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I. INTRODUCTION 

An outstanding property of the nonlinear evolution equations 
integrable by the inverse scattering method is their intimate 
relation to the nonlinear two-dimensional sigma-models. For 
example, the 80(3) -sigma-model in a special parametrization 
reduces to the sine-Gordon equation/11, the 80(4) -sigma-model 
can be described by the Lund-Regge set of two nonlinear equa­
tions /1, 21 . In papers 13·5/ it has been shown that in general 
case the SO(n) -invariant nonlinear sigma-model is equivalent to 
a system of completely integrable nonlinear equations for 
(n- 2) scalar functions. The sigma-model with the pseudo-ortho­
gonal symmetry group SO(l, ~ turned out to be related either 
to the Ernst equation/6/ or to the Liouville equation 171 or to 
a new set of two nonlinear equations 181 depending on the para­
metrization used. 

This connection was investigated also in the inverse direc­
tion, i.e., for a given nonlinear equation admitting Lax's 
representation one constructed the c0rresponding sigma-model. 
In ref. 191 it has been shown that the linear spectral problem 
for the sine-Gordon equation enables one to reconstruct the 
field variao1e or tne ~uta) -slgma-model. Later on this method 
was generalized to an arbitrary nonlinear evolution equation 
admitting Lax's representation 1101. The crucial point here was 
the analysis of the group structure of this representation. It 
turned out specifically that the sigma-model for the nonlinear 
Schrodinger equation is the Heisenberg continuous spin chain. 

Thus a new interpretation was given of the relation of these 
' I I two models established before 11 . 

In addition to the group-theoretical approach one can use 
another purely geometric method to construct the sigma-models 
for a given nonlinear evolution equation. It is based on the 
geometric origin of many nonlinear equations integrable by the 
inverse scattering method. More precisely, we would like to use 
the fact that the majority of these equations describe the in­
trinsic geometry of some surfaces in Euclidean, pseudo-Euclidean, 

· · ff' 112•161 I th' h th 't R1emann1an, and a 1ne spaces n 1s approac e un1 
normal to the surface described by a given nonlinear equation 
is a natural candidate for the field variable in the correspon­
ding sigma-model. 

The purpose of this paper is the geometric construction of the 
nonlinear two-dimensional sigma-model for the Dodd-Bullough 
equation 117• 181 
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¢,11 -¢,22 = e - e • (I) 
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where ¢ =¢(u 1,u 2 ), ¢ij =a ¢/iJu iJul.It will be shown that this 
equation is connected with the SL(3,R)-sigma-model, the field 
triplet of which takes values on the sphere in the three-dimen­
sional unimodular affine space. This relation is completely 
similar to the connection of the sine-Gordon equation with the 
80(3) -sigma-model describing a three-component field with 
values on the sphere of the usual three-dimensional Euclidean 
space. 

For Eq. (I) various Lax's representations were proposed 1 14 •19( 

We shall use the geometric interpretation of this equation 
given in1141 It has been shown in this paper that Eq. (I) 
describes the intrinsic geometry of the two-dimensional affine 
sphere in the three-dimensional unimodular affine space like 
the sine-Gordon equation determines the metric of the sphere 1n 
the usual three-dimensional Euclidean space 11 • 12 ~ The linear 
equations that define the moving frame on these surfaces can 
be used as the Lax representation for both the sine-Gordon 
equation and the Dodd-Bullough equation. 

The affine normal on the sphere in the three-dimensional 
unimodular affine space will be considered as a field variable 
of the nonlinP:lr ~le;m::l-mrll'f'?l ':0!"!'e~~c-~di~t; !:c ~~- (!). i!ti: 
equations determining this normal will play the role of equa­
tions of motion in the obtained sigma-model. 

The paper is arranged as follows. In section 2 the basic 
facts from the affine differential geometry are given. In sec­
tion 3 we construct for the Dodd-Bullough equation the SL(3, R) -
sigma-model, the geometry of the affine sphere in the three­
dimensional unimodular affine space being used. To illustrate 
the proposed method, we give in section 4 the geometric deriva­
tion of equations of motion in the 80(3) -sigma-model corres­
ponding to the sine-Gordon equation. In conclusion we discuss 
shortly the problems that should be explored by further inves­
tigation of the proposed sigma-model. 

2. AFFINE DIFFERENTIAL GEOMETRY 

Let us give here the basic formulae of the affine differential 
geometry 120' 231 to be used further. 

We consider the three-dimensional affine space A3 with co­
ordinates x \ x2, x3 and with the transformation group 
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where the'~at:ix cis from the SL(3,R) group, i.e., det(c~) =I. 
The ~re~k ;nd1ces tak~ ~alues 1,2,3; and the Latin indices, 1,2. 
Let x(u ,u) be a pos1t1on vector of the surface in A3 and let 
... ... ... b h . . 
e 1 , e 2 , e 3 e t e mov1ng aff1ne frame on this surface subjected 
to the condition 

(3) 

The equations determining the motion of this basis along the 
surface are 

(4) 

... f3 ... 
dea = wa e f3 , 

where w 1 and wf3 are the Maurer-Cartan forms of the affine uni­
modular transfgrmations group (3). Differentiating the condi­
tion (3) and using (4) we obtain 

(5) 

so the one-forms w~ take values in the Lie algebra of the 
SL(3, R) group. The structure equations of As, i.e., the inte­
grability conditions of the linear equations (4), have the form 

(r) j 1\ (r) 3 0 
j = • 

(6) 

Making use of the Cartan lemma, we get from the first equation 
in (6) 

(7) 

The linear forms w
1 

and w~ obeying e~s. (6) and (5) determine 
the surface x(u 1, u2) in the space A up to its affine transfor­
mations (2) as a whole. It is the Radon theorem/23/ in the 
affine differential geometry. 

To classify the surfaces in the affine geometry one uses 
the invariants constructed by tensors of the fundamental dif­
ferential forms. The first form (affine metric) is quadratic 

(8) 

where 
i 

(r) = du
1

, 
- -114 
g ik = Ia I a 1k , a= det(a 1k), 

aik = (i',ik • i,1 • X,2) = (i',ik (i',1 X;. ,2)) 

(9) 

and the second form is the cubic one (the so-called Fubini-Pick 
form) 

II 
.. k -1/4 ...... 3-> 

T .. k du 1 dul du = Ia I (x 1 , x 2 , d x) - dl. 
IJ ' ' (IO) 

The tensors gik and Tijk are synunetric and connected by the 
apolar relation 

- ij 
g T ijk = 0 • 

- jk k 
g ij g = 8 i (I I) 

According to the usual rules of the Riemannian differential 
geometry one constructs the invariant K, Qauss' curvature of 
the affine_ metric gU . The mean curvature H and the total affine 
curvature K are def1ned by 

i 
2H = -A 1 , K (12) 

where 

( 13) 

and V j means the covariant differentiation with respect to the 
affine metric gij • These invariants are connected by the rela­
tion 

H=K-.J. (14) 

where J is the invariant of the Fubini-Pick cubic form 

J = ~ Tijk T ijk • (15) 

3. THE DODD-BULLOUGH EQUATION AND SL(3, R)-SIGMA-MODEL 

In 
fined 

terms of 
by /211 

the invariants H and K the affine sphere is de-

K= 1 --, H 
p2 

1 

p 
( 16) 
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..................... -------------------------------
where p is a constant having the dimension f

312 and determining 
the affine distance from the sphere surface to its centre 
(the length of the affine radius). 

As examples of the affine spheres with the centre in the 
coordinate origin we give here the following surfaces of the 
three-dimensional Euclidean space xyz = I, (x 2 + y2 )z = 1. 

In the asymptotic coordinate set ~. ~ on the affine sphere - ~ ~ ~ ~ 
g11=g22 =0, g1 2 =<x.~~x~ x,~) =exp<f>(~.~) (17) 

we have ' 211 

J =A. B exp(-3¢), K -, -4> ~ exp(-</>), . .,~ 
where A and B are the nonvanishing components of the tensor 

( 18) 

T , . For the sphere A and B can be taken without loss of ge­
ne1i~lity as constants '21'. Substituting (17) and (18) into (14) 
we obtain the Dodd-Bullough equation 

- 4> -2¢ 
<f> ~ =-He - A·B· e • . .,~ (19) 

where H A and B are constants. Ry appropriate choosing these 
constan~s and introducing the "laboratory" coordinates 
u 1=~ t- ~ , u2~~ _ ~ one can transform eq. (19) to (1). 

In paper '14' the Lax representation for eq. (19) has beer. 
constructed. For this aim eqs. (4) describing the moving frame 
on the affine sphere were used. 

To construct the sigma-model for eq. (19) we consider the 
definition of the affine sphere in terms of the position vector 
of the surface and its affine normal, rather than in terms 
of the invariants K and A (16). 

The affine normal is very important in affine differential 
geometry. It is given by 

-> 1 -ij - -N =-g V.Vx 
2 I J 

1 - • 
-0 X 
2 

(20) 

where o ~s the covariant Laplace-Beltrami operator for the af­
fine metric tensor g ij 

-
_1_( __ a_ g-ii \ lg-: __ a_). - det(- ) g = gij . 

vI il aui aul 

( 2 1 ) -0 

The sphere in the affine unimodular space A3 is th~ surface 
the affine normals of which cross at one point. Let X(~.~) be 
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the parametric definition of the sphere, and N(~, ~ the field 
of the affine normal on it. Then the affine sphere with the 
centre at the coordinate origin is given by the following vector 
equation 1211 

~ -+ 
X+ pN = 0 , (22) 

where p is the « length » of the affine radius (see eq. (16)) . 
Substituting (20) into (22' we get the differential equation 
for the position vector of the affine sphere 

(23) 

In the asymptotic coordinate set (~. ~) defined by eq. (17) 

(i.~~ ;..~ ;..~) = <;..~~ ;..~ ;..~) = 0 (24) 

the equation of motion for the SL(3, R) -sigma-model (23) takes 
the form 

-+ 1 -+ -+ 
X ~ + -(X ~ X ~ 

• .,~ p • .,~ ,., 
X 
.~ 

o. (25) 

The invariance of (24) and (25) under transformations (2) ~s 
oov~ous. 

4. THE SINE-GORDON EQUATION AND S0(3) -SIGMA-MODEL 

The connection of eq. (I) with the SL(3, R) -sigma-model 
(24), (25) is analogous to that of the sine-Gordon equation 
with the 80(3) -sigma-model, the three-component field of which 
takes values on the sphere in the usual three-dimensional Euc­
lidean space '1, 121 . Indeed, let r(~. ~) be a parametric repre­
sentation of the sphere with the radius R in Euclidean space: 
Then the position vector r(~. ~) has to obey the equation si­
milar to (22) 

where n\~. ~) 
space 

ii<~. ~) 

(26) 

1s the unit normal on the surface ~n Euclidean 

~~~ 
-> 

x r 
.~ (27) 

1[;.~ 
-> 

] I x r 
.~ 
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Transferring in (26) R·n into the right-hand side 
this equation, one obtains the common definition 
in Euclidean space 

and squaring 
of the sphere 

(28) 

The normal n can be expressed by the Gauss derivative formulae 124/ 

v.t. = b1·J·ii. I ,J (29) 

Here bij is the tensor of the second fundamental quadratic form 
of the surface, and Vj denotes the covariant differentiation 
with respect to the induced metric on the surface 

... ... 
gij = r,i r ,j , i,j = 1,2. 

Contracting eq. (29) with respect to indices i,j 

o? = 2H-ii. 

(30) 

one gets 

(31) 

i 
where H = b/2 1s mean curvature of the surface and o = v 

1 
vi is 

the covariant Laplace-Beltrmai operator for gij 
For the sphere 125/ 

H 
1 

ctllU ct::. C1 CUlH:i~l.jU~nce 

R ... 
n=-or. 

2 

Substituting now (33) into (26) we obtain 
... R2 -+ 
r+ 2 or =0. 

The sine-Gordon equation arises in the geometry of the 

(32) 

(33) 

(34) 

sphere by a special parametrization on it (the so-called Tcheby­
shev coordinate set 1 12,24/ ) 

gll = ~1 1,1 = g22 =~2 ~2 = 1 
(35) 

g 12 = g21 = r,l r:2 = cosa(~. Tf). 

The function a(~Tf) cannot be arbitrary but it has to satisfy 
the Gauss equation 1

25/ which reduces for the sphere to the 
sine-Gordon equation ' 

= - 1- sina. 
R2 

(36) 
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Taking into account (35) we obtain from (34) the equation of 
motion for the 80(3) -sigma-model 

... 1 ... ... ... (37) 
r /: + -r(r c r Tf ) = 0, ,., Tf R2 ,., • 

... 2 ... 2 
(r .~ ) = (r ,Tf ) = l . (38) 

5. CONCLUSION 

The nonlinear sigma-model (25) connected with the Dodd­
Bullough equation (I) is invariant under the noncompact 
SL(3, R) group. As a consequence, it has no instanton soluti­
ons. Nevertheless it is worth-while to construct the Backlund 
transformations for the field variables in this model and 
to look for the infinite series of the conservation laws in 
the spirit of papers /3· 5 • 26•271 • For the quantization of this 
theory it is necessary to ascertain whether eqs. (25) are 
the Euler equations for some Lagrange density. 

The sigma-models with the fields taking values on the 
spheres sn are dynamical systems with the squared constraints 11 ~ 
The SL(3, R) -sigma-model constructed here is the system with 
the cubic constraints on the dynamical variables. This fol­
lows at least from the fact that the affine sphere is defined 
by the algebraic equation of the third degree in its coor­
dinates 1231 • 
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HecTepeHKO B.B. E2-83-358 
HenHHeHHaH cHrMa-MoAenb AnH ypaBHeHHH ~OAAa-Bynnoy 

IToKa3aHo, ~TO ypaBHeHHe ~OAAa-Bynnoy CBH3aHO C HenHHeHHOH 
ABYMepHOH SL(3, R) -cHrMa-MOAenbiO, B KOTopoil TpmmeT 6e3Mac­
COBbiX rroneH rrpHHHMaeT 3Ha~eHHH Ha c¢epe 3-MepHOrO YHHMOAYnH­
TOpHOro a¢¢HHHOro rrpOCTpaHCTBa, aHanorH~HO TOMy, KaK ypaBHeHHe 
CHHyc-fOpAOHa CBH3aHO C SQ(3) -cHrMa-MOAenbiO, OITHCbJBaiOII\eH 
TpeXKOMITOHeHTHOe rrone CO 3Ha~eHHHMH Ha c¢epe 06bJ~HOrO 3-
MepHoro eBKnHAOBa rrpocTpaHCTBa. ITony~eHbi ypaBHeHHH ABHJKeHHH 
AnR SL(3, R) -cHrMa-MoAenH. 

Pa6oTa BbiiTOnHeHa B Jia6opaTOPHH TeopeTH~ecKoil ¢H3HKH OIDIH. 

Nesterenko V.V. E2-83-358 
Nonlinear Sigma Model for the Dodd-Bullough-Equation 

It is shown that the Dodd-Bullough equation is intimately 
connected with the nonlinear two-dimensional SL(3, R) 
sigma-model, the triplet of massless fields of which takes 
values on the sphere in the three-dimensional unimodular af­
fine space. This relation is completely similar to the connec­
tion of the sine-Gordon equation with the S0(3) -sigma-model 
describing the three-component field with values on the 
sphere of the usual three-dimensional Euclidean space. The 
equations of motion for the SL(3, R) -sigma-model are written 
explicitly. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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