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Integrable models have become the subject of comprehensive
study lately especially due to theoretical and experimental in-
vestigations of quasi-one-dimensional crystals (magnets) at
low temperatures. In particular, such models as sine-Gordon
(SG) (describing easy plane ferromagnets/l/ ) and various ver-
sions of the Schrddinger equation with cubic nonlinearity (NLS,
for easy axis ferromagnets 72/ and Hubbard - like antiferromag-
nets’3/ and so on /¥ ) are a sufficiently appropriate basis
to develope corresponding theory at the definite area of the
system parameters.

The gauge equivalence of Landau-Lifshitz equations and NLS
is obtained to show the importance of studying the latter to
understand the behaviour of more complicated systems.

If the scalar U(l) version as well as the vector one of at—
tractive NLS may be regarded as studied rather well the repulsi-
ve type NLS is yet nearly terra incognita. In fact after the
first work in this direction”/5/ there appeared but a few pub-
lications (containing sometimes contradictious statements)
concerning the scalar U(0,1) version 78/,

In one of the previous works of this series the U(p, Q)
version of the NLS has been studied’?/ but under vanishing

boundary conditions. Whereby condensate states were excluded
from cancideratian Tn thic cace  howowar o crpat attonticn
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should be paid namely to the properties of the condensate and
its excitations that corresponds on the classical level to the
solution of the Cauchy problem under nonvanishing (nontrivial)
boundary conditions at both infinities. Such a picture can
occur, e.g. when electro-magnetic waves go through a stable
nonlinear medium with dispersion relation @ =kZ+«|E|2 as well
as in the case of a Bose gas with internal quasi-spin ("colour")
degrees of freedom and a repulsion between particles.

The U() NLSE model, direct generalization of the U(1) NLSE,
is described by the system of two coupled nonlinear equations
for the two-component complex vector-function q(x,t):

iqt+qx;—2((q+Q)“P)q=0 o

under nonvanishing boundary conditions

) —
2 X oo b (2)

L q!(x. t)mo ,

2 + T
where (q%q) =lq1l®+1a1°, a" =@*)" .

2

From (1) by virtue of (2) it follows that correct setting of the
problem implies

@a) =@a)=». (3)

The possibility of the complete study of system (1) comes
from corresponding linear problem:

(;bx = U¢ (4)
¢t = V¢ ’ (5)
where

U, A) =~A2 + Q(x),

i) -0, -2rat+q’
Vix, A)

2iAq + Q. -iq 8q+ +ipl, ’ 6)
1t o 0 iq*(x)
= Q X =
z ko —Ig), @ -ig(x) 0.1, .

We shall follow the Zakharov-Shabat scheme of the Inverse Scat-
tering Method /% (see also’/11/y

1. THE DIRECT PROBLEM

Consider the spectral problem (4) on the axis ~w< x<o. Let
us introduce two sets of the column Jost solutions which are
determined by their asymptotic behaviour:

A+{
d>+1(x' Ay —— X+1(x, A) = e-igx qi‘l
- x> too - ,
Qiz
M
A=
d>+2 (X, A) —— X+2(x, A) = eié‘x qil
- x>t oo -
qi2 ’
. omEyr ‘ 3
ot
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where ¢ “=A" -p. Lue

Since the Jost solutions form the fundamental system of solu
tions, ®, is a linear combination of ®_ :

®_(x, N =90 (x, A) S, (8)
where S(A) is the scattering matrix. Because of

iA

detd, (x,A) = det®_(x,\) = detX + (%, A) =%pe!® (9)

from (8) we have the unimodularity of S):

detS(A) = 1. (10)

Let us examine the symmtery properties of the Jost solutions.
Consider for that the conjugate to (4) equation:

ot iza, +@") =are’.

Mowrdine woo A #hn fant that in nnr race
@t -q, 37 =2

and hence

4 5ot A S0(x,A) =0,
dx

for real A one obtains:

30" (x, VEG(x,A) = AQ) = const . an

The explicit form of the matrix AQ\) is defined by the concre-
te choice of the Jost solutions. For the unnormalized ones
(7) it reads:

A\ = diag(2(L +A), &L -A), ~-p).

The appropriate choice of the Jost solutions

-~

b, &)= __,1
- V2L +A)

D, (x,A),

51'2 (X,A) = -————i“‘"——q)+2 (pr),
V4L -2
5t3(x,)\)= -—1——(1)1'3(1" A)
V-p

gives instead of (11):

O, A DN =1, O\ =30 (x, M3, (12)

From (8) and (12) we have the pseudounitarity condition:

SASO) =1, (13)

where again S(\) = ES+(ME, and a very important relation
SW = &, (x, MO_(x, A) (14)

which connects analytical properties of the S-matrix and the
Jost solutions.

We have so far considered the properties of the Jost solutions
and S -matrix for real A and {. Let us define their analytic
behaviour in the A-plane. Note that the function (J(\) =y AZ~p
is defined on the two-fold Riemanian surface which first
sheet is glued with the second one along cuts (-=,-yp) and
(Vp, + o007,

The analytical properties of the Jost functions can be deri-
ved from the following integral equations:

* oo

O, (0N = X, (M) = [ dyX, (0, M) X5 (9, M) T@y ~ Q) D, (7 M) (15

which are equivalent to equations (4) under boundary conditions
(2). Supposing that the potential Q(x) tends to its asymptotics
Q.fast enough, onecan then ensure that Jost ®,, and ¢—1 can be
analytically continued on the upper sheet of the Riemanian sur-
face (Im¢>0); solutions @, , and ¢_, are analytical functions of
A on the lower sheet of the Riemanian surface (Im{<0),and solu-
tions ®,, and ¢_, are defined on the real axis of A-plane and
have no analytical continuation. In their own regions of analy-
ticity they have the following asymptotics (for large [A]):

Gy (®A) ~ X, () 1+ 0/, j=12. (16)

Note that (14) may be rewritten in components

S =0 P - (14")
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Thus (14') allows us to describe the S-matrix analytical pro-
perties via those of the Jost functions. In particular, from
(14') it follows that the function 8,0, O is analytical on the
upper sheet of the Riemanian surface hm§>0).The discrete spect-
rum of the problem (4) lies in the interval (-\p, Vp) between
cuts and is defined by the zeroes of the function 81;(4, {). The
continuous part of the spectrum (4) drastically differs from
that of the U(l) NLSE model. In addition to the two-fold de-
generated part of continuous spectrum lying on both the cuts
of the Riemanian surface there is one more branch lying on the
whole real axis of the A-plane. Nevertheless,as we shall see
the appearence of this branch does not effect the existence of
pure soliton solutions in the system.

Therefore, at the points of the discrete spectrum we have:

o_ (= A,) =c ® ,(x,A,), c =85, (AL ), a7
Sll(kﬂ’é‘n) =01 831(An’£n)=0‘ (18)

It is interesting to notice that in the present case (unlike the
U(1) model) one may say about the degeneration of the discrete
spectrum, too.

Now let us obtain the time evolution of the spectral data.
We use for that the technique of the Hamiltonian equations of
motion for the 8-matrix elements

St(A, t)={HvS(Aqt)}q (19)
where H=13+2Il; is the Hamiltonian of the system (1), Iz are
the expansion coefficients of the function lnSu()t,C) in a seri-

-1 ,. . . ]
es of A" (i.e., the local involutive concervation laws of the
system). Using the explicit form of the Poisson brackets bet-—

ween different elements of the S-matrix /% it is easy to
obtain

iS (A, t) =[00), s, 1], (20)

where ['QA) = diag(A+¢) , (A =¢) ,0), or for components

9 S X, 1) =0, 3,8 (A, 1) = =3, Sp (A, 1), K, m=123,
d¢Sq12 (A, t) = —4iA{S1a(, t), (21)
I, 8130, 1) =~ +OZ%8 50, 1),

3¢ Sa5 O, 1) = =i =) 2 Spe(r, 1)

2. INVERSE PROBLEM

From (14) making use of (15) one can derive the existence
of the triangular representation for the Jost function O, (x,A)

(D+(X, A) = x+(xo A) - f dyK(loY) X +(Y- A\/ . (22)
X

Inserting (22) into the linear problem (4) we get the differen-—
tial equation:

3K,y + K (Y2 =iQ®KEy) -iKE&y)Q, (23)

with the boundary conditions

[K(x, ¥, 2] = i@, - Q@), (20)

K(X, Y) — 0.
y-»oo

One can then express the potential q(x) through the elements of
the kernel K(x,¥):

Q) = g+ 2iK1*'k+1(x, x), k=12, (25)
Tn addition:

Ki“n(x, X) =Kn1 (x,%), n=2,3.

To get the Marchenko equation let us rewrite the first column of
(8) in the form:

1
—_— - = - o r. @
Sll¢—1 T R I TRt I

multiplying it by —————21 eiCy integrate along the infinite circle
d

at the complex A-plane on the upper sheet of the Riemanian

surface (Im> 0). One can apply the residue technique at points

A to the left-hand side of this relation (under condition

y> x).The result is as follows:

-l -Vny
o, (A )e c P&, A e

i
=M
[l

Yn Sil (kn‘ i"u) Vnsil (kn’ivn)

v,y
E’ “n¢+2(x'kn)e '
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where

cn‘—‘\/)‘zn =P

=ivp =A% =ivg, Sy (g,ivn) =0.

The right—hand side (which is the continuous part of the
spectrum) one can represent in the form (supposing the exilsten-—
ce of corresponding limits for ®43 and T'gy near the real axis):

1
ar_ iy = 0 +
f2mfe (¢+1-x+1+r21¢+2+r31¢+3) = K(x¥) .(0 )
F(ll)(x+ y) + iF(zl) x+y) 0
¢y}
+ ‘1+1F§21)(x+y + Fg ®y) [ =95 | -
q#
+1

Uy F(gl)(x +Y)

1) YN
F1 (s+y)+1F2 (s+9) o

- [ dsK(x,9) U4y F(2 (s+79)

X

. . FVs +y)

+2 2 a;,

where
F@) = o [aby@e 2
1 - 20 oo 1 '
e =7;7_£ dfbg(‘f)ei‘fz .

(1 1 ca 1Az + €y)
FS (x,5) —E;‘f ; ral()‘vf)e ’

b (O = lz.nmu,f) 1y (N O,

by @ = lrg A &) = rp (RO £ = R

(1)
+ Fa (S! Y) -q:z )

Finally the Marchenko equations become:

1 F1(x+y)+iF2’(x+y) 0
K@ )| 0|+ G Fe Gy s Fmy | ~ar, | -
0
{ g Fo(x +9) g,
. (26)
f
Fi(s+y) +iF (s+y) 0
c (1
- i ds K(x, s) G4y Fo(s+y) +Fg' (s,9) | 4%, =0,
9 Fps+ ) %
where
(2) --VnZ
Fl(z)=-§,yn)\ne .
—vnz

FO@ =-Z e " .
Fop @ =FP@ + F&@ .

In the case of reflectionless potentials the Marchenko equa-
tions may be explicitly solved. So we look for a solution of
(26) in the form:

N
K 9) = I Kn (D) X oAy ) 27)

with K,(x) being the column vector.

System (26) with kernel (27) reduces to the system of 2N
(where N is the number of eigenvalues A,) linear algebraic
equations for Kn(X) which immediately leads to the N-soliton
solution. In particular, the single-soliton kernel K(x,y) (N=1)
assumes the form: ’

* -1 * - 1
. p qH(A iv) i, A -iv)
ve 2 (28)
= i *
K(x, y) — QA i) o, 4,95
p(l + -‘-‘—e ) o
\ e+ ) a0, la !
: From (18) and (21) the time dependence of u(A,t) is as follows:
dr, 1) = p(Qx, 0) e ¥V, (29)
9




therefore we have the following single-soliton solution to the
problem (1)-(2):

()\+iy)2p-1 eEV(x—xo-B/\t)
X, t) = » k=12,
qy(xt) G4k 1+e2y(x-xo—2)\t) (30)
where
2vx, uA,0 o 2 2 2
e =—v—-—,)\ +v =P=|q+1{ +lq+2| )

One can now verify the validity of the boundary conditions for

the solutlon Really at x + 4+, Qg +Qyy and at X »—o0 , q

-+ Qg e =q._ then the condition |q+1| +|q+2l |q_ 12+
}q_gl is fulfilled which guarantees the spectra of the "asymp-

totic" operators Ui coinciding and the correctness of setting

of the problem (1)-(2).

3. THE SINGLE-SOLUTION STABILITY

The next important question is the stability of the above
solution under small continuous perturbations. Unlike the U(1)
case here we have two different continuous modes connected
with functions Iy and rgy respectively. Using the methods of
paper 710/ it will be shown that appearence of the additional
perturbation source does not in this case break the single-
solution stability.

Let the spectral function F be presented in the form:
FGy)=F, (xnt)+F xynt),

where the continuous branch Fc consists of two modes related
to Iy; and Iy , respectively. The Marchenko equations become

K, yit) + Fa(x, yit) + F (x,y; 1) -
(31)

- FdSK(X.S: ) [FGyt) + F(s,vit)l = 0

X

We estimate the correction to a pure solution at t -+« under
the conditions:

Irey W, € << 1, |r31‘(>\,§)| «<l. (32)

10
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Representing the kernel in (31) as

K(x yi 1) = K(%,1) Xyp (7, A) + 8K (%, ¥i )

we have for J8K:

o0

BK(X, y,: t) - f dSSK(X,S;t) Fd (S.Y§ t) = SG(X, y: t) ’ (33)
X

where

5G(x, i t) = =F, (%, vit) + K(5,t) [d8X (5, A) Fy(s,yit),
) 4

and we neglect the term 8K.F, as the higher order ?ne with
respect to 8K.Using the relation between F, and ng g one
then obtains

itf, (&)

o0 i) ity
Fo(x, yit) = [ &g €ix,y)e + [ dgixy)e v (34)

where f; (&) = RO, 1, 0O+ H°,

. . 321()%‘5) ~ iE€@+y)
51\‘31“')’) = v ’
)tS“()t,f)

83:08)  1ax+éy
golfix,y) = ———e .
A8y, (E)

x

It is easy to verify that equations
dfl.z (&)
aé

have no real solutions in the definition region of £. As is
well known, this means that the phase functions flg(f) have
no stationary points. Therefore the main contribution is of
the following asymptotical behaviour at t-+o:

g (o0} X, y) itf (o)
F, (xyt) ~ i AP (35)

gg(‘”; X, y) i(fg(m)
—_—e

11



Est%mating g, (£ x,y) at large ¢ needs asymptotical represen-
tation (forfA|'Y” « ) of the elements Sy +8g; and Sg; which due
to (14') and (17) are

(* +«:’)2 - (QI q.)

811, &) =
2N +§)
+
Sp, 1, &) » L1040 (qj_q_'_‘-)_—,
%V -p
S5, 0 £) = Q419 = Uy q—l.

A+E) vV 2 (€ - 1)

Finally we have relations

1
|l'21()\,~f)i —-? ,
f-aac

Itar A, €)= 2,
c ~

which are consistent with above conditions (32). Thus the in-
tegral F (x,yit) at t++= is of the order

01 02 .
IFc(x,y;t)[ < -;— + ' (36)

with ¢y ?nd ¢, corresponding to oy A, &) and g, (A, £)We can
now obtain the estimate of 8G in (33) which is due to (36)

’

c ¢ K(x ¢
8, ;)] < (o 4 22y KOOI, eh %
t 1 2 =7 t

Look for a solution of (33) in the form:

BK(, ¥ t) = 8K (x, t) X} ,(y, A) + 8G(x, y; t) -

12
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Inserting it into (33) we get for OK(x,t):

BK(x, 1) Xip (1. M) —BK(x, 1) [ dsXp (5, A)F,(s,¥: 1) =

= [ds8G(x,s;t) F (s, yi t) .
X
Having used the explicit form of the single-soliton spectral
function Fy one can found the estimate of 8K at t -+
c/ c"

PK(x, t) | < ra + . (37)

which shows that the weakly perturbed U(0,2) single-soliton
solution is asymptotically "cleaned" as 1/t so resembling the
U0, 1) one.

Besides, we show that appearence of the additional continuous
mode does not violate the soliton stability. Note that in con-
trast to the attractive U(2) NLSE the soliton stability is
here influenced by the "medium" of a finite density p which
accelerates the release process of perturbed soliton from a
weak continuous spectrum.

Ultimately we should note that in addition to soliton solu-
tion (30) there are others. In paper/7/,for instance, the solu-
tion

q,(xt) = aleie(x' v

sechkz ,

q,(x,t) = a (thkz +-£L)
2 2 P

has been found, in which

2
- Y x - =Y _ k2 2 _,2 2 =X =Vt~
g 5 X w,t, W, y K<, k& -al+ a2, Z =X-Vi-X..

This solution does not embed in the scope of the Hermitian li-
near problem (which only we have studied) and requires to
proceed to an appropriate non-self-adjoint operator. We also
say nothing about such an interesting problem as coloured
kinks scattering. They are now in progress.
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MaxaubkoB B.I'., TamaeB 0.K., Cepreenxos C.A. E2-83~-378
KBasHgpipouHble BO3OYXKOEHHA B MHOTOKOMIOHEHTHHIX CHCTeMax

MeroooM o6paTHOH 3azaud pacCesHHs H3ydaeTCs 3anaua KomM pns
BexTOopHOro HYIl orTankHBawmerocss THHAa NPH HETPHBHAJIBHBIX T'DaHHY—
HEIX YCJIOBHSX Ha IoOJieBble NepeMeHHble. [IA clyuas 6e30TpaxaTellb—
HBIX NOTEHUHAJIOB NMOCTPOEHB TOYHHle N=-CONHTOHHHE pemeHHs. Hdoka-—
3aHa yCTOHUYHBOCTH OOHOCOJIHTOHHOTO pelleHHs OTHOCHTEJIBHO MalibiX
BO3MylleHHH HenpephiBHhIM crekTpoM. [lokasaHo, uToO crna6oBO3MY-—
eHHOe pelieHHe ACHMNTOTHYEeCKH CTPeMHTCH K YHCTO COJIMTOHHOMY,
xaxk 1/t.

Pa6oTa BbmosiHeHa B JlaBopaTOpPHH BBIYHCIIMTENILHOH TeXHHKH
M aBToMaTH3auuu OUSAH.

1IPENPUHT UDBEANHEHHOTO MHCTUTYTA AREPHNX MCCAEAOBaHMM, HyOoHa 1303

Makhankov V.G., Pashaev 0.K., Sergeenkov S.A. E2-83-378

Hole—-Like Excitations in Many Component Systems

The Cauchy problem for repulsive vector nonlinear Schrddin-
ger equation under nonvanishing boundary conditions is studied
via the inverse transform. For reflectionless potentials
exact N-soliton solutions are constructed. The single solu-
tion stability is proved as well under small perturbations of
continuous spectrum. The perturbed soliton 1is shown to tend
to a pure one asymptotically as 1/t.
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