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INTRODUCTION 

Recently there has been a renewed interest in higher dimen
sional theories of the Kaluza-Klein type /1,2/. In these theories 
we start with the Einstein Lagrangian in dimension D ~ 4 + p. It 
is then possible to associate a compact space with extra coordi
nates. The ordinary 4-dimensional physics is then obtained by 
a dimensional reduction from the (4+ p)-dimension;Jl theory: 
it arises as a low-energy approximation of the latter. 

This idea has been revived several times, in particular, in 
connection with a possible unification of the gravitation with 
gauge fields, or in the context of the fiber bundle approach 
to Yang-Mills theories, when trying to associate the extra 
coordinates with the group space. The simplest dimensional 
reduction has been fruitful for the supersymmetric theories 
because it is possible to derive in this way extended supersym
metric theories from simple ones but in more space-time dimen
sions /31_ A connection has been shown between N = 4 Yang-Mills 
in 4 dimensions and N =I Yang-Mills in 10 dimensions 141, and 
N = 8 supergravity in 4 dimensions and N ~I supergravity in 
I I d1mens1ons. Moreover, the dimensional reduction explains 
some of the hidden symmetries in extended supergravity. All 
these results were obtained in the framework of the component 
formalism. 

On the other hand, the superspace and superfields provide 
an elegant and compact description of supersymmetric theories. 
They simplify the addition and multiplication of representations 
and are very useful in the construction of interaction Lagran
gians. They also simplify the calculation of radiative correc
tions in quantized supersymmetric theories. The Feynman rules 
for supersymmetric theories may be stated in terms of super
field vertices and propagators. It already becomes easy to 
understand why the divergencies so miraculously cancel out 
in the supersymmetric theories. 

The superfield formulation is also very profitable and 
essential in the investigations of such a problem as the fini
teness of the theory. Recent results 151 show that the N = 4 
Yang-Mills theory would be finite to all orders in perturbation 
theory provided the unconstrained N = 4 superfield formula-
tion exists. It was also argued that even under weaker assump
tions, namely, that the U11constrained N = 2 super space formula
tion of the model exists, the finiteness could still be proved 161 
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That's why it would be advantageous to find a superfield 
formulation of supersymmetric theories in higher dimensions. 
The first step in this direction, is to investigate the field 
content of superfields in D dimensions. 

In this paper there is derived the field (i.e., SO(D-1,1) 
irreducible representations) content of N =I superfields in 
D =6,8,9,10,1 I dimensions. The paper is arranged as follows: 
in the first part we make a brief review of the possibility 
for existence of the Majorana spinors in different dimensions. 
In the second part some necessary information is given about 
irreducible representations of SO(N) groups. In part third we 
derive a field content of N =I superfields in D = 6,8,9, 10, II 
dimensions. 

I. MAJORANA SPINORS IN D DIMENSIONS 

The superspace in D dimensions is spanned by the coordinates 
(x IL' ()a), where xp. denotes the D -dimensional space-time variable 

anil ()a are Majorana or Majorana-Weyl spinors. Consequently, it 
is essential to know in what dimensions Majorana or Majorana
Weyl spinors can be defined. 

The Dirac spinor in D dimensions has 2 [ 012] complex com
ponents. ForD even, it is a reducible representation with res
pect to SO(D) and it decomposes into two 2 ° 12 - 1 component Weyl 
.::t.P.L.L1Ul.;:)• rt i'J.d.jULO.UO. .::tp.L..UUJ. -L.::t a. .::>p.L.11U1. LUC U.l...l.c1L. L.VlljUb,d.Lt U.l. 

wfich is proportional to its Majorana conjugate and has 
2 D/2] real components. A Majorana-Weyl spinor obey both the 
Weyl and Majorana conditions and has 2°12 - 1 real components. 

Many of its properties are known from general group-theore
tical arguments about the irreducible representations of SO(D) 
group. We briefly reproduce them here using exy.licitly the pro
perties of the Dirac matrices in D dimensions 71. 

The Dirac matrices obey the Clifford algebra 

t s 
...---"---> ~ 

(f'IL ,f'v I= 2TJILv' TJILv = (+, •.• ,+, -, •.. ,-)' 

where f'IL can be represented by 2[ 0 ; 2] x 2[D/2] unitary matri
ces. Since the matrices f'IL and f'~ (complex conjugated) satisfy 
the same Clifford algebra and the representation of f' matrices 
is irreducible, there exists an invertible matrix B such that 

-1 
['IL =aB r;s. 

where a= +1. 
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The matrix B obeys the following conditions 
s+ B = 1 , s+ s = {31 , f3 = ± 1. 

From the Majorana condition we may find that the Majorana spi
nors satisfy the reality condition 

'I'* = B'l'. 

But this implies {3 = I. If {3 = -I and we have an even number 
of spinors '1' 1 , one can impose the reality condition 

(I . I) 

where n1
j must be a real antisymmetric matrix. We can consider 

it to be a symplectic metric, in this CpSe the relation (1.1) 
is preserved under transformations of '1'

1 
by the group USp(2n) 

for i =I ,2, ... ,2n . Using the Scherk method 181 it is easy to 
find that f3 must be a function of a, t and D, periodic in D 
with period 8 and in t with period 4. 

In the case of one time-like dimension, Majorana (a= -1, 
{3 = 1), pseudo-Majorana (a= I, {3 = 1), extended (pseudo)

Majorana ({3 = -1), and Majorana-Weyl-spinors can be defined 
as follows: 

Majorana (a= -1, {3 = I) for D =2,3,4 mod 8 
pseudo-Majorana Ca= I, {3 =I) forD"' 2,8,9 mod 8 
extended..,Hajorana (a= -1, {3 =-1) for D = 6,7,8 mod 8 
extended-pseudo-Majorana (a I, f3 = -1) forD= 4,5,6 

(I . 2) 
(I • 3) 
(I . 4) 

mod 8 (I. 5) 
~ 

= L lllUU c 
extended-Majorana-Weyl for D = 6 mod 8 (I. 7) 
We can de{ine N = I superspace and superfields in D = 2,3,4, 

6,8,9 mod 8. The superfield expansions are well known for 
0=2,3,4. We will investigate them in D= 6,8,10,11. The dimen
sions greater than I I are not interesting for us because after 
the dimensional reduction they lead to an N > 8 theory, i.e., 
to the theory with spins greater than two. 

2. IRREDUCIBLE REPRESENTATIONS OF SO(N) 

The group SO(N, C) has two complex-analytical series of ir
reducible representations. Any representation from the first 
one is determined by and determines the greatest weight m = 
= (m 1• m2 , ••• , TDv), where m are integer numbers obeying the fol
lowing conditions 

(2. I) 

(2. 2) 
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Any representation from the second one is determined by and 
determines the greatest weight m = (m 1,m2 , ... ,mv),where mi are 
half-integers obeying (2. I) and (2.2). The irreducible repre
sentations of SO(N,C) associated with an integer greatest 
weight m are tensorial. The remaining representations are 
called spinorial. The fundamental spinorial representation In 
the case of S0(2v + 1, C) is with a greatest weight 

m = (1/2, 112, ... , 1/2) • 

In the case of S0(2v, C) there are two fundamental spinorial re
presentations m +and m_, where 

m + (1/2, 112, ... , 112) , 

m_ (112, 112, ... , -1/2). 

The objects which transform with respect to this representations 
are called spinors of I and II type. All these things take 
place also for the group Sd(p,q) 191 .For tensorial representa
tions mi are all integer and stand for the number of boxes in 
the rows of the Young tableau. The representation is therefo-
re a tensor and [m

1
,m 2, ... ,mv_ 1 .IDy)gives the symmetry of its 

indices. In the spinorial case m. are all half- integer and, the 
,......,,....,,...,....("',....T"!t-..,t-.; .............. .; .......... ........... .; ............ Y"-+-1'"\T"'r",....l,... t-r.T"'r"t""''o,....; ..,, .; ...... ~..; ,..,.... ............. + ..... l-..; ,.."\-. 

h~~~ -~h~-~~~tr;- [ ~ 1-~ 1/2.- m-
2
-.:-1/2,' ... :-~·~~; ~-1-/2:·;;~:_-l/2lXh~··--·· 

tensors and spinor-tensors fulfill a convenient trace condi
tion obtained by contraction with ~~v and~~ matrices which 
guarantees their irreducibility. In both the tensorial and 
spinorial cases mi are also eigenvalues of the complete set 
of Casimir operators. We note that one writes the indices of 
the tensors and tensor-spinors always in the form of a Young 
tableau rotated by 90°, 

We have computed the dimension of the rebresentations using 
the standard formulae of the group theory 11 1

• The dimension of 
a given irreducible representation [m

1
,m

2
, ... ,mv] is 

dim(m 1 , ... ,mv) 
v 2 2 
n <£P - e q) , 

(2v - 2) ! (2v - 4) ! ... 2 ! p ~ q 

2 
(v- 1) 

where fp = Imp I+ v- P In the case of SO( 2v) and 

dim[ m 1, ... , mv] 

4 

(2£ 1+1) ... (2fv + 1)1'1{0 

(2v-1)!(2v- 3)! ... 3! 1! 

v 
n (f + e + 1). 

p< q p q 

(2.4) 

(2.5) 

where fo.(O = (£
1
-£

2
) ,., (fy_ 1-fv) = fl (fp-fq) 1n the case of 

p<q 
S0(2v + 1 , C) . 

To find the superfield expansion in terms of SO(N) irreducib
le representations, we must know the decomposition into irre
ducible representations of the Kronecker product of two SO(N) 
representations. Recently, a relatively simple algorithm has 

. . /11/ 
been proposed for this operation · . 

Actually, this m~thod reduces to the calculation of a tinite 
number of products of generalized Young tableaux (GYT) for any 
two given SO(N) irreducible representations. The GYT is a ta
bleau which can include "negative" boxes. The product of two 
GYTs can be regarded as a natural extension ~f the usual prod~ct 
of two SU(N) Young tableaux. Another attractive feature of this · 
technique is that the rules for products involving tensor or 
spinor representations are essentially the same. 

3. FIELD CONTENT OF SUPERFIELDS 

The superfield <ll(x, O) is a field in the superspace (x~, Oa) 
which should be understood in terms of its power series expan-

sion in Oa: 

<ll (x e) = A + 0 a t/J + ... + e e Q ... e M [a~ ... y l ... , 
' a a ~ y 

r T"\ tnl . - . 

where tJ IS a MaJor ana or MaJorana-wey 1 L • ~· -> dimen~IonaJ. <n.tL.l-

commuting spinor. The symbol like [a,~. y) means antisymmetri
zation. This expansion is finite, because of the anticommuta
tion of :he O's. The sup~r~ield ~:t~~~fs a ~inite set of or~ 
dinary fields- the. coefficientsM of.Its power expan~Ion 
in 0. These fields are, in general, a reducible_Iepresentation 
of the D-dimensional Lorentz group, i.e., of SO(D-1, 1) • We 
must decompose them into irreducible representations of 
SO(D-1,1). This is equivalent to the dec~mpos~tion o~ an antisym
metrized Kronecker product of oaoW .. OY Into Irreducible n~pre
sentations. To solve this problem, we shall use the technique 
developed in ref. 1111 • It is more simple in the cases we need 

I) D =8, N =I superfield 

In D = 8 the superspace has eight bosonic and 16 fermionic 
coordinates. The Lorentz group is SO (7. I). The irreducible re
presentations are given by a set of.4 numbers [.\ 1,.\ 2:.\ 3,.\ 4 ]. The 
pseudo-Majorana spinor e is a reducible representation of 
SO (7. I). It splits into two 8-dimensional Weyl spinors 
0+((1/2, I/2, I/2, I/2]) and e-([ 1/2, 1/2, 1/2, -1/2] that are 
irreducible representations of SO (7. I). We shall expand 
<ll(x, e+,e-) in powers of e+ and e-. 
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In Table·! we present the SO (7.1) representations contained 
in <ll (x, (;I+, (;1-) up to and including the 8(;1 -sector (higher sec
tors can be obtained by reflection around the latter). Besi-
des we wrote only terms with (;I +m (;1-n (m ~ n). The terms with 
(;l+n(;l-mcan be derived fronf these with (;l+m(;l-n by the mirror-conju
gation (the mirror-conjugated of the irreduciEle representation 
A=[A 1,.\2 , ... ,Ap-l,Ap] is the representation A"'[.\ 1 ,.\2, •..• \,- 1,-.\p])· 

2) D = 9, scalar superfield 

In D = 9 the supers pace has 16 fermionic coordinates. The 
Lorentz group is SO (8. I). In this case the irreducible represen
tations are given by a set of 4 numbers [.\ 1 ,.\2 ,.\s, .\ 4 ]. The 
pseudo-Majorana spinor 8a is an irreducible representation of 
S0(8.1) and is givenby [1/2, 1/2,1/2, 1/2]. The dimensions 
of representat.ions are calculated by the use of (2. 5). The 
SO (8. I) representations contained in <ll(x, (;I) are presented 
1n Table 2, up to the 88-sector. 

3) D=IO scalar superfield 

In the 10-dimensional space we can define Majorana-Weyl 
spinors. The Majorana spinor is 32-dimensional and in this 
case it splits into two 16-dimensional Majorana-Weyl spinors. 
The Lorentz group is SO (9. 1). Its representations are charac
i.eL.l,;eu oy [ne greatest we1ght LA1'A2 ,.\ 3 ,.\ 4 ,.\ 6 ]. We calculate 
the dimensions of representations with the help of (2.4). We 
have two possibilities to define a superspace, namely, a "chi
ral superspace (xp..~), where (;I+ is the [1/2, 1/2, 1/2, 1/2,1/2] 
representation of SO (9.1) and full superspace (xp.,{;/+,(;1-), where 
(;1- is the [1/2, 1/2, 1/2, 1/2, -1/2] representation of SO (9.1). 

In Table 3 we write the expansion of the N=l, chiral scalar 
superfield <ll(x, (;I+) in terms of SO (9. I) irreducible representa
tions up to the 88-sector. The field content of the full N=l 
superfields is very large and complicated and we do not give 
it here. 

4) D=ll scalar superfield 

In this case the Lorentz group is SO (10.1). The spinor coor
dinate is 32-dimensional. It is the [1/2, 1/2, 1/2, 1/2, 1/2] 
irreducible representation of S0(10. 1). The dimensions are cal
culated according to (2.5). The result is given in Table 4 up 
to the 138-sector. The 14th, 15th and 16th {;/-sectors are not 
explicitly given because they have a very rich structure and 
high dimensions (i.e., carry high spins) and are not intersting 
for the physical applications. 

6 

5) D=6 scalar superfield 

As we have seen in section two, in the 6-dimensional s~ace
time one can define only extended-Majorana or e~tended-MaJora
na-Weyl spinors. The Majorana spinor is a reduc1ble repres~nta
tion of the S0(5. I) group and de:ompose!

1
into t~7 irreduc1ble 

four-dimensional Majorana-Weyl sp1nors (;I and (;I • They are 
respectively [I /2, 1/2, I /2] and _[I /2, I /2, -I /2] represent~
tions of S0(5.1). The spinors (;1+ 1 and 8-1 transform accord1ng 
to the fundamental representation of the group USp(2N) for 
i = 1 , 2, ... 2N. In analogy with the D =I 0 case v:e have two pos
sibilities to define a superspace and superf1elds here. In 
Table 5 we give the expansion of the "chiral" superfi3ld 
<ll(x, (;1+). The internal symmetry group chosen is USp(2) - SU(2) · 

ACKNOWLEDGEMENT 

The author is grateful to Drs. V.Dobrev, E.Ivanov and 
Prof. V.I.Ogievetsky for the fruitful discussions. 

Table I • D = 8 Scalar Superfield 

-----------------
Representation 

-----------------
[ 0. 5' 0. 5' 0. 5' 0. 5] 8 

28 

g+e- [1,o,o,o) 8 

(1, 1,1, oj 56 
------------

[1. 5, o. 5, o. 5,-0. 5] 56 
---------
[0.5,0.5,0.5,-0.~ 
[1 • 5 ' 0. 5 ' 0. 5 ' 0. 5 J 
[1. 5 '1. 5' o. 5 '-0. 5] 

g+~ [2, o, o, o] 

[1 '1 '1-1] -------
7 



Table I (continued) 

'9' -sector ·----- Representat 10n ~·tnmenSTon 

g+"!le- [2, 1 '1-1] 224 
[2,1,o,o] 16o 

~,1,1,~ 56 
~,o,o,~ 8 

rg:l.~-i' [1,1,0,0] --- 28 

I [1,1,o,o] 28 
l [2,1,1,0] 350 

\ [2,1,1,0) 350 

L [1 '1 ' 0' 0] 28 I 

;, ~-e t_5 
_ _[1_. 5_, o_._5 .'.~.:.~--=:~1 -~-56 I 

+ 4 - I e e [2.5,o,5,o.5,-o,~ 224 

[1 • 5 ' 0' 5 • 0. 5 ' 0. 5] 56 ' 

[1. 5' 1. 5' 1. 5' -1. 5] 112 
r_ - -- - - - _, 
~.7,Lo7,Vo7,-V.~ LOU 1 

ro. 5l.Q.:.2..z.2.:.2.J.-O. ~ _____ L_j 
e+~ {r~ [2.5,1.5,0.5,-0.5] 840' 

~.5,1.5,1.5,-0.~ 224 

~.5,0.5,0.5,-0.~ 56 
~.5,0.5,0.5, o.~ 224 

-----::rlhZ....hZ....l..Z.t.=2 .. 2l __ 2g4_1 

-~~:e_--~ti~~~~----- ----;~: .. 
~,1,0,~ 160 
[1 , 1 , 1 , o] 56 
1 0 0 ~ 8 . 
~~-1.---------- --------~ 

[3,1,1-1) 840. e+ 'i e-l. 
[2,1,1,0) J50 
~,o,o,~ J5 

'--- _L _______ . -- - ------- _ __,___ 

8 

l 

\\ 

I 

Table I (continued) 

l 0-Sector . ___ !~...:.:_::_~~!:.<:.~1-P~~s io~ .. ------e•'f e·a.- [2, o, o, o] J5 

~,1,0,~ 28 
[2,1,1,0] J50 
[2,2,2,-2] 294 

~ 1 0 ~ 28 
~~~1.---------- -------

~t\r 3 
1 [J,2,Q,o] 

[2,2,1,0] 

[2, 2,1 1 OJ 
[ 1 1 1 OJ 

- ---·-~-l-:1.-~-----
~+_:_ -- [0~.2~~~-~_()..!.2_, 0.21.__ 

1400 

840 
840 

56 
8 ---

160 g+6g- [1.5,1.5,0.5,-0.~ 
[1. 5' o. 5' o. 5' o. 5] 

-------l2.:.2.l.Q.:.2.l.2.:.~=~L 
e+ 5 g-" 1[2.5,1.5,1.5,-r.r 

56 
8 

h7? 

g+ 4 e-3 

------91-8 
------
e+~e-

gt Gg-~ 

[2.5,1.5,0.5,-0.~ 

[1. 5' o. 5' o. 5' -0. ~ 
840 

56 

------------------~- ~ (J. 5, 1. 5 , o. 5, _o. ~ ! 2soo 

[2.5,0.5,0.5,-0.~ I 224 

[1.5,1.5,1.5,0.L 840 

U..:.~2.:.2.l..Q.:.2.l.2.:. 5 6, 
[ ------· 

-l~--·;%~~~~---·- ____ 1 
jll.ll.l~JL _____________ 5~ 
[2,1,1,0] 350 

[1,1,0,0] 28 
[1,1,0,0] 28 

[2,1,1,0] 350 

~,1,0,~ 28 _________________ __,._ 
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Table 1 (continued) 

e-sector Representation Dimension 

-------------- -·-1 
fS -?I I e e [J , 2, 2, -21 

[J,1,1,0] 
[2,1,o,o} 

----rr------
9+1.49-'~ 1[4,1,1,0] 

[2, 2, 2, o) 
[2, 1,1, o] 
[2,o,o,o] 

1680 
1296 

160 

J675 
840 
)50 

)5 

Table 2. D = 9 Scalar Superfield 

1- --;;--~--;:;;;s::;:-t io:---p~;~-:_~ sector s1on ----- ---------- ---
M r ~ 

--~ lU.!)~~_!U.5,U~5_J ___ 1~-

2. [1 ' 1 ' 1 ' a1 84 
e [1 '1' o, o] )6 

---------
e ~ [L 5 , 1. 5 , o. 5 , o. 51 4 J 2 

[1. '' 0. 5' 0. 5 ' 0. 5] 128 ----

e~~ 
I [2, 2,1, O] 1650 

[1 '1' 1 '11 126 
[2,o,o,oJ 44 -----

[2 • 5 ' 1. 5 ' 0. 5 ' 0. 5] 2560 

es ll. 5' 1. 5' o. 5' o. 5] 4)2 

[i • 5 ' 1. 5 ' 1. 5 ' 1. 5] 672 
li.5,0.5,0.5,0.5J 

! 
128 

[2. 5' o. 5' o. 5, o. 5] 576 

---- ---------

i 

I 
I 

T 

" 

Table 2 (continued) 
r--e--T-Repr:;~-;:;zo:- • - r;=::--
~-~~~:2.1; J] ----t ;~;2 

b I [2, 1,1, 11 9 24 
e D,1,o,oJ 91o 

[2, 1 '1, 01 I 594 

r- I [2, 2,1, 1J 2772 

[1, 1, o, 0] I )6 
-· 
[J.5,1.5,0.5,0.5 9504 

er I [J.5,o.5,o.5,o.5 1920 

[0. 5' 0. 5' o. 5' o. 5 16 

[4,1,1,]] 1237!5 

eg 1[4,o,o,oJ 450 

D.,1,0,ol )6 

D.,o,o,Ql 9 
,1..-..---~----------- -----

Table 3. D = I 0 "Chiral" Scalar Super field 

~-~---------0 Representation 
sector 

~-~-:- [ o:5~o:5~0.5;o~ 
o. 5] 

e+t [1,1,l,o,o1 
1-----. ---

gt?. 
[1.5,1.5,0.5,0.5, 
-0.5] 

~- ,.__,_ ---
e+J{ [2 ' 2 ' 0' 0' 01 

[2' 1 ' 1 ' 1 ' -i] - - ----- -- - -
[2 • 5 ' 1. 5 ' 0. 5 ' 0. 5 ' 
-0.5] 

e+s I [1.5,l.5,1.5,1.5, 
-1.5] 1672 -----..---------

II 
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Table 3 (continued) 
r----- ---------------

8 Representation 
sector 

--------·--------------------
(9 + ' [J , 1 , 1 , 0, O] 

[2 ' 2 , 1 ' 1 ' -il 
f----~-----------

e+"'~ [J. 5, 0. 5, 0. 5, 0. 5, 0. 5] 

~.5,1.5,1.~,0.5,-0.5 

[4 , 0, 0, 0, O] 

e+g [2 , 2, 2, 0 , OJ 

[J, 1 , 1 , 1 , 0] 

'------~---------------

Dimen-
sion 

2640 

8800 
........... 

660 

4125 

8085 
-----

Table 4. D =II Scalar Superfield 

--~----------rr----8 Dimen-
' 'Ronrt:Jocont-!:lt-; nn • r 
:sec to:_ 

- -L ----- --- :Sl.Oll 

1--- 1---------------1----

e [o. 5, o. 5, o. 5, o. 5, o. 5] J2 

[1 ' 1 '1 '1' 0] JJO 

t:i· [1,1,1,0,0] 165 

[o, o, o, o, oJ 1 

[1. 5 ' 1. 5 ' 1. 5 ' 0. 5 ' 0. 51 J520 
e~ [1. 5' 1. 5' o. 5' o. 5' o. 5] 1408 

00.5,0.5,0.5,0.5,0.5] J2 

[2,2,1,1,1J 17160 

D. ' 1 , 1 ' 1 ' 0] JJO 

el{ [1 '1 '1' o, 0] 165 

[2 , 2 ' 1 ' 1 ' 1] 17160 

[2,2,o,o,oJ 1144 

[o, o, o, o, oJ 1 

• 
I 

Table 4 (continued) 

~--------------------------------
8 j Representation D~men-

~! ----------------- -.!~~::__-
~.5,1.5,1.5,1.5,1.5] J6960 

es [2.5, 2. 5, 1. 5, 1. 5, o. 5] 160160 

[1. 5, 1. 5, 1. 5, 1. 5' 1. 5] 4224 

[0.5,0.5,0.5,0.5,0.5] J2 

[J,2,2,1,lJ 289775 
e£ [J,J,2,2,oJ 616616 

e& 

ro,o,o,o,o] 1 1 

[J.5,2.5,2.5,1.5,1.5] I 201J440 

~.5,2.5,2.5,1.5,1.5] 274560 

~.5,2.5,2.5,1.5,0.5] 

D.5,1.5,1.5,1.5,1.5J 
D.5,2.5,1.5,0.5,0.5J 

Lt: • _, J- •., 'I- •, ' - •, 'I ._ • ".,j 

[4,J,2,2,1] 
[J,J,J,1,1] 

(J,J,J,1,11 

[4, J, 1, O, O] 

292864 
18J040 

57J440 
__ , __ 
7900750 
1115400 

1115400 
J86750 

-----------------------
~.5,2.5,2.5,2.5,0.~ 8580000 

~.5,2.5,2.5,1.5,0.~ 912J840 
ei~ 0.5,2.5,1.5,1.5,0.5] 10J4880 

p.5,J.5,J.5,1.5,1.5] 6864000 

r-
D.5,J.5,J.5,0.5,0.5J 2446080 

-
~,J,J,J,O] 2241525( 

~,2,2,2,0] 188760 t e'o ! 

i 
~,4,J,2,1] J9J0927( 

~ '4, 4, o, 0] 2598960 

13 
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Table 4 (continued) 

T-J----~-;;;;e:tati:--1 D~me-;:--
sect. s~on - ----------- ------

.5,2.5,2.5,2.5,0.~ 251680 

.5,4.5,2.5,2.5,0.5] 66193920 
eo .5,3.5,3.5,1.5,0.51 43130880 

D.5,3.5,3.5,1.5,1.5J 6864ooo 
.5,3.5,3.5,1.5,0.5] 6726720 

p.5,3.5,2.5,1.5,0.5] 5857260 

1),3,3,3,1] 
1) , 3 , 3 , 2, OJ 

D,3,2,2,1J 
'5' 2, 2, 0] 

'4' 3' 3' 0] 
efl. , 4, 4, 1, oJ 

, 4' 4' 2' 0] 
~, 4, 4,1, 1) 

"" ........ ., 
'..J'..J'.L'.LJ 

'3, J' 2, 0] 

'3' 3' 1' 0] 
,3,3,2,0] 

1656369 
1002001 
1274130 
58953960 
15169440 
61725300 
19059040 
18232500 
#\1'\,.n•-nn 
..)VUV'TC.UU 

6891885 
4332042 
6891885 

.5,3.5,3.5,3.5,1.5] 8328320 
3.5,3.5,3.5,2.5,0.~ 8968960 
.5,2.5,2.5,2.5,0.~ 

2.5,2.5,2.5,2.5,0.~ 

.5,3.5,3.5,2.5,0.~ 

e~~ Et-.5,4.5,2.5,2.5,0.5] 

1921920 

251680 
8968960 
66193920 

.5,4.5,2.5,2.5,0.~ 66193920 

.5,3.5,3.5,2.5,0.~ 59488000 
~.5,3.5,2.5,2.5,0.5] 35143680 

L..--~.!.~~.5,~.5,1.~~5] ~~142~~ 

() sector 

Table 4 (continued) 

---------------------------------() . l Dimen-

~<:.!=..:_ --~=-~.:.:::t-=~~~--- -~i<l.I!...-
471435600 

565722720 
601080390 

-·-- _________________ ,. ______ ___. 

Table 5. D = 6 "Chiral" Scalar Super field 

Representation Dimension field 

[o. 5, o. 5, o. 5]K 

[1, 0, 01 u'J) 

[1, 1, IJ 

6 (•j) = 18 -A Ctj') 
"I 

lr vf 
---;:rtj·~) [o.5~o:~:o.5]07;r 

10 

Llo 5,0.5, 0. 5] /(. 20 1
( = 40 'lr.~ ---+----------- -Cl.J' ~lj--- -~~~l)~7T 

1 = 5 
( ll [) 

15 • 45 

' '"' t) [ 0 0 OJ t tJ 
' ' [1, 1' 0] (ldJ 

[2,0,0] 20 ----------- -------
[1.5,0.5,-0.5]1( 20 K. = 40 
[0.5,0.5,0.5] UjK.) 4( t'j't) = 16 
-------------
[1 '1' -11 
[1, o, 0] UjJ 

10 
6 cip = 18 

[o.,,o~5~0~5~--- --------
4

1L 
• 8 

[0, o, 0] 1 c 
15 
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