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1. INTRODUCTION

An outstanding property of the nonlinear evolution equations
integrable by the inverse scattering method is their intimate
relation to the nonlinear two-dimensional sigma-models. For
example, the SO(3) -sigma-model in a special parametrization
reduces to the sine-Gordon equation/l/, the 80(4) —sigma-model
can be described by the Lund-Regge set of two nonlinear equa-
tions 12/, In papers /3% it has been shown that in general
case the S0(n) -invariant nonlinear sigma-model is equivalent to
a system of completely integrable nonlinear equations for
(n-2) scalar functions. The sigma-model with the pseudo-ortho-
gonal symmetry group SO(1, 2) turned out to be related either
to the Ernst equation’/8’/ or to the Liouville equation’/?/ or to
a new set of two nonlinear equations/s/ depending on the para-
metrization used.

This connection was investigated also in the inverse direc-
tion, i.e., for a given nonlinear equation admitting Lax's
representation one constructed the corresponding sigma-model.

In ref.’g/ it has been shown that the linear spectral problem
for the sine-Gordon equation enables one to reconstruct the
field variable of the BSU($) —sigma-model. Later on this method
was generalized to an arbitrary nonlinear evolution equation
admitting Lax's representation 19/ The crucial point here was
the analysis of the group structure of this representation. It
turned out specifically that the sigma-model for the nonlinear
Schrddinger equation is the Heisenberg continuous spin chain.

Thus, a new interpretation was given of the relation of these
two models established before’1l/,

In addition to the group-theoretical approach one can use
another purely geometric method to construct the sigma-models
for a given nonlinear evolution equation. It is based on the
geometric origin of many nonlinear equations integrable by the
inverse scattering method. More precisely, we would like to use
the fact that the majority of these equations describe the in-
trinsic geometry of some surfaces in Euclidean, pseudo-Euclidean,
Riemannian, and affine spaces /12°18/  In this approach the unit
normal to the surface described by a given nonlinear equation
is a natural candidate for the field variable in the correspon—

ding sigma-model.

The purpose of this paper is the geometric construction of the

nonlinear two-dimensional sigma-model for the Dodd—Bullough
equation/lmls/
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where ¢ =¢ulu?), ¢;5=0%/du'dul1t will be shown that this
equation is connected with the SL(3, R)-sigma-model, the field
triplet of which takes values on the sphere in the three~dimen-
sional unimodular affine space. This relation is completely
similar to the connection of the sine-Gordon equation with the
S0(8) -sigma-model describing a three-component field with
values on the sphere of the usual three-dimensional Euclidean
space.

For Eq. (1) various Lax's representations were proposed
We shall use the geometric interpretation of this equation
given in’1%, 1t has been shown in this paper that Eq. (1)
describes the intrinsic geometry of the two-dimensional affine
sphere in the three-dimensional unimodular affine space like
the sine-Gordon equation determines the metric of the sphere in
the usual three-dimensional Euclidean space '!' 12/, The linear
equations that define the moving frame on these surfaces can
be used as the Lax representation for both the sine-Gordon
equation and the Dodd-Bullough equation.

The affine normal on the sphere in the three-dimensional
unimodular affine space will be considered as a field variable
of the nonlinear sigma-mndel correcponding toc Eg. {!). The
equations determining this normal will play the role of equa-
tions of motion in the obtained sigma-model.

The paper is arranged as follows. In section 2 the basic
facts from the affine differential geometry are given. In sec-
tion 3 we construct for the Dodd-Bullough equation the SL(3,R) -
sigma-model, the geometry of the affine sphere in the three-
dimensional unimodular affine space being used. To illustrate
the proposed method, we give in section 4 the geometric deriva-
tion of equations of motion in the S0(3) -sigma-model corres-
ponding to the sine-Gordon equation. In conclusion we discuss
shortly the problems that should be explored by further inves-
tigation of the proposed sigma-model.
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2. AFFINE DIFFERENTIAL GEOMETRY

Let us iv% here the basic formulae of the affine differential
geometry 23/ to be used further.

We consider the three~dimensional affine space A® with co-
ordinates x ! x2,x3 and with the transformation group

x°% =c%x B 1a2, .
B




where the'matrix ¢ is from the SL(3, R) group, i.e., det(cB) =1.
The QFefk indices take values 1,2,3; and the Latin indices, 1,2.
Let X(ul,u?) be a position vector of the surface in A3 and let

- - - . . . 4
€y,€5, es.bg the moving affine frame on this surface subjected
to the condition

(e.l' 8y, °3) = det(ef) =1. (3)

The equations determining the motion of this basis along the
surface are

=o' € , (4)

> Ba
de —O)aeB'

where w! and wB are the Maurer-Cartan forms of the affine uni-
modular transformations group (3). Differentiating the condi-
tion (3) and using (4) we obtain

a (5)

so the one-forms wf take values in the Lie algebra of the
SL(3,R) group. The structure equations of A3, i.e., the inte-
grability conditions of the linear equations (4), have the form

wl A w? =0,
dp 1 =wj/\wji , (6)
dw B = 0l o B.

a a y

Making use of the Cartan lemma, we get from the first equation
in (6)

w? =a @, a =3 . (7)

B

The linear forms o' and @'y obeying egs. (6) and (5) determine
the surface }(ul,uz) in the space A” up to its affine transfor-
mations (2) as a whole. It is the Rodon theorem’/28/ in the
affine differential geometry.

To classify the surfaces in the affine geometry one uses
the invariants constructed by tensors of the fundamental d}f—
ferential forms. The first form (affine metric) is quadratic

1= |;;,|-1/4'aik dutdu® = gik du! du®, ®

where
i i -~ -~1/4
@ = du R gik=la| aik , @& = det(aik), (9)
- > - - - -+
aj =ik +X,1,.%X2)=ik[X;xx )

and the second form is the cubic one (the so-called Fubini-Pick
form)

i i ~1/4, >
= Ty dufaud au® = a7 4G L% ,, 0% -l (10)

The tensors §ik and Tijk are symmetric and connected by the
apolar relation

> ~ =~jk

B Ty =0, g8 =58, . (11)
According to the usual rules of the Riemannian differential
geometry one constructs the invariant «, Gauss' curvature of
the affine metric g . The mean curvature H and the total affine
curvature K are defined by

8H = -A] , K = det(al), (12)
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and V ; means the covariant differentiation with respect to the
affine metric gu .These invariants are connected by the rela-
tion

H=«x - J, ~(14)

where J is the invariant of the Fubini-Pick cubic form

1 ijk
J=-2_Tijk T HY (15)

3. THE DODD-BULLOUGH EQUATION AND SL(3, R)-SIGMA-MODEL

In terms of the invariants H and K the affine sphere is de-
fined by 721/

- 1 - 1
K= —, H =—,
> 5 (16)
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where p is a constant having the dimension 3’2 and determining
the affine distance from the sphere surface to its centre
(the length of the affine radius).

As examples of the affine spheres with the centre in the
coordinate origin we give here the following surfaces of the

three~dimensional Euclidean space Xyz = 1, (x%+y2)z =1.
In the asymptotic coordinate set &, 7 on the affine sphere
- - - %
£11 =802 =0, gz =(X ., X , X =expo (&, n)
B11 = 822 812 X ) pb &, n (17)
we have "2l
J =A. Bexp(-3¢), x»:—qsfn exp(—), (18)

where A and B are the nonvanishing components of the tensor
Tijk . For the sphere A and B can be taken without loss of ge-
nerality as constants ‘217, Substituting (17) and (18) into (14)
we obtain the Dodd-Bullough equation

HaP ~2¢
qs'fn =~He” -A.B.e . (19)
where ﬁ,A and B are constants. By appropriate choosing these
constants and introducing the "laboratory" coordinates
wl=¢ +n , u2-¢ -5 one can transform eq. (19) to (1).

In paper !4’ the Lax representation for ea. (19) has been
constructed. For this aim eqs. (4) describing the moving frame
on the affine sphere were used.

To construct the sigma-model for eq. (19) we consider the
definition of the affine sphere in terms of the position vector
of the surface and_its affine normal, rather than in terms
of the invariants K and H (16).

The affine normal is very important in affine differential
geometry. It is given by

~

~
o X,

<

- 1 ~ij g
N=-Eg Vi iX = (20)

o}

where G is the covariant Laplace-Beltrami operator for the af-
fine metric tensor g i

- 1 ( d ~ij

(21)

). g = det(g, ).
o dul du’ ? g‘J
vigl
The sphere in the affine unimodular space A3 is the surface
the affine normals of which cross at one point. Let X(,7n) be
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the parametric definition of the sphere, and N(£, n) the field

of the affine normal on it. Then the affine sphere with the

centre at the coordinate origin is given by the following vector

equation /e1/
x+pN=20, 22)

where p is the << length >> of the affine radius (see eq. (16)).

Substituting (20) into (22' we get the differential equation
for the position vector of the affine sphere

- -
X + 11r1x =0,
2

(23)
In the asymptotic coordinate set (£ n) defined by eq. (17)
EeeXe Xy )= By XXy ) =0 (24)

the equation of motion for the
the form

SL(3, R) -sigma-model (23) takes

X, x -0.
£ .n)

> t -

X + —(x
£n P ( £n (2%)
The invariance of (24) and (25) under transformations (2) is
obvious.

4. THE SINE-GORDON EQUATION AND S0O(3) —SIGMA-MODEL

The connection of eq. (1) with the SL(3, R) ~sigma-model
(24), (25) is analogous to that of the sine-Gordon equation
with the SO(3) -sigma-model, the three-component field of which
takes values on the sphere in the usual three-dimensional Euc-
lidean space '1'1%/, Indeed, let T, ) be a parametric repre-
sentation of the sphere with the radius R in Euclidean space.
Then the position vector r(£, ) has to obey the equation si-
milar to (22)

;(f. n) + R-_l;(f, 7 =0,

(26)
where rﬂf.n) is the unit normal on the surface in Euclidean
space

(f, xr ]
n, ) = ;5 — : (27)
ilr . xt 1
£ .7



Transferring in (26) R'D into the right-hand side and squaring
this equation, one obtains the common definition of the sphere
in Euclidean space

2 2
r“=R*. (28)

R
The normal 0 can be expressed by the Gauss derivative formulae’24/

- >
Vir,j = bijn. (29)
Here b;; is the tensor of the second fundamental quadratic form
of the surface, and \7 denotes the covariant differentiation
with respect to the induced metric on the surface

>

Bij =T T,y bi=lL2. (30)

Contracting eq. (29) with respect to indices i,j one gets

of =2H.n, (31)

where H==b;/2 is mean curvature of the surface and o= V1Vi is
the covariant Laplace-Beltrmai operator for 8ij -
For the sphere 725/
1
H=-% (32)

aud as a culisequence

neBo7
> . (33)
Substituting now (33) into (26) we obtain
- R2 >
l'+—2—l:ll'=0. (34)

The sine-Gordon equation arises in the geometry of the
sphere by a special parametrization on it (the so-called Tcheby-
shev coordinate set/12:24/ )

11 =TT, 158 =Tp T o =1, (35)

12 =8y =T T, =cosa({, n).

The function a(f,7) cannot be arbitrary but it has to satisfy
the Gauss equation /2%/ which reduces for the sphere to the
sine-Gordon equation

1

a,é.n =§Sin¢z. (36)

Taking into account (35) we obtain from (34) the equation of
motion for the SO(3) -sigma-model

?, +Ll?@,7 ) =0 6D
sfn RE v§ 7 ’
T2 =F )t =1. (38)

5. CONCLUSION

The nonlinear sigma-model (25) connected with the Dodd-
Bullough equation (1) is invariant under the noncompact
SL(3, R) group. As a consequence, it has no instanton soluti-
ons. Nevertheless it is worth-while to construct the Backlund
transformations for the field variables in this model and
to look for the infinite series of the conservation laws in
the spirit of papers/&5'26£7/.For the quantization of this
theory it 1s necessary to ascertain whether eqs. (25) are
the Euler equations for some Lagrange density.

The sigma-models with the fields taking values on the
spheres S® are dynamical systems with the squared constraints
The SL(3, R) -sigma-model constructed here is the system with
the cubic constraints on the dynamical variables. This fol-
lows at least from the fact that the affine sphere is defined
by the algebraic equation of the third degree in its coor-
dinates 723/,

/1/
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HecrtepeHko B.B. E2-83~358
HenmuHenHas cUrMa-Mofenb AJis ypaBHeHHS Hopna-Bynnoy

llokxazano, uTo ypaBHeHHe [logna~By/uioy CBSi3aHO C HeNHHeHHOIX
aBymepHoit SL(3, R) -cHrMa—-Mogennis, B KOTODOH TpHILUIeT 6eamac-—
COBBIX MOJIe! IpHHUMaeT 3HaueHHs Ha cdepe 3-MepHOro YHHUMOZYIISA—
TOPHOTO abhpUHHOIO NPOCTPAHCTBA, AHAJIOTHYHO TOMY, KakK ypaBHeHHe
cunyc-ToppnoHa cBsizano ¢ S0(3) -curMma-Mopenbo, oOnuCHEawmei
TPEXKOMIIOHEHTHOE [10Jle CO 3HauyeHHUSMH Ha cdepe OGLIMHOTO 3-
MepHOTO eBKJIHAOBA NPOCTPAHCTBA. JlofyueHb ypaBHeHH: OBHXEHUS
onaa SL(@3, R) -curma—-mopmenu.

Pab6ora BrnonHena B JlaBopaTopuH TeopeTHYeckoil du3uxu OHUIH.

MpenpuHT 06BEAUHEHHOFO MHCTUTYTa RAepHuX Mccneposanuii, QyBna 1983

Nesterenko V.V. : ] E2-83-358
Nonlinear Sigma Model for the Dodd-Bullough—-Equation

It is shown that the Dodd-Bullough equation is intimately
connected with the nonlinear two-dimensional SL(3, R) -
sigma-model, the triplet of massless fields of which takes
values on the sphere in the three—-dimensional unimodular af-
fine space. This relation is completely similar to the connec-
tion of the sine-Gordon equation with the S80(3) -sigma-model
describing the three-component field with values on the
sphere of the usual three-dimensional Euclidean space. The
equations of motion for the SL(3, R) —sigma-model are written
explicitly.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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