

объединенный
институт
ядерных
исследований
дубна
$4253 / 83$
E2-83-384

I.V.Polubarinov

MANY-BODY PROBLEM

IN QUANTUM MECHANICS

AND HOPF MAPS

Submitted to Всесоюэная конференция
"Проблема нескольких тел в ядерной физике", Ленинград, 1983 г.

$$
(\xi \bar{\pi}-\bar{\xi} \pi) \mid>=0, \quad \text { or }(m(\bar{\xi} \xi)(\dot{\xi} \xi-\bar{\xi} \dot{\xi})+i \hbar) \mid>=0,
$$

or

$$
\begin{equation*}
\left(\xi \frac{\partial}{\partial \xi}-\bar{\xi} \frac{\partial}{\partial \xi}\right)<\xi, \bar{\xi} \mid>=0 \tag{4}
\end{equation*}
$$

1. Embedding into spaces of higher dimensionalities and imposing relevant supplementary oonditions (constraints) can lead to some useful forms of dynamics in the classioal and quantum theories $/ 1-6 /$ The Hopf maps (fiber bundles) bear interesting possibilities. Thus, the fiber bunde $S^{3} \rightarrow S^{2}$ can be written as a transformation from a complex 2-component spinor to Cartesian coordinates

$$
\begin{equation*}
x_{m}=\bar{\xi} \sigma_{m} \xi \quad(m=1,2,3), \quad \tau=\bar{\xi} \xi, \tag{1}
\end{equation*}
$$

where σ_{m} are the Pauli matrices. Eq. (1) reallzes the map at each value of $\tau \quad\left(\rho=\sqrt{\tau}\right.$ and τ are radil of spheres s^{2} and s^{3}, respectively). S^{2} is the base space, and $S^{1}\left(e^{i \lambda} \xi\right)$ is a fiber. The chango nf vontohise (7) may al an ho nf tnterast. on the one hand. if we tend to oome to the spinors throughout (such a tendency is observed in the oontemporary field theory) and, on the other hand, because the quantum mechanios takes a form similar to popular CP ${ }^{1}$-models.

> 2. Two-body problem. The change of variables (1) leads to the Lagrangian

$$
\begin{equation*}
L=\frac{m}{2} \dot{\vec{x}} \dot{\vec{x}}+\frac{e^{2}}{r}=2 m(\bar{\xi} \xi)(\dot{\bar{\xi}} \dot{\xi})+\frac{m}{2}(\dot{\bar{\xi}} \xi-\bar{\xi} \dot{\xi})^{2}+\frac{e^{2}}{\bar{\xi} \xi} \tag{2}
\end{equation*}
$$

(any other potential $V(\tau)=V(\bar{\xi} \xi), \quad V(\vec{x})=V(\bar{\xi} \vec{\sigma} \xi)$ can be acoepted), which is invariant under gauge transformations $\xi(t) \rightarrow e^{i \lambda(t)} \xi(t) \quad$. It is convenient to omit the seoond term of the last expression of eq. (2), to assume

$$
\begin{equation*}
\widetilde{\mathrm{L}}=2 m(\bar{\xi} \xi)(\dot{\bar{\xi}} \dot{\xi})+\frac{e^{2}}{\bar{\xi} \xi} \quad \text { (or with any other } V \text {) } \tag{3}
\end{equation*}
$$

(recall an analogous approach in electrodynamics) and to impose the
in quantum theory. The Lagrangian \widetilde{L} is invariant under the phase transformations only with $\quad \lambda=$ const $(t) \quad(\bar{\xi} \xi)(\bar{\xi} \xi-\bar{\xi} \xi)$
is a relevant integral of motion), but is 0_{4}-symmetric, while the Lagrangian $\left[\right.$ and $S C$ (4) are only $O_{3}-s y m m e t r i c$. When energy (Hamiltonian) is fixed, equations of motion turn out to be those for a 4-dimensional oscillator $/ 1 /$ (see ref. $/ 6 /$ for details in terms adopted here and for a group-theoretical meaning of SC).

A Schrödinger picture consideration can be performed independently of the above Heisenberg picture approach. To this end we solve the relations

$$
\begin{equation*}
\frac{\partial}{\partial \xi_{\alpha}}=\frac{\partial x_{m}}{\partial \xi_{\alpha}} \frac{\partial}{\partial x_{m}}, \frac{\partial}{\partial \bar{\xi}_{\alpha}}=\frac{\partial x_{m}}{\partial \bar{\xi}_{\alpha}} \frac{\partial}{\partial x_{m}} \tag{5}
\end{equation*}
$$

with respeot to $\partial / \partial x_{m}$. This set is overdetermined and as a compatibility condition we get SC (4) again. Then, applied to the functions satisfying $S C$ (4) the relations

$$
\begin{equation*}
2 \tau \frac{\partial}{\partial x_{m}}=\xi \sigma_{m}^{\mathrm{T}} \frac{\partial}{\partial \xi}+\bar{\xi} \sigma_{m} \frac{\partial}{\partial \bar{\xi}} \tag{6}
\end{equation*}
$$

and the following connection between Laplacians in R_{3} and R_{4}

$$
\begin{equation*}
\Delta_{(3)} \equiv \frac{\partial}{\partial x_{m}} \frac{\partial}{\partial x_{m}}=\frac{1}{4 x} \Delta_{(4)} \equiv \frac{1}{\bar{\xi} \xi} \frac{\partial}{\partial \xi_{\alpha}} \frac{\partial}{\partial \bar{\xi}_{\alpha}} \tag{7}
\end{equation*}
$$

are valid. The Schrödinger equation, say, for Green functions

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \Delta_{(3)}-\frac{e^{2}}{2}-E\right] G\left(\vec{x}, \vec{x}_{\infty}, E\right)=-i \hbar \delta\left(\vec{x}-\vec{x}_{0}\right) \tag{8}
\end{equation*}
$$

aan be replaced by the Schrödinger equation $\ln R_{4}$
$\left[-\frac{\hbar^{2}}{8 m} \Delta(4)-e^{2}-E \rho^{2}\right] \tilde{G}\left(\xi, \xi_{,}, \xi_{0}, \bar{\xi}_{0}, e^{2}\right)=-i \hbar \frac{\pi_{4}}{4} \delta\left(\xi-\xi_{0}\right) \delta\left(\bar{\xi}-\bar{\xi}_{0}\right)$,

References:

1. Kustaanheimo P., Stiefel E. Journ. f. reine u. angew. Nath (Berlin), 1965, 218, p. 204. Stiefel E.L., Scheifele F. Linear and Regular Celestial Mechanics. Springer Verlag. Berlin-Heidelberg-NewYork, 1971.
. Aarseth S.J., Zare K. Celestial Mechanics, 1974, 10, p. 185. Zare K. Celestial Mechanics, 1974, lo, p. 207. Heggie D.C. Celestial Mechanics, 1974, 10, p. 217.
2. Duru I. H., Kleinert H. Phys.Lett., 1979, $84 \mathrm{~B}, \mathrm{p} .185$.
3. Ho R., Inomata A. Phys.Rev.Lett., 1982, 48, p. 231.
4. Kennedy J. Proc. R.Irlsh Acad., 1982, 82A, n.l, p.l.
5. Polubarinov I.V. JINR, E2-82-932, Dubna, 1982.
li. і. Нолубаринов. пввнтовая механика и расслоения хопфа. В кн.: Т'руды п кеддународпого семинара "Теоретико-групповые методы в физике" (Звенигород, 24-26 ноября I982 工.) , "наука", носква́, IOS3, т.2.

Полубаринов И. в.

E2-83-384
роблема нескольких тел квантовой механике
и отображения Хопфа
В задаче многих тел в квантовой механике рассматривается переход от в задаче моординат к спинорным переменным.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного института ядерных исследований. Дубна 1983

Polubarinov I.V
 Many-Body Problem in Quantum Mechanics and Hopf Maps

ransformation from the Cartesian coordinates to spinor variables is considered in many-body problem in quantum mechanics.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR

