


INTRODUCTION

Recently there has been a renewed interest in higher dimen-—
sional theories of the Kaluza-Klein type 712/, In these theories
we start with the Einstein Lagrangian in dimension D=4+ p. It
is then possible to associate a compact space with extra coordi-
nates. The ordinary 4-dimensional physics is then obtained by
a dimensional reduction from the (4+ p)-dimensional theory:
it arises as a low—energy approximation of the latter.

This idea has been revived several times, in particular, in
connection with a possible unification of the gravitation with
gauge fields, or in the context of the fiber bundle approach
to Yang-Mills theories, when trying to associate the extra
coordinates with the group space. The simplest dimensional
reduction has been fruitful for the supersymmetric theories
because it is possible to derive in this way extended supersym-
metric theories from simple ones but in more space-time dimen-—
sions /3. A connection has been shown between N = 4 Yang-Mills
in 4 dimensions and N =1 Yang-Mills in 10 dimensions’4/, and
N = 8 supergravity in 4 dimensions and N =1 supergravity in
Il dimensions. Moreover, the dimensional reduction explains
some of the hidden symmetries in extended supergravity. All
these results were obtained in the framework of the component
formalism.,

On the other hand, the superspace and superfields provide
an elegant and compact description of supersymmetric theories,
They simplify the addition and multiplication of representations
and are very useful in the construction of interaction Lagran-
gians. They also simplify the calculation of radiative correc-
tions in quantized supersymmetric theories. The Feynman rules
for supersymmetric theories may be stated in terms of super-
field vertices and propagators. It already becomes easy to
understand why the divergencies so miraculously cancel out
in the supersymmetric theories.

The superfield formulation is also very profitable and
essential in the investigations of such a problem as the fini-
teness of the theory. Recent results /% show that the N = 4
Yang-Mills theory would be finite to all orders in perturbation
theory provided the unconstrained N = 4 superfield formula-
tion exists. It was also argued that even under weaker assump-
tions, namely, that the uaconstrained N=2 superspace formula-
tion of the model exists, the finiteness could still be proved/q/
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That's why it would be advantageous to find a superfield
formulation of supersymmetric theories in higher dimensionms.
The first step in this direction, is to investigate the field
content of superfields in D dimensions.

In this paper there is derived the field (i.e., SO(D-1,1)
irreducible representations) content of N =1 superfields in
D =6,8,9,10,11 dimensions. The paper is arranged as follows:
in the first part we make a brief review of the possibility
for existence of the Majorana spinors in different dimensions.
In the second part some necessary information is given about
irreducible representations of SO(N) groups. In part third we
derive a field content of N =1 superfields in D =6,8,9,10,1!
dimensions.

1. MAJORANA SPINORS IN D DIMENSIONS

The superspace in D dimensions is spanned by the coordinates
(x#,e ), where Xy denotes the D-dimensional space—time variable
and 6 are Majorana or Majorana-Weyl spinors. Consequently, it
is essent1a1 to know in what dimensions Majorana or Majorana-
Weyl spinors can be defined.

The Dirac spinor in D dimensions has Z[D/2] complex com—
ponents. For D even, it is a reducible representation with res-
pect to SO(D) and it decomposes 1nto two 2 D/2-1 component Weyl
Dyj.uul.b n anJuLaua oy.LuuA. +40 a DPLLAUL L_LAC ULLdL x_ouudec UL
?1ch is proportional to its Majorana conJugate and has

D/2] real components. A Majorana-Weyl spinor obey both the
Weyl and Majorana conditions and has 2D/2=1 real components.

Many of its properties are known from general group-theore-
tical arguments about the irreducible representations of SO(D)
group. We briefly reproduce them here using e y11c1t1y the pro-
perties of the Dirac matrices in D dimensions

The Dirac matrices obey the Clifford algebra

t S
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where I', can be represented by Z[D/ﬂ X 2[D/2] unitary matri-
ces. Since the matrices I'); and I'j (complex conjugated) satisfy
the same Clifford algebra and the representation of I' matrices
is irreducible, there exists an invertible matrix B such that

r, =aB"1r;B,
where a = +1,

The matrix B obeys the following conditions
B*B =1, B*B =81, B=t1.

From the Majorana condition we may find that the Majorana spi-
nors satisfy the reality condition

P* = BY.

But this implies 8 = If B =-1 and we have an even number
of spinors ¥!, one can impose the reality condition

\p*‘=9”3\pj, (1.1)

where 97 must be a real antisymmetric matrix. We can consider
it to be a symplectic metric, in this case the relation (1.1)
is preserved under transformations of y! by the group U Sp(2n)
for i =1,2,...,2n . Using the Scherk method’® it is easy to
find that 8 must be a function of a,t and D, periodic in D
with period 8 and in t with period 4.

In the case of one time-like dimension, Majorana (a = -1,
B=1), pseudo-Majorana (a= 1, B =1), extended (pseudo)-
Majorana (8 = -1), and Majorana-Weyl-spinors can be defined
as follows:

Majorana (a= -1, 8 = 1) for D =2,3,4 mod 8 (1.2)

pseudo-Majorana (gq=1, 8 = 1) for D = 2,8,9 mod 8 (1.3

extended-Majorana (a =-1, B ——]) for D=6,7,8 mod 8 (1.4)

extended-pseudo-Majorana (q =1, 8= -1) for D = 4,5,6

mod 8 (1.5)

Majorana weyt ful D =2 wud O 0.6

extended-Majorana-Weyl for D = 6 mod 8 (1.7)

We can define N = 1 superspace and superfields in D = 2,3,4,
6,8,9 mod 8. The superfield expansions are well known for
D=2,3,4. We will investigate them in D = 6,8,10,11. The dimen-
sions greater than 11 are not interesting for us because after

the dimensional reduction they lead to an N > 8 theory, i.e.,
to the theory with spins greater than two.

2. IRREDUCIBLE REPRESENTATIONS OF SO(N)

The group SO(N, C) has two complex-analytical series of ir-
reducible representations. Any representation from the first
one is determined by and determines the greatest weight m =
=(m,, Mg, .., M), where m are integer numbers obeying the fol-
lowing conditions

m o >my2..2m,_ > |m |, N=2v, (2.1)
m,>my, >..>2m,_>m, >0, N=2+1, (2.2)
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Any representation from the second one is determined by and
determines the greatest weight m = (ml,mz,...,mv),where m, are
half-integers obeying (2.1) and (2.2). The irreducible repre-
sentations of SO(N,C) associated with an integer greatest
weight m are tensorial. The remaining representations are
called spinorial. The fundamental spinorial representation in
the case of SO@v +1,C) is with a greatest weight

m=(1/2, 1/2, ..., 1/2) .

In the case of SO@v, C) there are two fundamental spinorial re-
presentations m4 and m_, where

m,

12, 1/2, ..,1/2),

m.

1/2, 172, v, =1/2) .

The objects which transform with respect to this representations
are called spinors of I and II tyge. All these things take
place also for the group $0(p, q)/ / .For tensorial representa-
tions m; are all integer and stand for the number of boxes in
the rows of the Young tableau. The representation is therefo-
re a tensor and {my, my,e,m_y ,m,] gives the symmetry of 1its
indices. In the spinorial case m  are all half- integer and, the

vanvhcantabilon 1a A AmTmAr_FAnony thammarinal 1mAd3ann AF hinh
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have the symmetry [m-1/2, mg—1/2,c,myy -1/2, m, ~1/2]The
tensors and spinor-tensors fulfill a convenient trace condi-
tion obtained by contraction with 75, and I'’ matrices which
guarantees their jrreducibility. In both the tensorial and
spinorial cases m; are also eigenvalues of the complete set
of Casimir operators. We note that one writes the indices of
the tensors and tensor-spinors always in the form of a Young
tableau rotated by 90°.

We have computed the dimension of the re resentations using
the standard formulae of the group theory’10/, The dimension of

a given irreducible representation [ml,mz,...,mV] is
-1
. 2 Vo2 ,2
dim(m g ,eeepmy) - oy ~ty), (2.4)

@ -2)1 (v -4)1...2!P >‘q
where Ep = |mp1+l’ —~P in the case of 80Q(2v) and

' (L,+1) ...(2EV+1)A(E)
dimlm _,...,m ] = o¢ +2 +1), (2.5)
(v-1)1(v—8)1 .. 311 p<a 7 9 '

where A(Q) = (L;-03) ... Cyoy-) = I<I (l,-y) in the case of
so@v +1, C). P

To find the superfield expansion in terms of SONN) irreducib-
le representations, we must know the decomposition into irre-
ducible representations of the Kronecker product of two SO(N)
representations. Recently, a relatively simple algorithm has
been proposed for this operation

Actually, this method reduces to the calculation of a finite
number of products of generalized Young tableaux (GYT) for any .
two given SON) irreducible representations. The GYT is a ta-
bleau which can include "negative" boxes. The product of two
GYTs can be regarded as a natural extension of the usual product
of two SUN) Young tableaux. Another attractive feature of this
technique is that the rules for products involving tensor or
spinor representations are essentially the same.

3. FIELD CONTENT OF SUPERFIELDS

The superfield ®(x, §) 1is a field in the superspace (Xu.ea)
which should be understood in terms of its power series expan-—
sion in 64

~-a {aB...¥
i, 0) =A+0 l/la+...+0a0ﬁ ...O}IM l,

ol . . - .
where ¥ 1s a Majorana or Majorana-weyl 2L+~ ~' dlmensionai autli-w

commuting spinor. The symbol like la, B, y) means antisymmetri-
zation. This expansion is finite, because of the anticommuta-
tion of the 0’s. The superfield dIESé:ribfs a finite set of or-
dinary fields- the, coefficientsMi®P ¥l of its power expansion
in@. These fields are, in general, a reducible_representation
of the D-dimensional Lorentz group, i.e., of SO(D-1,1).We
must decompose them into irreducible representations of

SO -1,1). This 1is equivalent to the decomposition of an antisym-
metrized Kronecker product of 6,6 ...0. into irreducible repre-
sentations. To solve this problem, we shall use the technique
developed in ref.’1 . It is more simple in the cases we need

1) D=8, N =1 superfield

In D =8 the superspace has eight bosonic and 16 fermionic
coordinates. The Lorentz group is SO (7.1). The irreducible re-
presentations are given by a set of 4 numbers [A 1,)\2,)\3,)\ 4]. The
pseudo-Majorana spinor @ is a reducible representation of
SO (7.1). It splits into two 8-dimensional Weyl spinors
o1 /2, 1/2, 1/2, 1/2) and 67 1/2, 1/2, 1/2, Z1/2] that are
irreducible representations of S0 (7.1). We shall expand
D (x, 6%,67) in powers of % and 07



In Table-1 we present the SO (7.1) representations contained
in ®x,6%67) up to and including the 860 -sector (higher sec-
tors can be obtained by reflection around the latter). Besi-
des we wrote only terms with 0+m6‘“0n2n).The terms with
6*"9 "™can be derived from®these with §*™9™ by the mirror-conju~
gation (the mirror-conjugated of the irreducible representation
A =[A1,A2,.",Ap_1,kp] is the representation A =[X1,A2,.“,N}_P-APD.

2) D=9, scalar superfield

In D =9 the superspace has 16 fermionic coordinates. The
Lorentz group is SO (8.1). In this case the irreducible represen-
tations are given by a set of 4 numbers [A;,Ap,Ag,A4]. The
pseudo-Majorana spinor 64 is an irreducible representation of
SO0 (8.1) and is given by [1/2, 1/2, 1/2, 1/2]. The dimensions
of representations are calculated by the use of (2.5). The
SO (8.1) representations contained in ®(x,6) are presented
in Table 2, up to the 86 -sector.

3) D=10 scalar superfield

In the 10-dimensional space we can define Majorana-Weyl
spinors. The Majorana spinor is 32-dimensional and in this
case it splits into two l6~dimensional Majorana-Weyl spinors.
The Lorentz group is S0 (9.1). Its representations are charac-
tetized Dy the greatest welght [Al,Az,Aa,A4,A gle We calculate
the dimensions of representations with the help of (2.4). We
have two possibilities to define a superspace, namely, a "chi-
ral superspace (x#,0+L where 6% is the [1/2, 1/2, 1/2, 1/2,1/2]
representation of S0(9.1) and full superspace (x#,6+,€-),where
= is the [1/2, 1/2, 1/2, 1/2, -1/2] representation of SO (9.1).

In Table 3 we write the expansion of the N=1, chiral scalar
superfield ®(x,6%) in terms of SO (9.1) irreducible representa-
tions up to the 8f9-sector. The field content of the full N=1

superfields is very large and complicated and we do not give
it here.

4) D=11 scalar superfield

In this case the Lorentz group is SO (10.1). The spinor coor-
dinate is 32-dimensional. It is the [1/2, 1/2, 1/2, 1/2, 1/2]
irreducible representation of SO (10.1). The dimensions are cal-
culated according to (2.5). The result is given in Table 4 up
to the 136-sector. The l4th, 15th and 16th 6-sectors are not
explicitly given because they have a very rich structure and
high dimensions (i.e., carry high spins) and are not intersting
for the physical applications.
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5) D=6 scalar superfield

As we have seen in section two, in the 6-dimensional space-
time one can define only extended-Majorana or e§tended-Ma30ra—
na-Weyl spinors. The Majorana spinor is a ?educ1b1e.repres§nta—
tion of the SO0(5.1) group and decomposes 1into tvg irreducible
four-dimensional Majorana-Weyl spinors gt and 0. They are
respectively [1/2, 1/2, 1/2] and [/2, 1/2, -1/2] representa-
tions of SO(5.1). The spinors 7' and 67 transform according
to the fundamental representation of the group USp(2N) for
i=1,2,...2N.In analogy with the D =10 case we have two pos—
sibilities to define a superspace and superfields heFe. In
Table S5 we give the expansion of the "chira%" superfield
®(x, 87). The internal symmetry group chosen 1s UsSp(2) = SUR).
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Table 1. D= 8 Scalar Superfield

1
. Dimen-
e -sector Representation sion
6" [0.5,0.5,0.5,0.5] | 8
g+? [1,1,1,1] 28
00~ (1,0,0,0] 8
(1,1,1,0] 56
——9+3 [1.5’005,‘)05,-005‘] 56

6**9” |[0.5,0.5,0.5,=0.5]| 8
[105,005’0'5,005J 56
[1455145,0.5,=0.5]| 160

o** |[2,0,0,0] 35
1,1,1-1] 35




Table | (continued)

P -sector Representation Dimension |
0*°0" |[251,1-1) 224
[2,1,0 q 160
1,1,1,0 56
(1,9,0,0 8
9+1 (1,1,0,0] 28
| [1,1,0,0] 28
(2,1,1,0] 350
[2,1,1,0 350
(1,1,0,0] 28 |
""6“"'"“"1‘3 0.5,0.5,-0.5]| 56
L ——
ot o [2.5,0,5,0.5,_0,ﬂ 224
(1.5,0,5,0.5,0.,5 56 |
1.5,1.5,1,5,-1.5 112 |
LeDyledyUeDy=Usd 160
. __\l0.5,0.5,0.5,-0.9 8_
e'e” [2.5,1.5,0.5,-0.5)| 840 |
1.5,1.5,1.5,-0.5] 224 |
[1.5,0.5,0.5,-0.5] 56 |
[2.5,0.5,0.5, 0.5] 224
_______ [1.5,1.5,1.5,-0.5] 224
_877  [[,1,0,00 28
¢’ |[2,1,1,-1] 224
(2,1,0,0 160 j
1,1,1,0] 56 |
N [1,0,0,0 8_|
g*' e |[3,1,1-1) 840
2,1,1,0 350 |
,0,0,0) 35 |

Table 1 (continued)

H

f0-Sector |. Representation | Dimension |
9* 8"V [ I2,0,0,0] 35
L,1,0,0] 28
[2,1,1,0] 350
[2,2,2,=2] 294
A JIL]-LOLO] 28
6*°6° [3,2,k,0] 1400
[2,2,1,0] -840
[2,2,1,0] 840
[1,1,1,0] 56
9_*:_ . [') %5,0.5,9.5,0,5] - 8]
00" h.5 1.5,0.5,-0.9 160
1.5,0.5,0.5,0,5 56
- 03,0.5,0.5,-0, 8
6’9 |[2.5,1.5,1.5,-1.9 A7
[2.5,1.5,0.5,-0.9 840
[1.5,0.5,0.5,-0.9 56
{

o**g® |[3.5,1.5,0.5,-0.9 | 2800
[2.5,0.5,0.5,-0.9 224
[1.5,1.5,1.5,0. 840
, [1.5,0. 5,0.510.3___~~__§§

o' [
GG I —
1,1,1 28] ‘______é_6-
6*°6* | [2,1,1,0] 350
{1 y1,0, O] 28
[1 y1,0, 0] 28
P:lalgq 350
| |.1 y1,0, OJ | 28
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Table 1 (continued)

h-b—Sector Representation Dimension
+5 -3
0 6 |[3,2,2,-2] 1680
[3,1,1,0) 1296
[2,1,0,0] 160
9#“9'“ (4,1,1,0] 3675
[2,2,2,0] 840
[2,1,1,0] 350
(2,0,0,0] 35
Table 2. D =9 Scalar Superfield
0 Representation T Dimen-
sector sion
|G [10.5,0,9,0.5,0.51 | 16
b2 L,1,1,d 84
| (k1,00 | |36
8* 1.5,1.5,0,5,0.5] 432
[L.5,0.5,0.5,0,5] | 128
2,y2,1,0] 1650
6"
i,1,1,1] 126
[2,0,0,0] 44
2.5,1.5,0,5,0,5] 2560
o8 0.5,1.5,0.5,0.5] 432
[1.551.5,1.5,1.5] 672
fL.5,0.5,0.5,0.5] 128
2.5,0.5,0.5,0.51] 576
|

Table 2 (continued)

0 . Representation Dimen-
i sector sion
[272’1’]-] 2772
. [2,1,1,1] 924
6 B,1,0,d 910
[2,1,1,0] 594
I ,2,1,11 2772
L,1,0,0] 36
[3.5,1.5,0.5,0.5 9504
6° |[B.5,0.5,0.5,0.5 |1920
©0.5,0.5,0.5,0.5 16
[4,1,1,1 12375
of (4,0,0,0 450
o,1,0,d 36
D.,0,0,d.' 9
~Table 3. D =10 ""Chiral" Scalar Superfield
i 0 Representation Dimé;—
sector sion
9+ [0.5,0.5,0.5’0.,
0.5] 16
_9?____}},1,1,0,01 120
£3 [105,105’005’005,
b -0.51 560
G.,l/ 2,2,0,0, 0] 770
[2,1,1,1,-1] _ _ [RO50
[2.5,105,0.5,005,
9+5 [1.5,105,1.5,1.5, 6
-1.5] 72
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Table 3 (continued)

6 Representation ‘ Dimen-
sector sion
p+e [3,1,1,0,0] 4312
[2,2’1,1,—]] 3696
bt [3.5,0.5,0.5,0.5,0,5] | 2640
[2.5,1.5,1.5\,0.75,-0.5]8800
4,0,0,0,0l 660
e+g [2,2,2,0,0] 4125
L D,l,l,l,O] 8085
Table 4. D=11 Scalar Superfield
‘—T_T pnr\rneanfnf"nn— D%men_ '
isector St _ SLT‘
¢ |{0.5,0.5,0.5,0.5,0,5] 32
,1,1,1,0] 330
6* [1,1’1a0’0] 165
[0, 0, 0,0, 0] 1
\ [1.5,1.5,1.5,0,5,0.,5] | 3520
6" |.5,1.5,0.5,0.5,0.5] | 1408
[0.5,0.5,0.5,0.5,0.5] 32
[2a2,1’1’13 17160
t,1,1,1,0] 330
e” [1,1,1’0’0] 165
[2,2,1,1,11 17160
[2,2,0,0, 0] 1144
[0,0,0,0,0] 1

Table 4 (continued)

secteor Representation Sigﬁn_
[2.5,1.5,1.5,1.5,1.5] | 36960
s |25, 2.5,1.5,1.5,0.5] | 160160
0 [1.5,1.5,1.5,1.5,1.5] | 4224
[0.5,0.5,0.5,0.5,0.5] 32
[3,2,2,1,1] 289775
6° |13,3,2,2,0] 616616
0, 0,9,0,0] 1
[3.552.5,2.5,1.5,1.5] | 2013440
[2.5,2.5,2.551.5,1.5] | 274560
6F |[2.552.5,2.5,1.5,0.51 | 292864
[3.5,1.5,1.5,1.5,1.51 | 183040
[3.552.5,1.5,0.5,0.,5] | 573440
e 5,1.5,1.5,0.5,0,5] | 29512
[45352,2,1] 7900750
g [[3,3,3,1,11 1115400
0 3,3,3,1,1] 1115400
[43351,0,0] 386750
¢5,2.5,2.5,2.5,0,5] | 8580000
" .592.552.5,1.5,0,5] |[9123840
0" 5.5,2.5,1.5,1.5,0.5] | 1034880
+5353¢5,3.5,1.5,1.5] | 6864000
©5,3.553.5,0,5,0.5] | 2446080
5,3,3,3,0] 2241525C
B 3242,2,0] 188760
y433,2,1] 3930927¢C
y4,4,0,0] 2598960
1
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Table

4 (continued)

—

Representation
sect.

Dimen-
sion

552.5,2,5,2.5,0,5]
e554.5,2.5,2.5,0,5]
+553.5,3.5,1.5,0,5]
553:5,3.5,1.5,1.5]
+55345,3.5,1.5,0.5]
13.5,3.5,2.5,1.5,0,5]

6“
D

251680
66193920
43130880 |
6864000 !
6726720 |
5857260

B,3,3,3,11]
3,3,3,2,01
B3,3,2,2,1]
35525 2,0]
y443,3,0]
o' Ps4,4,1,0]
,4)4,2)0]
4,454,1,1]

,3’3’1,1}
3353,2,0]
,3’3’1,01

9353,2,0]

e

1656369

1002001 !
1274130
58953960
15169440
61725300 |
19059040
18232500 i

NN N AN +
IO VG OO0 ’

6891885
4332042
6891885

¢5393¢553.553.5,1.5]

9‘3 g.5’405’2o5,205,005]

3.543¢55345,24.5,0,5]
©552¢552.55245,0,5]
[2.5,2.5,2.5,2.5,0,5]
¢533¢553.5,2.5,0,59]

¢534.5,2.5,2.5,0.5]
.5,305,3.5,2.5,0.5}
[4.5,3.5,2.5,2.5,0,5]

[4.514'05,4.5)115’0.5.]

8328320

8968960

1921920
251680
8968960
66193920

66193920

59488000
35143680
91914240

Table 4 (continued)

6 . Dimen-
sect. Representation Sipn

p] 471435600 N
_e¥ 565722720

ew 601080390

Table 5. D=6 "Chiral" Scalar Superfield

0 sector Representation Dimension field
o+ [0.5,0.5,0,5]* ¥ =8 (7
o - ¢ )
02 [1:0,01(”) 6V =18 4ﬂ 7
Ll,l,l] o 10 —7-/4”?
9"‘3 [0‘5’005"‘0' 53(“’” 4((‘]” =16 ka‘”;jz)
[1.5,05,0.5]% 20¢ = 40 W5
[0,0,01'4%" LkE 5| 4
Y (0 ko) o
¢ [1,1,0] 15( = 45 TCpﬁk
| [2’0,01 20 E ¢
(rv
55 [1.5,0.5,-0,51" 20", =40 | F 7
[0.5,0.5,0.57 ‘W | gt _ 44 | 304K
4‘5 [1’1’—1] ]‘-’o —F_;/"”S’
g [1,0,07 (J) 6/ =18 | p, W
6*‘; [005,005’—005jk 4,K = 8 ﬁdt
6+g EO’O:OJ 1 C
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