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1. In this paper we investigate a strong coupling expansion 
for the quantum-mechanical O(N)-syrnrnetric oscillator with an 
arbitrary power anharrnonicity. The Hamiltonian of the system is 
as follows: 

H ~ i~1p~ + ~
2

i~1x~ + ~\~1 x~ )n. ( 1 • 1 ) 

Simple dimensional arguments allow us to guess quite easily 
the general form of the expansion, say, for the ground-state 
energy: 

E = ll(n+1)[d f d (m2/g2/(n+1))k]. 
0 g 0 + k=1 k ( 1 • 2) 

The strong coupling expansion has evident advantage as corn
pared to the conventional perturbation theory in powers of g. 
Simon has shown 111 that the expansion (1.2) converges for large 
g in contrast with the asymptotic perturbation series. The 

strong coupling expansion works equally well for the potentials 
wit1-J. lJv5iLivc: ouJ. ut::boi...~vt i!J'?. 3t::vt:Ldl lirtiL Lt!llll!'S ul Llte expan
sion (1.2) can be used to evaluate approximately the energy 
levels in a wide range of coupling constant. 

Unfortunately, a consistent construction of the strong coup
ling expansion is not yet achieved even in quantum mechanics, 
to say nothing of quantum field theory. To calculate approxima
tely the coeff\cients dk, difrerent approaches hqve been used, 
from the traditional variational methods to fashionable lattice 
appro,ximations of path integrals. 

The most straightforward way is to compare the expansion 
(1.2) with the exact values of energy levels computed numerical
ly. Thus, Hioe, MacMillen and Montroll 12 ·3 1 have considered 
one-dimensional oscillators (N =I) with quartic, sextic, and 
octic anharrnonicities (i.e. n=2,3,4). They found the coeffici
ents d0 . d 1 , and d 2 of the expansion (I. 2) for the ground-state 
and excited energy levels. 

In the well-known series of papers (see, e.g., ref. 141 ) 
Bender and coauthors made an attempt to construct a streng coup
ling expansion starting with the lattice approximation of path 
integrals, which is equally applicable in quantum field theory. 
However, additional dimensional parameter (the lattice spacing 
a) distorts the general form (1.2): the energy is expanded now 
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in wrong powers of g. Moreover, the series thus obtained has no 
appropriate limit when a tends to zero. So, to keep the energy 
finite in the continuum limit, one has to use rather sophistica
ted procedures, for example, the renormalization of the coup
ling constant even in quantum mechanics. Things look unsuitable 
to us. 

In our opinion, it is more consistent to construct the strong 
coupling ex~ansion with the help of liN-expansion. In a previ
ous paper 15 we have obtained analytically six coefficients of 
the 1/N -expansion for the ground energy level of the oscil
lator with the Hamiltonian (1. 1). When this series is reexpanded 
in the limit of large g, the expansion (1.2) with correct 
powers of the coupling constant is generated automatically. Each 
strong coupling coefficient is represented then as an asymptotic 
power series in 1/N and below do-:- d

3 
are found up to the order 

N-4. To sum these asymptotic power series, we use the Pade-
method taking into account the behaviour of the sum when N _. 0, 
This enables us to calculate the coefficients of the strong 
coupling expansion with high accuracy. 

Applications to multidimensional quartic, sextic, and octic 
oscillators are easy and provide a number of strong coupling 
formulae. 

A simple relation between the ground and first excited ener
gy levels of different oscillators allows us to obtain the 
strong-coupling expansion for the first excited energy level 
Cil30. ~i-,.c: (..0WpciL-_;_o:tuu w_;_l.ll uumt:J.._;_Ld.J. l.~~uJ..i..:, u~lllUU~i..lcti..~~ LiH:iL 

these formulae can be successfully applied to calculate energy 
levels in a wide range of coupling constant. The strong coup
ling expansion fails only for rather small values of g. But 
even here we can get proper results using Pade-approximations, 
that points to the self-consistency of considerations. 

2. The 1/N -expansion for the ground-state energy of the 
oscillator with the Hamiltonian (1.1) is of the form: 

(2. I) 

where A is a dimensionless coupling constant and w is a charac
teristic energy scale of the system defined by the equations: 

m2 4n . 
=1--A, A= 

w 2 2n w n+ 1 

g 
d.2) 

The coefficients £ 0 (>..).;. £ 5 (>..) have been found analytically 
in ref. 151

• In the limit of large g th~ solutions of eqs. (2·. 2) 
can be obtained as a series in powers of a small parameter 
1'1 ~ m 2j g 2/(n+ 1): 

2 

2n 4 
>-=-[1--~~ 

4n (8n}2l(n+ 1) 

32 
1'1t- I 

(n + 1}(8n) 4 ( n + 1) 

64 1'13 + ••• ] ; 
(n + 1)2 (8n) 6 I (n + 1) 

+ (2.3) 

w = -l.C8ng)ll(n + 1)[1 + ____ 4-:::-;~~-:- 1'1 + 
G (n + 1)(8n)2/(n + 1) 

8(n-2) +--------
(n + 1)2(8n) 4/(n + 1) 

Then we get the expansion (I .2) for the ground-state energy, 
where the coefficients dk are represented as asymptotic power 
series in 1/N: 

r 
dk = dk,O • N + ~ dk p + 1 /N • 

r = o · 
(2.4) 

The coefficients dkJ are found by substituting the expan
sions (2.3) into the analytical expressions for 'k(A) from 
ref. '5', We give here six coefficients of the expansion (2.4) 
for dk with k =0,1,2,3 computed by means of SCHOONSHIP. General 
expressions for dk 4 and dk 5 are rather cumbrous to be written 
out here. So, we gtve onlv their values for n 2,3,4. 

d 0,2 

n=2 

1'(n+lln+1 
(8n) 

8n 

1'(n+l\[ 1 
(8n) · -

2 

,n+T 
v 2 

1 
2 

(8n)1 '(n+ll n-1 [(-2n 2 + 15n + 53)172- jn+ 1 l; 
nt-1 2 

1/(n+ 1) n-1 [( 2 2 + 15n + 29)/18 + (8n) --2 - n 
(n+ 1) 

+ v' n + 1 (4n4 + 4n3 + 45n2 - 76n - 985)/432] ; 
2 

d = -0.028863732; d 0,5 
0,4 

-0.169597632; 

(2.5) 
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4 

d 0,'4 = -0.873982226 ; d 0,5 = 0.634055252; 

n=4 d 0,4 = -4.207310062; d 0,5 =10.64877473; 

4 e 
d 1 = d 1 0 • N + ~ d 1 £+ 1 IN 

• f= 0 • 

d 1,1 

ll=2 

n=3 

n=4 

d2 = 

1 
2(8n) 1/ (n+ 1) 

1 [ - 2 + J n + 1 (3 - n)] ; 
(n + 1)(8n) ll(n+ 1) 2 

n-1 [ (8n2 - 5n- 25)16 + 
(n + 1)2(8n )1/(n+ 1) 

+ 2P; 1 (3- n)]; 

n-
1 

[ (16n3 - 10n2 - 34n)l3 + 
(n + 1) 3(8n) ll(n+1) 

~-

+ vll+
1 

(4n5 -8n4 -711n3-703n 2 +3443n-0)1216]; 
2 

d 1,4 -0.109684358; d 1,5 = 0.397479995 ; 

d 1,4 -0.872149956; d 1,5 = 6.963762885; 

d 1,4 -4.147755390; d 1,5 = 48.31375163; 

4 £ 
d2,0 . N + ~ d2 £+ 1 IN 

f=O ' 

1 

(n + 1)(8nl/(n+1) 

1 [ 4(2- n)-
(n + 1) ( 8n )3/(n+ 1) 

Jn+T 2 1 )]· - -- (n - 10n + 3 • 
2 

n-
1 

[ (50n3 - 233n2 - 113n + 494)19 -
(n + 1)3(8n)3/(n+l) 

- ,fo+ 1 (6n2 - 60n + 78)] ; 
2 

(2.6) 

(2. 7) 

n = 2 

n=3 

n = 4 

n-
1 

[(400n4 - 2064n3 + 604n2 + 2964n-
(n + 1) 4( 8n) 3 '(n+ 1) 

- 1400)19 + Jn + 1 (4n6 - 36n 5 - 2743n4 + 8254n3 + 
2 

+ 16000n2 - 41338n + 15827)172]: 

d 2,4 = 0.139486868 ; d 2,5 =- 0.189125736; 

d2,4 1. 784398735 : d2,5 = - 2.528634057 : 

d2,4 8.569686490: d2,5 = - 2.093925700: 

d 3 ,1 _ 1 [(-32n 2 +176n -192)/3+ 
(n + 1) 3 ( 8n)" < n+ 1) 

n-
1 

[(608n 4 - 6056n3 + 9580n 2 + 
(n + 1) 4( 8n /' '<n+ 1) 

· 'n + 1 60 3 1100 2 -+ 1307611 - 21168)/27 + v -- (- n + 11 -
2 

- 386011 + 3300)/3]: 

11
-

1 
[(729611 5 -77536114 + 174928113 

+ 
(11 + ll\811)5 '(nt 1) 

+ 9232 112 - 24 7264 11 + 123264 ) I 27 + 

o IJ+ 1 7 1 0 6 90 5 000 4 + v--(6011 - 04 11 -8 85n +6ou:o2511 -
2 

- 582910113 - 3024870112 + 5225215 n - 2089635)1324] : 

11=2 d3,4 =-0.047456455; d3,5 =-0.148399675; 

(2.8) 
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n=3 d 3 ,4 =0.585407615; d 3 ,5 =-9.752809560; 

n=4 d 3 ,4 =9.933767530; d 3 ,5 =-106,1521824. 

We stress once 
asymptotic. Thus, 

more that 1/N -expansion presented above is 
do,f are proportional to ff(A) when m2 = 0 

2n 
(or A= 4; ) , and the asymptotics of f f (A) for is des-

cribed in ref / 51• 

3. Before turning to the summation of the 1/N -series for the 
strong-coupling coefficients dk,let us determine the asympto
tics of the ground state energy in the limit N __, 0. Consider 
first an anharmonic oscillator with a slightly different choice 
of the coupling constant: g'= g/Nn-l. The ground state energy 
is then defined by the Schrodinger equation for the radial 
part of the wave function, which can be brought into the form: 

2 
dx _ _!_[m2 2'n-1 N(N-4) 2Eo] O· 
dp 

2 4 + g p + 2 - -- X = ' 
4p p (3. I) 

2. ( ) •N /4R( ) p=r, )(P=p P• 

Dolgov, Eletsky and Popov161 have shown that for N-+ 0 and 
g' fixed the ground state energy tends to zero, namely 

E0 = N l(g') ; N __, 0. 

Thus in eq. (3.1) both the centrifugal term and the term with 
energy are negligible and in some cases exact solutions can be 
found. Henceforth the function X will be interpreted as a solu
tion of eq. (3. I) in the limit N __, 0: 

X -+ 0. (3. 2) 
p-+oo 

In re£. 161 it is shown that 

( ') 1 dx fg =---\ 
X dp p = o (3. 3) 

and there the exact solutions for )((p) and E(g') are given also 
for n = 2,3. We need only the strong coupling expansions for 
these quantities. So, after the scale transformation 
p-op/(g')11(n+1) we get from eqs. (3.2), (3.3): 

6 

dl< 1 m2 
2 

n-1 
---[ + P Jx=O; 
dp2 4 (g') 2/(n+ 1) (3.4) 

It is evident that the expansion for E(g') ~s of the form: 

£(g') = (g')11(n+1) [Co+ c1 tl' + c2 (1"1')2 + c3 (i\')3 + ... ] ; 

t1, = m 2/(g') 21 (n+l). 

It makes no difficulty to obtain the coefficient c0 : when 
i\'=0, the solution of the eq. (3.4) is as follows: 

n+ 1 

...- f22 
X -ypK 1 (::_e_-) 

o ~ n+1 

and we have immediately: 

n-1 
(n + 1)iitT 

Cn=-----
2 J 111"1'" J.) 

1'(-n-) 
n + 1 

1'(-1-) 
n t 1 

One can also calculate the coefficient c 1 (see Appendix A): 

c . 
1- ~ n-1 

2 nt 1 (n + 1) ii+T 

I' 2( _2_ )I' ( _3_) 
n+1 n+1 

1'(-1-)1'(-4-) 
n+1 n+1 

(3. 5) 

(1.h) 

(3.7) 

As to the coefficients c
2 

and c
3 

,it is rather difficult to 
find them in a general form, but in particular cases of n = 2,3 
we find them from the exact solutions of ref. 16 '. 

Now we return to our former notation: 

, /Nn-1 g _, g 

2(n -1) 
""""i1+'l 

t1' _, l\ · N E = N f (g ') . 
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The strong-coupling expansion for N tending to zero ~s then of 
the form: 

[ n:1
1 
(2k-1)+ 1] 

E "' ll(n+1) 2, c ~k N n ; 
0 g k=O k 

and the asyrnptotics of the coefficients dk 

ckN 

n·1 
--(2k-1) 
n+1 

is: 

(3 .8) 

The main goal of this section is to ascertain the asymptotics 
(2.8) and to find the coefficients ck (3.6), (3.7). In the 
next section this information will be used to choose an ade
quate method for summing up asymptotic 1/N -expansion (2.4). 

4. The strong coupling coefficients were written down above 
as series in powers of 1/N: 

ct 5 e 
~ = d + 2, d 0 /N 
N k,O f= 1 k' ( 4. I) 

To sum this series we use the Pade-approximation. Bearing 
in mind that the coefficients dkf are obtained for six dif
ferent values of e ( e = 0, I' ... ,S) and the asymptotic behaviour 
(3.8), we take the Pade-approximation to be of the form: 

( 4. 2) 

It is natural that the accuracy of the approximation ~s 
increased with increasing N, and the coefficients ck are ap

..!!..:.1 (2k-1) 
. d b . / n+1 . prox~mate y the express~on (a ~3 ) w~th the 

1 . 2 d . east accuracy. The d~screpancy between the exact an approx~ma-
te values of ck is an intrinsic criterium of the applicability 
of our method. 

Let us note also that one can easily obtain the strong coup
ling expansion for the first excited energy level, when taking 
into account its connection with the ground energy level of the 
oscillator with another number of components and scaled coupling 
constant: 

8 

., 
J 

n·l 
E 1 (N, g)= E 0(N + 2, g(1 + 2/N) ) . ( 4. 3) 

Numerical results for different oscillators obtained by the 
Pade-approximation (4.2) with the formulae (2.5)-(2.8) are 
collected in Tables I. 1-3.3. There one can also find the 
exact values of the coefficients ck and the values of the 
strong coupling coefficients computed by Hioe, Mac Millen and 
Montroll '2,31• These are placed for the purpose of comparison. 
Note that we have not found any references with the data con
cerning the strong coupling expansions for the multidimensional 
oscillators with N> 1. 

m2 2 g 4 
A. V(r)=-r +-r 

2 N Table I. I. 

k ck ck (exact value) 

0 0,5785CJ6 0,578617 
1 o, 167432 0,1673(J9 

2 -0,014124 -0,014070 

3 0,002028 0,001:357 

Table 1.2. N 

k dk dk (Hioe et al.) I 

Eo 0 0,667982 0,667986259 
1 0' 14367 4 0,14367 
2 -0,008634 -0,0088 

3 0,000824 -
E1 0 2,393643 2' 3~ 364402 

1 0,357804 0' 35780 
2 -0' 014372 -0,0140 

3 0,000866 -
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Table 1.3 
Table 2.3 

k dk (N=2) dk (N=3) 
k dk (N=2) dk (N=3) 

Eo 0 1,172413 1,659659 
1 0,325472 0,516043 
2 -0,024695 -0,043116 
3 0.002872 0.005402 

Eo 0 1. 097131 1.489427 
1 o. 31784 3 o. 523017 
2 -0.019598 -0.037695 

3 0.001578 0.003298 
E1 0 2.6';7113 3.104899 

1 o. 563234 0.763187 
2 -0.031267 -0.049472 
3 0.002561 0.004674 --- --- -~ ----- ----- --- -----

E1 0 2.648199 2. 90616 3 
1 0.520246 0.737824 
2 -0.020422 -0.036666 

J 0. OQQ_?)_}_~-·-·- __ ~ -- - . Q!,00199 3 --
2 m 2 g 6 

B. V(r) ~ 2-r + Nyr 
Table 2. I. 

m2 g 
C. V(r) = -r2 + _ r8 

2 Na Table 3.1. 

k ck ck (exact value) k ck ck (exact value) 

0 0 , 5l~ P. 5 ') 7 0,568428 0 09581006 0.579859 
I I l_jj_ 0, 1 ')'(Cc8 0,1 ')7841 
t._ 2 - -0,010GG': -0,010627 
I 3 0 , 00 1 2 2 :_: 0 , 00 1106 

------ ~---- ~----- -·~ -·-

0.149223 0.14~889 .J -0.008662 
0.000602 

-~----- -- -- -- - ~ Ll 
Table 2.2. N=l. Table 3.2. N=l. 

k dk dk (Hioe et al.) I 
I 

k dk dk (Hioe et al.) 

Eo 0 0. ()807 J'? o.Gno707 
1 0.12()433 0.12(:39 

"' 0 0.704438 0.70405 "'o 
1 0.120458 0.12005 

2 -0.00551 C) -0.00'.)2 ; 

' 
2 -0.004167 -0.00 39 

3 0.000340 ' - i 3 0.000168 -
~1 ' 0 2.57CJ76? 2.57()75 I 

i 1 o. J01c;G4 0. 301 ~: 3 
2 -0.007254 -0.0071 
3 0.000212 -

E1 0 2.731769 2.7315 
1 0.272984 0' 27 30 
2 -0.004866 -0.0047 

3 0.000085 -
10 - ._.. --·-- -·~ -- -~-

II 



Table 3.3 

k dk (N=2) dk (N=3) 

·o 0 1.07?125 1 • 41 309 5 

1 0.3121''5 0.527727 

2 -0.0 170~) 5 -0.035155 
""l, 0.001008 0. 002 30:1 

.. 
'1 () ?.G4~'74' 2.810516 

1 0 • .j '79'.'~~ 0.7?7527 
') 

' -f). 0 1(,07 H -0. 0)12 55 
") O.OOOii67 0.001106 

S. The strong ~oupling e*~ansion fails to work at small va
lues of the coupling constant. I.Jhen g' 0.1 (m2

= 1), our strong 
coupling formulae approximate the energy levels with an ac-
curacy from 10·4;: to 10'2 %. In the case of still smaller g 
the conventional perturbation tl>Pnr~ wnrk~ an~ th~ ~~y~~t~ti~~ 

of energy levels for g • 0 i~ a common knowledge: E 0 ~ 0.5 m; 
E 1 • I. 5 m. 

We can use one more Pad~-approximation to continue the strong 
coupling expansion to the point g = 0. The appropriate form of 
Pad~-approximation 1s as follows: 

The approximate values of asymptotic energies are presented 
1n Table 4. I for one-dimensional oscillators. 

These values demonstrate the self-consistency of the method 
proposed for evaluating the coefficients of the strong coupling 
expansion. 

To conclude, we would like to stress once more that the 
strong coupling coefficients are found with an extremely high 
accuracy especially when taking into consideration that cnly 
six terms of the 1/N -power series were used. Thus, in the case 
of quantum mechanics the problem of constructing the strong 

12 

Table 4. I g = 0 

n = 2 n = 3 n = 4 

Eo/ VYl 0.502 0.514 0.517 

E 1 /m 0.51 1. 56 1 • 5~) 

coupling expansion is solved practically, s~nce our method is 
self-consistent and needs neither any numertcal fits nor so
phisticated summation procedure. We re~kon tha7 the only but 
rather essential defect of the method 1s that 1t cannot be 
transferred into the quantum field theory where the problem 
of strong coupling remains still unsolved. 

APPENDIX A 

Let us pass from eq. (3.4) to the Ricatti equation: 

f(p) = __ 1_ dX , 1/(n+l) 
( (g ') = (g ) f (p = 0) ; (A. I) 

~.f~\ ~~ 
A't-'' "'o/ 

f'(p) = f2(p)- ..!:.._[ t1., + 2pn-1] ; 
4 

when tt,' = 0 the function f(p) thus introduced turns into: 

Define now the function: 

F(p) = df(p) 
d!t.' 

(A.2} 

· (A.I) wt'th respect to tt.', we get the equation: Differentiating 

dF =2f(p)F(p)-1/4; 
dp 

the solution of which has the form 
p 

F(p) =..!.. J dsexp[2 J f(t)dt]. 
4 p s 

13 



From the definition of the function F(p) (see eq. (A. 2)) it is 
evident that when to.' tends to zero c1 = F(p=O). Taking into 
account that in this limit f(p) __, r

0
(p), we obtain: 

1 
00 

2 
c 1 = --- f dsx (s); 

4x~ (O) o 0 
(A.3) 

Using the expression (3.5), one can find: 

211/2-1 
x 0 (O)- --,,-- r<,); 

I' 

1 
Jl=--

n + 1 

and 

I' 21• "'- 2 1 '21' 
c 1 ~ -

1
,--- f ds s J\.( \7 ,, . s ) • 

2 1' 2
(,.) 0 

(A.4) 

While evaluating the integral 1n eq. (A.4) we used the for
mula: 

As a result, we have 

2
1 

-
2 

I' 2(2,.) 1'(3r ·) 
c =-------

1 ,.2r•-1 l'(r· )l'(4r•) 
(A.S) 

from which one can get eq. (3. 7). 
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Strong Coupling Expansion for the Anharmonic Oscillator 

Strong coupling expansion for anharmonic oscillator has 
been obtained using the liN-expansion. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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