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Integrable models have become the subject of comprehensive 
study lately especially due to theoretical and experimental ~n
vestigations of quasi-one-dimensional crystals (magnets) at 
low temperatures. In particular, such models as sine-Gordon 
(SG) (describing easy plane ferromagnets 111 ) and various ver
sions of the Schrodinger equation with cubic nonlinearity (NLS, 
for easy axis ferromagnets 121 and Hubbard - like antiferromag
nets131 and so on 141 ) are a sufficiently appropriate basis 
to develope corresponding theory at the definite area of the 
system parameters. 

The gauge equivalence of Landau-Lifshitz equations and NLS 
is obtained to show the importance of studying the latter to 
understand the behaviour of more complicated systems. 

If the scalar U(l) version as well as the vector one of at
tractive NLS may be regarded as studied rather well the repulsi
ve type NLS is yet nearly terra incognita. In fact after the 
first work in this direction/51 there appeared but a few pub
lications (containing sometimes contradictious statements) 
concerning the scalar U(O, 1) version 161. 

In one of the previous works of this series the U(p, q) 
version of the NLS has been studied 171 but under vanishing 
boundary conditions. Whereby condensate states were excluded 
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should be paid namely to the properties of the condensate and 
its excitations that corresponds on the classical level to the 
solution of the Cauchy problem under nonvanishing (nontrivial) 
boundary conditions at both infinities. Such a picture can 
occur, e.g. when electro-magnetic waves go through a stable 
nonlinear medium with dispersion relation UJ = k 2 + KIE 12 as well 
as in the case of a Bose gas with internal quasi-spin ("colour") 
degrees of freedom and a repulsion between particles. 

The U(2) NLSE model, direct generalization of the U(l) NLSE, 
is described by the system of two coupled nonlinear equations 
for the two-component complex vector-function q(x,0: 

iq t + q XX - 2((q + q) - p) q = 0 

under nonvanishing boundary conditions 

f q(x, t) --. q+ 
~ x-.±oo 

l q x (x, t) 0 • 
lx I ->oo 

+ 2 2 
where (q q)"' Jq 11 + Jq21 • 

2 

+ q (q *) T. 

(I) 

(2) 

From (I) by virtue of (2) it follows that correct setting of the 
problem implies 

The possibility of the complete study of system (I) comes 
from corresponding linear problem: 

= U¢ 

= V¢ 

where 

U(x, A) = - i,\ :£ + Q(x) , 

( 

4i,\ 2 + i(( q + q ) - p) ' 
V(x, A) = 

2i,\q + qx' 

Q (x) = ( . 0( ) -lq X 

(3) 

(4) 

(5) 

(6) 

We shall follow the Zakharov-Shabat scheme of the Inverse Scat
tering Me.thod 151 (see also /11/). 

I. THE DIRECT PROBLEM 

Consider the spectral problem (4) on the axis -oc<x<oc. Let 
us introduce two sets of the column Jost solutions which are 
determined by their asymptotic behaviour: 

II>± 1 (x, A) - x± 1 (x, A) 
X-+ ±oo 

-i(x e c·,) q±l . 

q ±2 

c-, ) q± 1 

q ± 2 

• .. .1 'Tl.:·ry~ t 
. J(; fi:;:iOB:::W·~ t 

- I ~ ~ 

(7) 
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X -+ ± oo 

X± 
3 

(x, A) 

2 2 
where ( "'A - p. 

Since the Jost solutions form the fundamental system of solu-
tions, ~+ is a linear combination of ~ 

~ _ (x, A) = ~ + (x, A) S(A) , 

where S(A) is the scattering matrix. Because of 

o/ iAx 
det~+(x,A) = det~ (x,A) = detX±(x,A) = ._.,pe 

from (8) we have the unimodularity of S(A): 

detS(A) = l . 

(8) 

(9) 

(I 0) 

Let us examine the symmtery properties of the Jost solutions. 
Consider for that the conjugate to (4) equation: 

+ + + 
~ (-i 1 a + Q ) = A*~ . 

X 

and hence 

~(l~+ (x, A) l~(x, A)) 0 • 
dx 

for real A one obtains: 

+ 
l~ (x, A)l~(x, A) = A(A) = const. ( I I ) 

The explicit form of the matrix 
te choice of the Jost solutions. 
(7) it reads: 

A(~ is defined by the concre
For the unnormalized ones 

A(A) = diag(2/;((+A), 2/;((-A),-p). 

The appropriate choice of the Jost solutions 

~+ (x,A) = -~ ~±1 (x,A), 
_1 ..j 2((( +A) 
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gives instead of (I 1): 

~(x, A) ~(x,A)"' I, 
- + 
~ (x, A) = l ~ ( x, A )l. ( 12) 

From (8) and (12) we have the pseudounitarity condition: 

S(A)S(A) =I, (13) 

where again S(A) = lS +(A)l, and a very important relation 

S (A) , $ + (x, A)~_ (x, A) (14) 

which connects analytical properties of the S-matrix and the 
Jost solutions. 

We have so far considered the properties of the Jost solutions 
and S -matrix for real A and (. Let us define their analytic 
behaviour in the A-plane. Note that the function ((A) =VA 2 -p 
is defined on the two-fold Riemanian surface which first 
~heet is glued with the second one along cuts (-~.-vPl and 
IV p • -t- ""J, 

The analytical properties of the Jost functions can be deri
ved from the following integral equations: 

±oo -1 
~±(x,A) = X±(x,A)- ( dyX±(x,A)X± (y,A)l(Q±-Q(y))~±(y,A)\15) 

X 

which are equivalent to equations (4) under boundary conditions 
(2). Supposing that the potential Q(x) tends to its asymptotics 
Q±fast enough , one can then ensure that Jost ~ +2 and ~ _ 1 can be 

analytically continued on the upper sheet of the Riemanian sur
face (lm(> 0); solutions «1>+ 1 and ~-2 are analytical functions of 
A on the lower sheet of the Rieman1an surface (Im( < 0), and solu
tions ~+3 and ~-3 are defined on the real axis of A-plane and 
have no analytical continuation. In their own regions of analy
ticity they have the following asyrnptotics (for large IAI): 

X+.(x,A)(l +0(1/IAI)), j =1,2. 
-J 

Note that (14) may be rewritten in components 

s ik "' ~ +i «<> -k • 

(16) 

(14') 
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Thus (14') allows us to describe the S -matrix analytical pro
perties via those of the Jost functions. In particular, from 
(14') it follows that the function s 1 (A,() is ana~ytical on the 
upper sheet of the Riemanian surface hm(>O).The d1screte spect
rum of the problem (4) lies in the interval (-YP, .JP) between 
cuts and is defined by the zeroes of the function S11(A,(). The 
continuous part of the spectrum (4) drastically differs from 
that of the U(l) NLSE model. In addition to the two-fold de
generated part of continuous spectrum lying on both the cuts 
of the Riemanian surface there is one more branch lying on the 
whole real axis of the A-plane. Nevertheless,as we shall see 
the appearence of this branch does not effect the existence of 
pure soliton solutions in the system. 

Therefore, at the points of the discrete spectrum we have: 

¢_1(X,An) =Cn¢+2(x,>..n), 0 n= 8 21(An,(n) 1 

S 11 (A n ' ( n ) = 0 ' S 31 (A n ' ( n ) = 0 • 

(17) 

(18) 

It is interesting to notice that in the present case (unlike the 
U(l) model) one may say about the degeneration of the discrete 

spectrum, too. 
Now let us obtain the time evolution of the spectral data. 

We use for that the technique of the Hamiltonian equations of 
motion for the S -matrix elements 

s t (>.., t) = I H, s (A, t) I , (19) 

where H = I 3 +2pl 1 is the Hamiltonian of the system (1), In are 
the expansion coefficients of the function lnS 11 (>..,() in a seri
es of >..-1 (i.e., the local involutive concervation laws of the 
system). Using the explicit form of the Poisson brackets bet
ween different elements of the S-matrix 191 it is easy to 
obtain 

iS t(A, t) = [ ['(>..), S(A., t) ], 

where r(A.) = diag ((A+() , (A - 0 , 0), or for components 
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at Skk (A, t) = 0, at ~m (>.., t) =-at Smk (A, t), k, m = 1,2,3, 

at S 12 (A, t) = - 4iA(S 12 (A, t), 

atS 13 (A, t) =-HA+() 2 s 13(A, t), 

at 823 (A, t) = - i (A - () 2 S 23 (A, t) • 

(20) 

(21) 

2. INVERSE PROBLEM 

From (14) making use of (IS) one can derive the existence 
of the triangular representation for the Jost function ¢+(x,A): 

00 

¢+(x, A) = X+(x, A) - J dyK(x,·y) X +(y, A). (22) 
I 

Inserting (22) into the linear problem (4) we get the differen
tial equation: 

lK (x y) + K (x,y)l =iQ(x)K(x,y) -iK(x,y)Q+ 
I ' y 

(23) 

with the boundary conditions 

[K(x, x), I] = i (Q + - Q (x)) , 
(24) 

K (x, y) ----+ 0 . 
y-+ 00 

One can then express the potential q(x) through the elements of 
the kerne 1 K(x, y) : 

(25) 

Tn "rlrlit-inn• 

Kt0 (x,x)=K01 (x,x), n=2,3. 

To get the Marchenko equation let us rewrite the first column of 
(8) in the form: 

-
1
-¢ -X = ¢ -X+1 +r21¢+2 +r31 ¢+3 1 s -1 +1 +1 
11 

multiplying it by --1-ei(y integrate along the infinite circle 
2rr( 

at the complex A.-plane on the upper sheet of the Riemanian 
surface (lmt; > O). One can apply the res~due technique ~t. points 

>.. to the left-hand side of this relat1on (under cond1t1on 
n 

y> x).The result is as follows: 

I 
n 
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where 

t; n = y .\ ~ - p = i y p - .\ ~ = iv0 , S 11 (.\ n , ivn ) = 0 • 

The right-hand side (which is the continuous part of the 
spectrum) one can represent in the form (supposing the existen
ce of corresponding limits for W±s and r 31 near the real axis): 

1 

f d.\ ~y ) ' 0 ) --e (w+
1

-x+
1

+r
21

w+2 +r 31w+ 3 ) =K(x,y + 
2rr~ 0 

F~1)(x+ y) + iF~l) '(x+ y) 

+ 

"" - f dsK(x,s) 
X 

(1) 
q + 1 F 2 (x + y 

q+2 F~l) (x + y) 

F (1) (s + y) + iF ( 1) '( s + y) 
1 2 

q F< 0 (s+y) 
+1 2 

q F 0 >(s + y) 
+2 2 

where 

(1) _ 1 f d.\ (' 1:) !(Ax+ 6> 
F

3 
(x, y) - - - r 31 "• ., e , 

2rr e 

b1 (~ 

8 

J 

Finally the Marchenko equations become: 

"" 

F 1 (x + y) + iF2 (x + y) 

q+1 F2 (X+ y) 

- f ds K(x, s) 
X 

where 
(2) --v z 

F 
1 

(z) = - ~ JL .\ e 0 
, 

0 
n n 

(2) -vn z 
F 2 (z) = - ~ !l n e 

n 

( ) 
( 1) (2) ( ) 

Ft,2 z = F1,2(z) + F1,2 z. 

(26) 

= 0, 

In the case of reflectionless potentials the Marchenko equa
tions may be explicitly solved. So we look for a solution of 
(26) in the form: 

(27) 

with K
0

(x) being the column vector. 
System (26) with kernel (27) reduces to the system of 2N 

(where N is the number of eigenvalues An) linear algebraic 
equations for K

0
(x) which immediately leads to the N-soliton 

solution. In particular, the single-soliton kernel K(x, y) (N"' 1) 

assumes the form: 

p q * (.\- iv) 
+1 

q * (.\- iv) 
+2 

ve v(x- y) 2 (28) 
K(x, y) q+ 1 (,\ + iv) iq+1 I q+1q:2 

(1 v 2vx) P + -e 
JL q+2 (.\ + iv) q+2q Z1 \q+212 

From (18) and (2 I) the time dependence of il(.\, t) is as follows: 

il(.\' t) = JL (.\, 0) e 4.\vt • (29) 
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therefore we have the following single-soliton solution to the 
problem (1)-(2): 

where 

1L (,\, 0) 

v 

( ' .)2-1 2v(z-z0 -eAt) 
"+Iv p +e 

-:,-----, k = 1,2' 
1 + e 2v (x - x 0 - 21\t) 

(30) 

One can now verify the validity of the boundary conditions for 
the sol~tion. Really at x ... + ""• qk ... q+k and at x ... -"" , q k ... 
... q+k el<l =q-k then the condition jq+1 j2 + jq+2 j2 = jq_1 j 2 + 
+ \q-2\

2 is fulfilled which guarantees the spectra of the "asymp
totic" operators U± coinciding and the correctness of setting 
of the problem (1)-(2). 

3. THE SINGLE-SOLUTION STABILITY 

The next important question is the stability of the above 
solution under small continuous perturbations. Unlike the U(l) 
case here we have two different continuous modes connected 
with functions r 21 and r 31 respectively. Using the methods of 
paper 1101 it will be shown that appearence of the additional 
perturbation source does not in this case break the single
solution stability. 

Let the spectral function F be presented in the form: 

F (x, y; t) = F d (x, y; t) + Fe (x, y; t) , 

where the continuous branch Fe consists of two modes related 
to r 21 and r31 , respectively. The Marchenko equations become 

K(x, y; t) + F d (x, y; t) + Fe (x, y; t) -
(31) 

- ( dSK(x, s; t) [ Fd(s, y; t) + Fe(s, v; t)] = 0. 
X 

We estimate the correction to a pure solution at t ... +oo under 
the conditions: 

(32) 
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Representing the kernel in (31) as 

+ 
K(x, y; t) = K(x, t) X+2 (y, >.) + BK(x, y; t) 

we have for 8K: 

8K(x, y; t)- J ds8K(x,s;t) Fd (s,y; t) = BG(x, y; t), (33) 
X 

where 

"" + 
8G(x, y; t) =-Fe (x, v; t) + K(x, t) ( dsX+2(s, >.)Fe (s, Y ;t), 

X 

and we neglect the term BK·Fe as the higher order one with 
respect to 21K. Using the relation between F c and Fi~J, 3 one 
then obtains 

!;1\<;, .... ,,, 
821 (>.,0 

>.S 11 (>.,.;) 

S 31 (>.,.;) i (Ax+ 6) ----e 
>.Sll (>.,.;} 

It is easy to verify that equations 

df1,2(.;) 
----=0 

ct.; 

have no real solutions in the definition region of.;. As is 
well known, this means· that the phase functions f1,2 (.;) have 
no stationary points. Therefore the main contribution is of 
the following asymptotical behaviour at t ... +oo: 

g 
1
(oo; X, y) itf 1(oe>) 

Fe (x, y; t) - e + 
(35) 

it it 
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Estimating g 1 2(~; x,y) at large ~ needs asymptotical represen
tation (forl.\1!. "" ) of the elements s11 , s21 and s31 which due 
to (14') and (17) are 

Su(.\,~)-

2 + 
<>< + e> - (q+ q_) 

2e(.\ + ~) 

8 21 (,\, ~) ~ 
+ 

p + (q+q_) 

~y-p 

Sal (A, 0 - q+l q_2 - q+2 q_l 

(A+~>v 2e<~ -><> 

Finally we have relations 

lr21 (.\, ~>I - .!.. 
~ 

~--"" 
lr~, (.\, ~)I - _1 

~ ~ 

which are consistent with above conditions (32). Thus the In
tegral Fc(x,y;t) at t-.+.., is of the order 

c1 c2 
IF (x, y; t) I < - + -

c - t t 

• 

with c 1 and c 2 corresponding to r21 (A, ~) and r31 (,\, ~).We can 
now obtain the estimate of oC in (33) which is due to (36) 

c1 c2 IK(x) I c'1 c'2 loC(x,y; t)l < <- +-)(1 + ) <- +-
- t t 211 - t t 

Look for a solution of (33) in the form: 

+ 
8K (x, y; t) = 8K (x, t) X +

2
(y, .\) + 8C (x, y; t) • 
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(36) 

" 
I 

Inserting it into (33) we get for oK(x,t): 

+ ~ + 
oK(x, t) X+2 (y, A) -8K(x, t) { dsX+2 (s, ,\) Fd (s,y; t) = _.., 

{ ds8C(x,s; t) Fd (s, y; t) • 
X 

Having used the explicit form of the single-soliton spectral 
function Fd one can found the estimate of oK at t-> +oo 

c ~ c'' 
IBK(x, t) I S -t- + -t- (37) 

which shows that the weakly perturbed U(0,2) single-soliton 
solution is asymptotically "cleaned" as 1/t so resembling the 
U(O,l) one. 

Besides, we show that appearence of the additional continuous 
mode does not violate the soliton stability. Note that in con
trast to the attractive U(~ NLSE the soliton stability is 
here influenced by the "medium" of a finite density p which 
accelerates the release process of perturbed soliton from a 
weak continuous spectrum. 

Ultimately we should note that in addition to soliton solu
tion (30) there are others. In paper 1 71, for instance, the solu
tion 

{ 

q 1 (x, t) 

q
2

(x, t) 

iO (x, t) 
a 1e sechKZ, 

iv a
2

(thKZ + -) 
2K 

has been found, in which 

e = ~ x - w 1 t, 
2 2 

wl = T- K K 2 = a 2 + a 2, z = x- vt- x 
0

• 
1 2 

This solution does not embed in the scope of the Hermitian li
near problem (which only we have studied) and requires to 
proceed to an appropriate non-self-adjoint operator. We also 
say nothing about such an interesting problem as coloured 
kinks scattering. They are now in progress. 
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MaxaHbKOB B.r., Darnaes O.K., CepreeHKOB C.A. E2-83-378 
KBa3H)J;blp0tiHble B036YJKp;eHHR B MHOrOKOMllOHeHTHblX CHCTeMaX 

MeTop;oM o6paTHOH 3ap;atiH pacceRHHR H3yqaeTCR 3ap;atia KornH p;nR 

BeKTOpHoro HYill oTTaiTKHBaro~erocR THna npH HeTpHBHan&Hb~ rpaHHti
Hb~ ycnoBHRX Ha norreBbie nepeMeHHbie. AnR cnytiaR 6e3oTpaJKaTerr&
Hb~ noTeHu;HanoB nocTpoeHbl TOtiHbie N-corrHTOHHble perneHHR. ,[loKa-
3ana YCTOHtiHBOCTb O)J;HOCOTIHTOHHOro perneHHR OTHOCHTeTibHO MaTibiX 
B03MyrneHH:H HenpepbiBHbiM cneKTpoM. IIoKa3aHo, tiTO cna6oB03My
~eHHoe perneHHe aCHMTITOTHtieCKH CTpeMHTCR K tiHCTO COTIHTOHHOMy, 
KaK 1/t. 

Pa6oTa BbiTIOrrHeHa B J1a6opaTOpHH BbitfHCTIHTerrbHOH TeXHHKH 
H aBTOMaTH3au;HH OHHH. 

llpenpHHT UObeAHHeHHOro HHCTHTyTa RAePHbiX HCCileAOBaHHH • A)'OHa I :10) 

Makhankov V.G., Pashaev O.K., Sergeenkov S.A. 
Hole-Like Excitations 1n Many Component Systems 

E2-83-378 

The Cauchy problem for repulsive vector nonlinear Schrodin
ger equation under nonvanishing boundary conditions is studied 
via the inverse transform. For reflectionless potentials 
exact N-soliton solutions are constructed. The single solu
tion stability is proved as well under small perturbations of 
continuous spectrum.The perturbed soliton is shown to tend 
to a pure one asymptotically as 1/t. 
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