} \tilde{\Pi}_{\mu \mu^{\prime}}(\mathrm{p}) \tag{A.9}
\end{align*}
$$

The special solution will be constructed by explicitly using a kinematical decomposition of $T_{\mu v_{\rho} \lambda}$. Here we take into account that $\tau_{\rho \lambda}$ appears only in connection with $\tilde{D}_{\mu \nu}^{c}$ which is transversal, so that terms proportional to p_{ρ}, p_{λ} can be omitted. This becomes clear if we rewrite eq. (A.2) in momentum space

To solve the inhomogeneous equation (A.8), we start with the ansatz

$$
\begin{aligned}
& +p_{\rho} p_{\lambda}[\ldots]+\ldots
\end{aligned}
$$

The insertion of (A.1l) in eq. (A.8) gives the following restrictions on the coefficients

$$
\begin{align*}
& h=\frac{1}{2}\left\{u\left(b_{1}+b_{4}\right)+(s-t)\left(b_{1}-b_{4}\right)\right\}+\frac{1}{2} t \Pi(t) \tag{A.12}\\
& h=-\frac{1}{2}\left\{u\left(b_{2}+b_{3}\right)+(s-t)\left(b_{3}-b_{2}\right)\right]+-\frac{1}{2} s \Pi(s) \tag{A.13}\\
& s=p^{2}, \quad t=p^{\prime 2}, \quad u=\left(p+p^{\prime}\right)^{2}
\end{align*}
$$

Therefore $\tilde{\mathrm{T}}_{\mu \nu \rho \lambda}^{s}(\mathrm{p},-\mathrm{p})$ can be represented by

$$
\begin{equation*}
\widetilde{\mathrm{T}}_{\mu \nu \rho \lambda}^{\mathrm{s}}(\mathrm{p},-\mathrm{p})=\left.\mathrm{g}_{\rho \lambda}\left[\mathrm{g}_{\mu \nu} \mathrm{h}_{1}+\mathrm{p}_{\mu} \mathrm{p}_{\nu}\left(\mathrm{b}_{1}+\mathrm{b}_{2}-\mathrm{b}_{3}-\mathrm{b}_{4}\right)\right]\right|_{\mathrm{s}=\mathrm{t}, u=0} \tag{A.14}
\end{equation*}
$$

 The compatibility of eq. (A.12) and (A.13) gives

$$
\begin{equation*}
u\left(b_{1}-b_{2}-b_{3}+b_{4}\right)+(s-t)\left(b_{1}+b_{2}-b_{3}-b_{4}\right)=t \tilde{\Pi}(t)-s \tilde{\pi}(s) \tag{A.15}
\end{equation*}
$$

which leads for $s=t, u=0$ to

$$
\begin{equation*}
b_{1}+b_{2}-b_{3}-b_{4}=-\left(\tilde{\pi}(s)+s \tilde{\pi}^{\prime}(s)\right) \tag{A.16}
\end{equation*}
$$

then both equations (A.12), (A.13) coincide and give

$$
\begin{equation*}
h(s)=\frac{1}{2} s \tilde{\pi}(s) \tag{A.17}
\end{equation*}
$$

This leads finally to

$$
\begin{equation*}
\tilde{\mathrm{T}}_{\mu \nu \rho \lambda}^{s}(\mathrm{p},-\mathrm{p})=\mathrm{g}_{\rho \lambda}\left[\left(\mathrm{g}_{\mu \nu} \frac{1}{2} \mathrm{p}-\mathrm{p}_{\mu}^{2} \mathrm{p}_{\nu}\right) \tilde{\Pi}\left(\mathrm{p}^{2}\right)-\mathrm{p}_{\mu} \mathrm{p}_{\nu} \mathrm{p}^{2} \tilde{\Pi}^{\prime}\left(\mathrm{p}^{2}\right)\right] \tag{A.18}
\end{equation*}
$$

which gives together with ${ }_{T 00 \rho \lambda}^{h}=0$ the desired result.

REFERENCES

1. Вайнштейн А.Н. и др. ЭЧАЯ, 1982, 13, с.542.
2. Casimir H.B.G. Proc.Kon.Ned.Akad.Wetenschap., 1948, 51, р.793; Гриб А.А., Мамаев С.Г., Мостепаненко В.Р. Квантовые эффекты в интенсивных внешних полях. Атомиздат, Москва, 1980; DeWitt B.S. Phys.Rep., 1975, 19C, p. 295.
3. Васильев A.H. Функциональные методы в квантовой теории поля и статистике. Изп-пп ПГV, Помимопрад, !076.
4. Славнов А.А., Фаддеев ЛІ.Д. Введение в квантовую теорию калибровочных полей. "Наука", Москва, 1973.
5. Bordag M., Robaschik D. JINR, E2-83-302, Dubna, 1983.
6. Боголюбов Н.Н., Ширков Д.В. Введение в теорию квантованных полей. "Наука", Москва, 1976.

Received by Publishing Department
on July ll, 1983.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY:

You can receive by post the boots listed below. Prices - in US 8,

 including the paeking and registered postageD-12965 The Proceedings of the International School on for Young Scientists. Minsk, 1979.
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical Physics. Dubna, 1979.
D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics Dubna, 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980.
Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes
D4-80-572 N.N. Kolesnikov et al. "The Energies and Half-Lives for the $\alpha-$ and β-Decays of Transfermium Elements"

D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
D10,11-81-622 Proceedings of the International Mepting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980
D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.
D17-81-758 proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.
D2-82-568 Proceedings of the Meeting on Investigations in the Field of Relativistic Nuclear Physics. Dubna, 1982
D9-82-664 Proceedings of the Symposium on the Problems of Collective Nethods of Acceleration. Dubna, 1982
D3,4-82-704 Proceedings of the IV International School on Neutron Phygics. Dubna, 1982

Бордаг М., Робашик А., Вицорек 3.
E2-83-488
Зффект Казимира с точки зрения квантовой теории поля
Процедура квантования и теория возмущений в ковариантной калюбровке
Нетрияиальная трактовка зфректа Казимнра с точки зрения квантовой теории поля требует квантования спинорной злектродинамики с граничными условиями в ковариантной калюбровке. Граннчнше условия реалияуотся посредством двух параллельных Єесконеино тонких сверхпроводмих пластин. Исследование ведется с помоиью метода функционального интеграла. Показано, что в теории возмущения оошчные правила фейнмана остартся в силе, требуется только модификация отонного nponaraтора. Одним из достоинств подхода является вывод Замкнутого выражения для модифицированного фотонного пропагатора, что, в свою очередь, позволяет явно вычислить петлевые диаграммы. Вычислен до второго порядка по теории возмущений радиационные поправки к выражению знергии вакуума. В итоге получено формальное выражение во втором порядке по теории возмущений для силы Казимира, которое будет обсуждаться в сле дующей работе.

Работа выполнена в Лабораторин теоретической физики оияи.

Cообшение 06ъединенного института ядерных исследовании. Дубна 1983

Bordag M., Robaschik D., Wleczorek E.
 E2-83-488

Quantum Field Theoretic Treatment of the Casimir Effect.
Quantization Procedure and Perturbation Theory in Covariant Gauge
A nontrivial quantum field theoratical treatment of the Casimir effect demands the quantization of spinor electrodynamics with boundary conditions In a covarlant gauge. The boundary conditions are reallzed by two superconduceing infinltely thin parallel plates. As technical tool we use the path integral method. It Is shown that in perturbatlon theoretical calculations the standard Feynman rules remain valid up to a modification of the photon propagator. One advantage of our procedure is the derivation of a closed expression for this modifled photon propagator which allows the explicit calculation of loop diagrams. Up to the order e^{2} we determine the explicit calculation of loop dlagrams. Up to the order e^{2} we determ
the radlative corrections for vacuum energy expresslons. We end up with the radlative corrections for vacuum energy expressions. We end up with
a formal expression for the Casimir force up to the same order in e^{2} which a formal expression for the Casimir for
will be discussed in a following paper.

The investigatlon has been performed at the Laboratory of Theoretical Physics, JINR.

Orders for the above-mentioned books can be sent at the address: Head Post office, Phishing Department, JINR

