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I. INTRODUCTION 

An interesting feature of QCD is the nontrivial vacuum struc­
ture which is however very difficult to investigate II/. Phenome­
nologically the vacuum structure is described by nonvanishing 
vacuum expectation values of local operators, a situation which 
contradicts the usual normal ordering applied in perturbation 
theory. On the other hand, such a situation is already known in 
physics and has experimental consequences. An example of this 
type is the well-known Casimir effect/2/. Two conducting neutral 
plates attract each other because the vacuum energy of the 
electromagnetic field of this system is different from zero and 
depends on the distance bet\<leen the two plates. This effect 
tests in principle the ordering of the energy operator and rules 
out the usually applied normal ordering. In this sense this 
effect is one of the basic effects of QED. 

The treatment of this effect on a consequent field-theoreti­
cal level has several interesting theoretical aspects: 

- The quantum field theory of gauge fields with boundary 
condltions has to be formulated. This is a nontrivial task 
if we apply a covariant gauge fixing term. 

- The physical quantity to be calculated primarily is the 
energy of the vacuum state as a function of the distance 
between the two plates. This means one has to calculate 
vacuum diagrams \vith operator insertions (energy operator). 
The calculation of such bubble diagrams lies beyond the 
usual applicability of renormalization procedure, and it 
is also interesting in itself. An important point thereby 
is the finiteness of physical quantities. As will be shown 
in a subsequent paper, the Casimir force as an observable 
quantity is finite without any renormalization up to se­
cond order of perturbation theory. 

Besides these theoretical aspects, of course, there are prac­
tical ones. How large are radiative corrections to the Casimir 
force, could these be experimentally verified? 

To calculate corrections we must fix our model. In the free 
field theory we have to consider the electromagnetic field only, 
the plates are realized by boundary conditions for the electro­
magnetic field strength at the places of the plates. For the 
calculation of radiative corrections the electron field inter­
acting with the photon field has to be taken into account. So, 
we must have some imaginations about the influence of the plates 
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on the electron field. Therefore we propose the following phy­
sical simplifications: The physically superconducting plates 
are infinitely thin, do not influence the electron field, in­
teract with the electromagnetic field via the boundary condi­
tions only. So, we postulate no boundary conditions for the 
electron field (note: boundary conditions for the electron field 
would lead to an additional not observed Casimir effect. More­
over the question appears: "Which kind of boundary conditions 
could be realized experimentally?"). On the basis of this model 
we calculate the radiative corrections to the Casimir force. 

The present paper is organized in three sections. After the 
introduction we derive in the second part the quantization of 
the spinor electrodynamics with boundary conditions in a cova­
riant gauge. As a technical tool we use the path integral that 
here also allows a simple derivation of modified Feynman rules. 
In the third section we derive a closed but formal expression 
for the energy and for the Casimir force up to second order of 
perturbation theory. A further discussion of these expressions 
including the proof of their finiteness in postponed to a second 
paper/5/. 

2. QUANTIZATION OF SPINOR ELECTRODYNNfiCS 
WITH BOUNDARY CONDITIONS 

utLt we wiii rormulate the quantization procedure for the 
photon and electron fields with boundary conditions. We assume 
that the space is divided into three regions by two infinite 
large and infinite thin superconducting plates perpendicular 
to the x 3 -axis at x3 = a 0 and x3 =a 1 • As boundary conditions for 
the electromagnetic field we have n 11 F* (x) _ =0, where ~~v 

11v x3 - ai . ,. 

is the dual electromagnetic field strength tensor related to the 
usual one by ~~ = (

11
vaf3 raf3; n = ( O, o, Q, 1) is the normal vector of 

the plates. For the spinor field ~ we propose no boundary con­
dition. The classical Lagrangian of spinor electrodynamics in­
cluding the gauge breaking term with the gauge parameter a reads 

(;) 1 11f' 1 11 2 - A A 

.L(x)=-~F F --(aN.) +~(ia -m+ eA)~. 
4 llV 2a ll 

All denotes the electromagnetic potential, ~calar 
y -matrices, e.g., A yll are abbreviated by A. The 
canonical energy mo~entum tensor Tllv has the form 

(2. I) 

products with 
corresponding 

1 pA 1 aAP 
g l--F',F --

I.IV 4 P" 2a a X p 
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(2. 2) 

. . d b knowing the set of all com-
The quantum field.theory.~~.f~~~e p~th-integral formalism the 
plete Green func:~ons. ~~~l~nthese Green functions is represen-

enerating funct~onal ? 
~ed by the functional ~ntegral 

- c r DAD J; D~ exp i r d4 X (£(X) + j ll All +- ry ~ + J;1) I . 
(2.3) 

Z(j • 1J • 1J ) ., 
. ~ denote the sources of 

C is a normalization fact?r' J ll d' 7Jh, 1J pi nor fields • The integ-
. tent~al an t e s · 

the electromagnet~c po. lds satisfying the usual asymptot~c 
ration runs over a~l f~e ED is defined formally. I~ ~e want 
conditions*. In th~s way Q "th boundary cond~t~ons, then 

t m field theory w~ h boun-
to set up a qua~ u additionally to respect t ese 
the functional ~ntegr~l has . has to be performed on~y ?ver 
dary conditions; the ~ntegrat~on nditions This restr~ct~on 
fields that satisfy the bound~ry co ion of o• -functions directly 
. . 1 guaranteed by ~nsert 
~s most s~mp Y . 
into the functional ~ntegral 

r all fields as above. 
A than runs ove . . t The integration over ll . _ ~" ~ .. ~1-. ~"'"'" 1n"-"r1 ,qn 

It ;s ~mportant t:naL Lue i.ui..Lu..lu.::.;;:;.<J ... ~~ ~--~.o~ ~ver the volume 
~ h the usual ~ntegra ~o 

conditions does not c ange . . al Faddeev-Popov proce-
that the or~g~n . 

of the gauge group, so f ther calculations it ~s conve-
dure .'6/ is not changed • For ur. b functional integrals 

. sent the o -funct~ons y 
n~ent to repre 

( 
d S (X) grz (X) H (X, a ) AI'( X) (2 • 4) 

,) (nil p ( x ) ! _ ) = C f DB; exp i ; a11 • 
tLI' x:l- ai 

with 

dS; (X) (2.5) 

a 

ia are auxiliary fields which 
normalization facto: • B ( ~ de end on the variables 
the plate i only, ~.e., t ey p 

and C a 
exist on 
xa(a = 0, 1, 2). ia H ( a ) 

Now the integrand B ( x) all x, x 

the gauge transformation 

is invariant under 

/3,4/ 
Conditions see,for example, refs. . 
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(a, /1= 0, 1, 2). 

In some sense this reflects the fact that there are only two 
independent boundary conditions. In solving this problem in 
a standard manner we introduce an additional gauge fixing term, 
integrate over the volume of the gauge group, and rewrite (2.4) 
in the form 

o(nll~;v (x) lx ,a) = C(DBiexp i [IdS. (x) Bi~x) Hall(x, ax) lf(x) + 
3 i (2.6) 

+ - 1- ( dS. (x) dS. (y) Bia(x)_§- ~ Dc(x -y 0) rj/3 (y)] 
2{3 I I axa (JyfJ a a' ' 

where De (xa -ya, 0) is the usual Green function of the massless 
scalar field 

d
4 i p ( x-y) r __ J?_ e 

( 277) 4 -2 -·-.--- • 
-P -1 E 

(2. 7) 

taken at x3 - y 3 = 0. 
Having in mind these considerations the generating functio­

nal reads now 

.• -+ 
Zn(j, .,, ,,) = Ci/ununul/fi.ll/fexp i tld.x[~(x) + 

t jll All + ry t/1 + ~ 71] + 
(2.8) 

+ r d si (X ) ~ a (X) Hall (X, a X ) All (X) -

1 .J a a a c .-J/3 -- ( dS1. (x) dS. (y) ti (x)- --aD (x -Y. ,O)n (y)! 
2{3 1 axa ayP a a 

for the case of QED with boundary conditions. A further simplifi­
cation of this expression is desirable, however. Let us proceed 
in the following way. First we eliminate the term linear in the 
B -field by the follows shift of the integration variable All 

A ( x) -+ A ( x) - ( d S. ( z) g a( z) HaJ z, a ) D" ( z - x) 
ll ll I Z Vll 

and receive a term quadratic in the B -field. This term together 
with the gauge fixing term can be written as 

4 

struction that the just defined func­
It is clea~.;rom th: codnf. d on the three-dimensional subspace 

. (2 g) ll 1 i..(x-y) ~s e ~ne . . 
t~on • ·~~ 1 Th momentum space representat~on ~s 
xll(a~O,l. 2) on Y• e 

a 
3 -iPa(x-y) , P. Pp +1. Pa~tlo .. l (2.10) 

ki j ( X -Y) - J ..!!...J2. e -i [ I ( g {3- 2--2- ) hi I {3 r2 I J 
a{3 - ( 2rr)3 2 a r 

with 

1mr > o 

. This leads us to a final 
and h.' ~ exp in ai- aj \ as a 2x2 matr~x. 
closeld expression for the functional Zn 

7-(· - ) GfDADBD-7:00 exp i I fd1xl.l All(x)Kilv (a:t)Av(x) + 
'1:1 J .TI.TI ~ 'I' 2 

~Bey> + 

(2. II) 

4 - -
+ fd x(t/1 11 + .,.,t/J). 

. however we have to do with pertur-
For concrete calculat~ons, 11 ' rk remarkably good in QED. 
bative calculations which usua by ~o theory can be developed 

. · d for pertur at~on . . 
A formulat~on su~te f the Gauss integrat~ons ~n 
along standard methods. We per orm 
(2.11) and obtain 

(2.12) 
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Here the correspondin i 
~urthermore we have u;edn~~!r;~~l~:~~ all va:iables are dropped, 
1he electron propagator g notat1on: 

§c(X.-y) = j 6_ ._Um.___,. -ip(x....,) 

(217)4_P2+m2-if e 

The inversed kernel k;~ij defined by 

reads 

(2, I 3) 

"':..fij 3 
kaf] (X-Y)=j..tt.Jt_2J..{(g -~~)h-1 ~ -ip (x-y)a 

(217)3 r afl r 2 ii + r 2 Bii I e a • (2. 14) 

The inverse matrix 

( 

e- i r f a0 -a1 f • 

-1, e -Wiao-atl 

-1 

) (2. I 5) 

d~pends on the distance of the two 
r1ables A a d Bi · b · . 11 n a enter 1nto the 
lnatlon A -D H Bi only and b 

J1 J1V va a Y 

in the whole expression appears the 

soc ( c 
JlV X, Y ) "' 0 JlV( X - y ) + Q ;v (X, y ) 

plates only, Because the va­
expression (2.12) in the com­
means of 

(2. 16) 

combination of propagators 

only, and the generating functional reads 
(2. I 7) 

(2. I 8) 

6 

In (2. I 7) D~v is the usual free field propagator and D ~v is 
constructed out of the kernel 1.-:_~i i by taking into account 
(2,16), It has the form 

oc(x,y)"' 
JlV 

(2. 19) 

=fdS.(z)dS
1
.(z'')Dc(x-z)H (z,a )k 1~i(z,z')HJ:l):z',a ,)D~(z'-y). 

1 Jlp pa aJJ 1-f' Z p V 

Its momentum space representation reads 

- d3 c p 
D s-x,y) = f-

a (217)3 
j 

i rJ x3 -a.j h-1 i f'l y 3. -a.j 
(2.20) 

x e 1 i i e J 

The obtained result is quite remarkable: We have recovered for­
mally the standard perturbation theory of QED. There is only one 
essential change: the photon propagator D';w has to be substi­
tuted by 8 D~v· So the usual Feynman diagram technique remains. 
This has to be expected for general reasons. The advantage of 
our treatment is that it can be applied in principle to boun­
;!~~:,·-·:~l'.'" !'roblems on arbitrary manifolds and for non Abelian 
gauge theories, too, 

For further applications we list some important properties 
of the new contribution 5 ~ to the propagator: 

(2. 21) 

These relations can be proved by explicit calculations in mo­
mentum space or directly from its definition. Note that the va­
lidity of these relations is not restricted to the considered 
case of parallel plates. 

3. CASIMIR FORCE 

In the foregoing section we have derived the perturbative 
formulation of QED so that in principle arbitrary processes 
would be calculable. Of course, one has to check, that some 
version of renormalization theory works. However, we will not 
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work out such a program rather restrict ourselves strictly to 
the problem of the Casimir force, That means we are interested 
in the properties of the vacuum state only. As an intermediate 
step we calculate the energy density of the vacuum state. This 
quantity can be determined from the known Z -functional (2,16) 
and the explicit expression of the energy momentum tensor (2,2), 
In a formal manner we get 

<OI T00 (A, 0. 0) I 0> (3 • I) 

This expression contains Green functions with identified argu­
ments, so that it appears as a highly divergent quantity, and 
some regularization procedure has to be introduced. As the simp­
lest possibility we apply the point splitting for coinciding 
arguments, Our final task, however, is the calculation of the 
Casimir force which is a force per unit area, Its corresponding 
energetical quantity is the energy density per unit area 

E(a) "' ( dx
3 

<01 T00(A, ;j, !/;)I 0>. 
-oo 

(3. 2) 

This expression depends on the distance of the plates a= I a _a I· 
The Casimir force appears as its derivative with respect t8 a.

1 

Because we are interested in the Casimir force as a well de­
fined physical quantity only, we omit all a independent (nivPr­

~'>"'ui... ur nor: aivergent) terms in E(a). 

a) Casimir Force in Zero Order 

Let us consider the(e2)0 approximation, i.e., the free field 
approximation. Remember that we have posed no boundary condition 
on the spinor field, so that its contribution does not depend 
on the distance and can be omitted completely. There remains 
the contribution of the electromagnetic field to the energy den­
sity 

8 

<OI T001 0> 2 o 
( e ) 

a 2 a a ) _11v 1 1 a a 1 . " c ~--- + --- ---- !', + -- ( 1- --) --- ---- 1 D v( X, y) I 
a Y p ax() a YO 2 a a X/1 a XV /1 X_, Y 

(3.3) 

+ 2i D {' ( X, y ) l I . 
x->y 

For brevity we have introduced the scalar quantities 

(3.4) .1. g 11-V D" (X, y) 
2 /1V 

and D c( x -y) (2. 7). 

As a next step we have to calculate the energy per unit area, 
thereby we introduce o=(O,O,O, 0) as a point splitting parame­
ter so that 

E(a) = lim E0 (a) 
8_, o (3 .5) 

00 

=lim f dx
3
(-}-) (2"-E- _.§_- L --L)[4iDc(X-:Y)+2iDc(x,y)]l . 

8-.o -oo 2 axo ayo axp ayP x-.y 

The first term here contains the nornal free field Green func­
tion which does not depend on a, so it can be dropped. The se­
cond term can be rewritten as 

E( a) 

1 i m 
o-.o 

li m ( dx i a u D e ( 0 ; X • X + a ) 
a-.o -oo 3 ~s 3 3 

au = 

a2 a a 
2---· + --- ----
a~2 

0 a~ a fP p 

v ' s:-\ --3' ,_..I' 

As it will be shown in ref / 51, the Casimir force F(a)=-AEl(a) 
da 

is a finite quantity which needs no regularization or subtrac­
tions. This is contrary to energy expressions. 

b) Radiative Corrections to the Casimir Force 

2 • • •. 
As a next step we study the e -approx1rnat1on to the Cas1m1r 

force. Looking at the general expression for the energy density 
(3.1), (2.2) we see that the inclusion of radiative corrections 
means that we have to take into account higher approximations 
for the Green functions. These are the electron and photon pro­
pagators with self-energy insertions, Note that the self-energy 
part of the electron propagator contains the a -dependent modi­
fied photon propagator so that also the electron field contri­
butes now to the Casimir force. There are two diagrams 
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Too 

A: electromagnetic part of 
the energy density 

Too 

8 
B: electron part of 

the energy density 

The corresponding explicit expressions are 

<01 'IOo I 0> <A) 

(3. 7) 

=-i [-.la~ gl-
0
\.lo-.l)-L -LJ fdzdz'sDc,(x,z)lJIL'v'(z--2;')sD? (z',y)l 

2 y 2 a a X a X Ill/. V V x-. 
ll v 

and 

<OI T00 IO~B)., -i fdzdz'"D;,iz,z')T
00

Pix-z, x-.z')gPP'gAA' (3. 8) 

with 

2 d ~ ~ ~ 
T A(x-z,x-.z')=-ie Trly -- S(x-z)y S(z-z')y, S(z'-x)! (3.9) 

llVP llaxv P " 

and the polarization operator 171 

lT ( z -z') = -i e2 Tr I y S( z -z') y S( z '- z) ! . ll11.v 11. v (3. 10) 

Of course, all these expressions are divergent because of the 
weii-known UV-divergences. So one has to apply additionally are­
gularization procedure which we will not denote explicitly. In 
what follows it can be seen that the gauge parameter depending 
contributions either are independent of a or vanish (eq. 2.20) 
so that they are in fact not present. 

Let us first discuss the expression A. If we use explicitly 
the representation of the photon propagator (2.17), then it 
splits into three contributions 

3 
<OI T I O>(A) = I. T(i) 

00 i=O 

( ) 
1 · ' ' (3. II a) T

1
=-a gll11 fdzdz'Dc,(x-z)7T11 11 (z-z') D~ (z'-y)l 

2 xy llll v v x-+ y 
10 

T(2>~..!..a gllV fdzdz'Dc ,(x-z)1Jil'v' (z--2;') nc, (z' ,y) I 
2 xy llll v v x-+y 

(3. lib) 

T< 3 >=)_,a 
2 xy 

gl/.11 fdzdz' De ,(x,z)Ifll'v'(z-z')D~ (z',y)l . (3.llc) 
llll v v x-+y 

The first expression contains the contributions of standard QED 
without boundary conditions and can be dropped (a -independent). 
Into the other terms we insert the usual representation of the 
polarization operator 

a2 7r ( z) = ( g Ill/ --· 
jlv ,.. a z 2 

with the result 

_ ,..-~- ,..L,)J(z 2 ) 
azll azv 

T<2
> = 2a fdzlJ'(x-z) Dc(z,y)lx-+y xy 

T( 3 
) = axy r dz dz, D c (X, z) 1f ( z - z' ) D c ( z, . y) I X-+ y. 

(3. 12) 

(3.13a) 

(3.13b) 

The next step is the calculation of the energy per unit area. 
After the x 3 -integration we have 

(A2) 4 2 · "" -c 
E( a l = _lim ( -2) ( d ~ 1f ( ~ ) a a ( dx 3 D ( e a ; e 3 +X 3• X 3 + o) 

o-+u -~ 

(A3) 1 4 2 . 4 00 

E(a) = lim(-,--) ( d ~Jf<e ) a ( d z' ( dx 3 
o-+0 2 TJTJ -oo 

xDc(z; z3, x 3)-~-- -~,,Dc<ea+Z~+TJa; ~3 +z3. x3 +TJ3+o)ITJ=a' 
a a(,\ a(" 

This has to be inserted into the formula for the Casimir force 

d 
F( a) = - --- ,E( a) . 

da 
(3. 14) 

Let us now discuss the second contribution B to the energy densi­
ty, that contains the self-energy part of the electron. In 

s c -c eq. (3.8)we replace the photon propagator D llll, by Dllll' because 
this is the only a -dependent quantity in this formula 

(B) -c 
<01 T \ 0> = fdz dz' D , (z, z') T ,(x-z, x--2;'). 

~ PR WP" 

(3.15) 
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This leads us to formula 

E((U)) =lim r dz dz' D" (z, z') r dx T \ (x-z, X+o- z) 
a pA 3 OOp" 

a~o -- (3. 16) 

A "" -
= 1 i m ( d 

4 f rp ( () { dx 3 D; A ( (a ; f 3 + X 3, x3 + 8) 
a~o -oo 

for the energy per unit area. As an auxiliary quantity we have 
introduced 

(3. 17) 

In the Appendix we derive a special representation of 'P.A which 
is very suited (and also restricted) for our investigations 

2 

'pt..(0=~gp/..la((J{((2 )+ ~ ~p aa( 2 enc(ll 
p 0 

(3. 18) 

which relates all quantities to be calculated in perturbation 
theory to the standard polarization operator. 

Let us collect finally all contributions to the Casimir force 
into the final expression 

.. . -
F(a) =lim(-l)_:_ll (d<+((i8(f) -lf(("'))aa + 

B~o da ss 

+[_a _ _!!_ f2~((2)] __ a2] x ( dx3D"{("a; (3+X:I' X:l+8)-
a ( P a ( P a(~ _,.., (3. 19) 

- ( d 
4 0{ ( e ) a TjTj ( d .J Z , f dx 3 X 

o"c , , a a D-.. " , l: 
X za;Z3+X3)a(P aT (r,a+Za+Tiu:s3+Z'3· XJ+7j3+8)!7j=01 

p 

In ~he subsequent paper/S/ we will explicitly show that this 
expression is finite and calculate its values in the physical 
reasonable limit a -+oo. 

APPENDIX 

The aim of this appendix is the foundation of eq. (3.18) 

(A. I) 

for the quantity 'pt..· We start with the investigation of the 
more general expression 

T ,(()=(d 411T ,(-(-Tj,-Tj). 
JlVpl\ JlVPI\ 

(A. 2) 

T11 vpA is given by the Feynman diagram 

and satisfies the relation 

(A. 4) 

_SLT t..<x-z, x-z')=-hf (x-z)-LB(x-11:')-J-7\ (x-11:')-Z-a(x-11:') 
a X Jll' p 2 p A a X v 2 p A a xV 

J1 

which connects T
11

vp/.. with the polarization operator ~Jlv· We ba­
sically use this relation for the proof of eq. (3.18). If we 
consider eq. (A.4) as a differential equation for T

11
vpA• then 

its general solution appears as a sum of a special solution of 
this equation and the general solution of the homogeneous equa-

tion-iL-Th , .. o. To this representation ofT ,,.,Th ,+Ts, a X JlVP" JlV p" JlVP" JlVP" 

there c~rresponds via eq. (A.2) an analogous splitting of 

h 
r ... ~' 

s 
+ T .... ~\ ( () . (A. 5) (() = ([) 

~..-,. .... 
f . h Th At 1rst we prove r00 A =0. This would follow from OOpA=O. For 

simplicity we perfor~ the argumentation in momentum space. 

T , ( x -z, x -11:' ) 
!-LV PI\ 

dp dp ' i p ( x -z ) + i p ' ( x -z ' ) _ 
( ------ e TJlvpA (p,p'). (A.6) 

( 2rr )8 

The homogeneous differential equation now reads 

This equation is true in all systems of references, of course, 
also in the system with (p +P')k ~ 0. If there are no singulari­
ties at this point (as it should be because T11vp/.. originates 
from a Feynman diagram), then we have 

(Po+P'o) Toh ,(p,p')< 'lk o=O 
!'P" p+p = 

and 

for p 0 
+ p' 0 .J 0. If we want to extend this 
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relation also to p0+p'0 =0, then we have again to take into ac­
count that ~~vpA is a Feynman expression whi£h excludes pos­
sible terms of the type o(p0-p'0). So, we get T0~pA (p,p')(p+p')k=o=O. 

Let us now consider the remaining inhomogeneous equation in 
momentum space 

(P+P')~ T~vpA (p,p') = -! P~ lfpA(p)- -}pvlfpA (p') (A.8) 

4 "' 
lf d p i px 1r 

( x) = I --- e 11 ( p) • 
~" ( 2rr) 4 W 

(A.9) 

The special solution will be constructed by explicitly using 
a kinematical decomposition of T A' Here we take into account 
that r pA appears only in connecg~gn with D~/ which is trans­
versal, so that terms proportional to p , pA can be omitted. 
This becomes clear if we rewrite eq. (A.~) in momentum space 

< ,.) r· ctE -i~·~' .f 71wpA <, = ---e ,wpA(p,-p). 
( 2rr) 4 

(A. 10) 

To solve the inhomogeneous equation (A.8), we start with the 
ansatz 

'r ~ ( n n , l tT I CT h n n h n "' \, .... ...... , I, .... , ..... L 1 
l!i'pt\ "pt\ "Ill' -- rli ,.,,~I r ,, ..-,, ., 2 ... ,, r ,,v:l' "IL .,,,"-l' .(A. II) 

+pp[ ... ]+ ... 
p A 

The insertion of (A. I I) in eq. (A.8) gives the following rest­
rictions on the coefficients 

1 1 
h = 2 [ u ( b1 + b~) + ( s -t ) ( b I - bl) ] + -2 t 1f ( t ) (A. 12) 

h = - ~ {u(b
2 

+ b
3

) + (s-t) (b
3 

-b
2

)1 + -} s1T'(s) (A. 13) 

s = p2 . t = p '2. u = ( p + p') 2. 

" Therefore T1wpA ( p, -p) can be represented by 

TIL~PA (p,-p) = gpA[gW h I+P~Pv(bl + b2 -b:1 -bl) lls=t, u=O' (A.I4) 

We are left to determine h and b 1+ b 2 - b 
3 

-b 
4 

for s = t and u = 0 

The compatibility of eq. (A.I2) and (A.I3) gives 

U ( b I - b2 - b3 + b 4 ) + ( s -t) ( b I+ b 2 -b 3 -b 4) = t lT ( t) - sff( s) 
14 

(A. IS) 

,.. 

which leads for s = t , u = 0 to 

b + b - b - b "' - ( ji( s) +- s ii' ( s) ) 
I 2 3 4 

then both equations (A.I2), (A.I3) coincide and give 

1 ,.., 
h(s) = -- sTl(s). 

2 

This leads finally to 

-" 1 2 - 2 2-, 2 
T,vp' (p, -p) =g , [(g --P -p p )IT(p ) -p p p 1T (p ) ] 
~ ~ r~ 11v 2 ~ v ~ v 

which gives together with rh , 
OOp~ 

0 the desired result. 
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6opAar M., Po6aw~K A., a~~opeK 3. E2-83-488 
3~eKT Ka3~M~pa C T04K~ 3peH~R KBaHTOBO~ Teop~~ nonR. 
npo~eAypa KBaHTOBaH~R ~ Teop~R B03My~eH~~ B KOSap~aHTHO~ Kan~6pOBKe 

Herp~s~anbHaR rpaKTOBKa 3~eKTa Ka3~M~pa c T04K~ 3peHHR KBaHToeo~ reop~~ 
nonR Tpe6yeT KBaHTOBaH~R CnHHOPHO~ 3neKTPOA~HaM~K~ C rpaHH4H~M~ ycnoB~RM~ 
B KOBap~aHTHO~ Kan~6pOBKe. rpaH~4H~e ycnoB~R pean~3YOTCR nocpeACTBOM ABYX 
napannenbH~x 6ecKoHe4HO TOHK~x ceepxnpoBOAR~~x nnacr~H. ~ccneAOBaHHe ee­
AeTCR C noM~bO MeTOAa ~YHK~~OHanbHOrO ~HTerpana, noKa3aHO, 4TO B Teop~~ 
B03My~eH~R 06~4H~e npae~na ~e~HMaHa OCTaOTCR B CHne, Tpe6yeTCR TOnbKO 
MOA~~~Ka~~R ~OTOHHoro nponaraTopa, 0AHHM ~3 AOCTO~HCTB nOAXOAa RSnReTCR 
B~BOA 3aMKHyroro e~pa*eH~R AnR MOA~~~~~poeaHHoro ~OTOHHoro nponararopa, 
4To,e ceoo o4epeAb, no3eonReT RBHo B~4~cn~Tb nernee~e AHarpaMM~. B~4~cneH~ 
AO BTOporo nOPRAKa no Teop~~ B03My~eH~~ PaA~a~HOHH~e nonpaeK~ K B~pa~eH~O 
3Hepr~~ BaKyyMa, B ~Tore nony4eHo ~OPManbHOe B~pa~eH~e BO BTOPOM nOPRAKe 
no Teop~~ B03My~eH~~ AnR C~n~ Ka3~M~pa, KOTOpoe 6yAeT o6CY*AaTbCR B cne­
AYIOUie~ pa6ore. 

Pa6ora B~nonHeHa B na6oparop~~ TeopeT~4eCKO~ ~~3~K~ 0~~~-

Bordag M., Robaschik D., Wieczorek E. E2-83-488 
Quantum Field Theoretic Treatment of the Casimir Effect. 
Quantization Procedure and Perturbation Theory In Covariant Gauge 

A nontrivial quantum field theoretical treatment of the Casimir effect 
demands the quantization of spinor electrodynamics with boundary condi­
tions In a covariant gauge. The boundary conditions are realized by two 
superconducting infinitely thin parallel plates. As technical tool we use 
the path integral method. It is shown that in perturbation theoretical 
calculations the standard Feynman rules remain valid up to a modification 
of the photon propagator. One advantage of our procedure is the derivation 
of a closed expression for this modified photon propagator which allows 
the explicit calculation of loop diagrams. Up to the order e2 we determine 
the radiative corrections for vacuum energy expressions. We end up with 
a formal express ion for the Casimir force up to the same order in e2 which 
wii 1 be discussed in a following paper. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 

Communication of the Joint Institute for Nuclear Research. Oubna 1983 


