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I. INTRODUCTION 

There are various forms of the operator product expansion 
near the light cone. Generally known, however, is only the stan­
dard local light-cone expansion (LCE), which represents a scat­
tering amplitude via an infinite sum of local operators. Such 
an expansion may be rearranged and rewritten in terms of local 
conformal operators, which possess diagonal anomalous dimensions 
at the one-loop level,/lt This property is important for appli­
cations to exclusive light-cone dominated processes (see,e.g., 
refs ,I I. 2/) . 

Besides that there exists the so-called nonlocal LCE, first 
introduced in/ 3/, which unfortunately seems to be rather unfa­
miliar for most of physicists. This alternative expansion solves 
some intrinsic theoretical problems of the local LCE, but the 
general nonforward anomalous dimensions of its operators are 
nondiagonal, so that such a form is not very well suited for 
direct applications to exclusive scattering processes (for 
a straightforward application to the deep inelastic inclusive 
- ~~---! -- --- •--------·· /,t/ \ 
i:»~Cll..LC.L.1.l10' occ, UVWC.Vt;:;..L' J• 

These problems have been already considered in/ 5/ There has 
been proposed a new version of the nonlocal LCE which has the 
nice property that the relevant operators are sufficiently diago­
nal to all orders of the perturbation theory. All necessary 
properties have been proved there on the basis of the a -repre­
sentation for a scalar field theory. t~tivated by the scalar 
case, in the present paper we introduce the corresponding nonlo­
cal "conformal"* LCE for QCD. He calculate the anomalous di­
mension of the flavour nonsinglet fermion operator and this 
turns out to coincide with the familiar Brodsky-Lepage kernel/6 / 
The connection with the local conformal LCE is also briefly 
discussed. Finally, in order to illustrate the virtues of our 
formalism, we apply the proposed nonlocal conformal LCE to an 
exclusive scattering process, discussed earlier in the litera­
ture from the point of view of the local conformal LCE (see 

*Throughout this paper we employ rather loosely the adjective 
"conformal" although the conformal properties of the relevant 
nonlocal operators are never discussed. In fact it is the dia­
gonality of the anomalous dimensions which matters. Our termi­
nology is suggested by the existing results for the local LCE 
(see/1/ for details). 
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ref,/ 2/ ). It becomes clear that within our formalism the de­
rivation of an essential result (an evolution equation) is 
particularly compact and straightforward, 

This paper should be understood as a direct continuation of 
ref,/5/. Therefore we do not explain the meaning of the symbols 
already defined there. 

2. NONLOCAL CONFORMAL LIGHT-CONE EXPANSION 

In this section we shall describe the essential steps leading 
to the nonlocal conformal LCE in QCD. For the sake of clarity 
and simplicity we wish to avoid all the (inessential) complica­
tions arising from the tensor structure of the product of two 
currents and therefore we restrict ourselves to the investiga­
tion of the scalar product of two electromagnetic currents. For 
this case the following nonlocal LCE has been derived earlier/7/ 
in the acial gauge: 

(2. I) 

(2. 2) 

Here r/J and A,.= A,~t
8 

are the spinor and gluon fields of OCD. A, 
is a flavour matrix (the projector of the i -th flavour), the 
symbolP means path-ordering of the matrices appearing in the 
exponential along the straight line connecting K 1i' with~ x 
For the rest, see ref./ 51; note only that i is a light-like 
vector corresponding to x, satisfying x-x .. O( .fx2). Furthermore, 
we have restricted ourselves to the flavour nonsinglet part of 
the LCE, which involves only the fermion operator. The coeffi­
cient function ~ is determined in the following way: take the 
x -proper functional of the renormalized product of two currents 
with two outgoint fermion lines (we drop for the moment flavour 
indices) 

R(j 11 (x) i (0) S) ,. 
il 

- . z2 il 
=Jdz 1 ctz2 ~13 (x,z 1 ,z2 ): 0a(z2)Pexp(-IgJ/

11
dz )t/Jf3(z 1): + ... 

(2. 3) 

pick up the following term of the kinematical decomposition 

Faf3(x, z 1 ,z 2),. y:
13

x
11

F(x, z 1,z 2 ) + ... , 

take the Fourier transform 

2 

(2. 4) 

- 2 -i z 1 q 1- i z2 q2 
F(x, xqi' qi qi). J dz 1dz2e F(x, zl'z2). 

substitute into this qx ... qx, qi qi ... lli i (subtraction points of the 
light-cone subtraction procedure), and perform an additional 
Fourier transformation 

2 
~ ( X ' I< 'I , 1<2 ) ,. 

(2. 5) 

1 - - -iq1XK1-iq2"K2 2 -
- ~ fdxq1 dxq2 e F(x. xqi'lli~. 

( 2rr) 

In this way the coefficient function in (2.1) is defined. Now 
we make in a sense one step backwards and substitute this ex­
pression into the LCE (2.1); simultaneously we introduce the 
Fourier transform of the fermion operator 

- -
i k 1 XI( I+ i k 2 JK 2 -

n(K.X, K2X) - (dkl~e O(k,.k2) (2. 6) 

and get the result 

f - 2- s RC (x) j
11

(0)S) "'R(dq1dq 2F(x .xqi•llij) O(q1,q2) · (2. 7) 

This corresponds to the eq. (2.5) ir/ 51. Now we follow the con­
struction of the nonlocal conformal LCE worked out for scalar 
fields: The expression (2.7) is difficult to handle with; 
the momenta must be eliminated from the coefficient functions. 
For this reason we introduce the variables q ±• q2 ±q 1 and t = 
= q_x/~x and use the following representation 

(2. 8) 

with 

(2.9) 

The insertion of this expression into eq. (2.7) leads to the de­
sired new version of the nonlocal LCE 

f
. c2 -c S 

R( <x> 1 (O)S> ,.,~ (dt dl( F. ex ,t,K) Rni(t,K) . 
il I I 

(2. 10) 

(2. II) 
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If \ve furthermore represent the 8 -function by a Fourier in­
tegral, the expression for the light-cone operator takes the 
form 

. K+A<t-1) 

n~ ~ _L _ _a_ r dA: .;&c ~ K 'l- A( t-1))) y; A. Pe:xp ( -i. g r A ;lld T) rf,( ;(K+ A ( t+l))): 
1 2rrlaK I /l K+A(t+I) (2.12) 

which is a direct generalization of the corresponding operator 
in the scalar case. 

Let us conclude this section with several remarks on the ge­
neral properties of the LCE (2.10). The first remark concerns 
the integration range in (2.10): In ref,/ 5/ it has been shown 
for scalar theories that by taking into account the support 
properties of matrix elements of the conformal light-cone ope­
rator, the integration region w.r.t. variable t can be rest­
ricted to the interval (-1,1) which also implies a finite K.­

integration range. We expect that an analogous result holds 
also for (2.10), although a detailed argument will not be given 
here. The second point concerns the anomalous dimensions 
y(K,t,K',t') of the operator (2.12). In the scalar case/5/ 
an analogous object has been shown to be diagonal w.r.t. K, i.e., 

(2. 13) 

to all orders of perturbation theory. Again. we expect the gene­
ral validity of (2.13) for the operator (2.12) but the proof is 
not given. In the next section we shall calculate explicitly 
the anomalous dimension of (2. 12) in the one-loop approximation, 
thereby confirming (2.13) at least in the lowest nontrivial order. 

3. ANOMALOUS DIMENSION OF THE NONLOCAL CONFORHAL OPERATOR 

We shall employ the following definition of the anomalous 
dimension of a composite operator in terms of Z -factors: 

, 
K ' 

(3. 1) 

z"
2
1 f dK 'dt' Z( K, t, K 1

, t ') ( lj;{l(K', t ') t/J)IPI •( .j;n( K, t) 1/J) !PI , 
ren unren 

where the symbol !PI means !-particle irreducible graphs and z2 
corresponds to the external legs. In a practical calculation 
this amounts to the evaluation of the uv -divergent parts of the 
relevant diagrams. Instead of dealing directly with the operator 
(2.12) we shall calculate the one-loop anomalous dimension of 
the simpler operator 

4 

-c 

A( t-1) +K 

n; c K. t) = 
(3. 2) 

~ f 
2
dA: ~(( A(t-1) +K) x) y'iA.Pe:xp(-i.g r A (r~\"illdr) tji((A(t+l) +K)~): 

17 I /l 
A(t+l)+K 

(i.e., with the derivative w.r.t. K removed from (2. 12)). In 
view of the diagonality in the variable K this should yield 
the same result. One more important remark is in order here: 
Although eq. (2.1) (which has been the starting point of our 
considerations) has been derived in/7/ in the axial gauge, we 
shall perform our calculation in the covariant Feynman gauge 
since on the one-loop level it makes no difference and the cal­
culation itself is thus simplified considerably. 

We have to calculate matrix elements of the operator (3.2) 
up to the order O(g2 ). The relevant graphs are depicted in fig.1. 

. 
(a) r,pl (b) (c) 

Fig. I. The one-loop !PI diagrams contributing to y(K, t,K' ,t'). 

In what follows we denote the scalar product a· X by a for 
any four-vector a. The Feynman rules for the operator vertices 
are (cf. also 141 ) 

i - i - (3.3) 
dA -2qi(A(t+ll+K)~q2(N..t-I)+KI 
-e x 
2rr 

~k( N t-l)+K) ~k( A( t+ I) +K) 
e -e -------·--...----

i k 
5 



The contribution of the diagram in fig. I (a) is 

(3 .4) 

i - ~ i -.. . 
1 -2U+pt) ( A(i+l) +K) +y-H+p2) ( ,\(t-1) +K) 

X •X e 1 

(k+Pt~)2 k2(k+p2)2 

where C1. is the Casimir invariant, c 28rs•(t 8 t 8 )rs. Proceeding 
in the usual way, we introduce Feynman parameters, shift the 
loop momenta, and perform symmetric integrations; we use the 
dimeasional regularization in order to isolate the uv -divergent 
part. Note that the role of the light-like vector i is twofold: 
On the one hand it introduces the uv-divergences and on the 
other hand it causes that only the first term of the Taylor ex­
pansion around k • 0 of the shifted exponentials in (3.4) con­
tributes when the symmetric integrations over dnk are carried 
out. The uv -divergent part of (3.4) is then given by (setting 
as usual (4-n)-l "'en( i\ ltd) 

di v g2 A - l d ,\ l ' 
fia = G.z --f'n-.flrsY,\i f-Jydy X 

4772 JL 0 2rr 
0 

-~-pl\ A\ i+l-o!xy) +K) +y;
2 

(A(t+l-IZy)+K) 
x (dx e 

(3. 5) 

Now we perform a change of variables(y, ~ ~(t',A')in order to 
get 

,\( t + 1 -2xy ) ., ,\ ' ( t ' + 1) , ,\(t +l-2y) = ,\' (t '-1); (3.6) 

this implies 

,\ - ,\' 2 + ( 1-K) -~..:.' .. :!2_ 
(1-K) (t+l) • 

t + 1 (3.7) y = -------
2+(1-K) (t '-1) 

The expression (3.5) may then be rewritten as (see (3.3)) 

x 
1
(dx{)(t ' ... !.~) _ __l}_:_t__L_-n.·c ( ' ' 

K 't; pl,p2). 
0 1-x ((1-x)t'+1+x)2 •;rs 

6 

According to the definition (3.1) the contribution of fig. I (a) 
to the anomalous dimension y(K,t, K', t')is then 

y l a ( K, t , K ', t ') • 
(3.8) 

In the subsequent sections we shall need y(K, t, K',t') only for 

t. t , ' ( -1. 1). (3. 9) 

The integration in (3.8) with the restriction (3.9) is easily 
done and we get 

( t , t ') c g 2 [ {)( ' ) 1 + t 0 ( ') 1-t ] Yla K, , K , ~- 2 - t -t -- + t-t - . (3.10) 
8rr2 1+t' 1-t' 

The contribution of the graph in fig. I (b) is 

For the uv -divergent part we obtain· (after the standard mani­
pulations along with the change x ... 1 -x ) : 

(3. II) 

Now we perform a change of variables(x, ,\) ... (t', ,\')SO as to have 

,\ ( t + 1 ) - 2,\ ( 1 -x ) • ,\' ( t '+ 1 ) , ,\(t -1) .. ,\'(t '-1). 

This implies 

t -1 x._ (3. 12) 
t '-1 
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After some manipulations the integral (3.11) may be rewritten 
as follows 

di v 2 A 
rIb = C 2 _g_ f 0- { d K ' dt ' 0 ( K- K ') ( 0 ( t -t ') ...!_::!_ _1_ + 

4~ 11 It '-11 (t '-t)+ 

Analogously, for fig.l(c) we get 

di v 2 A IJc "'C2 _g_ en- { dK 'dt 'o(K-K ') (O(t '-t) ~ _ 1_ + 
4~ 11 It '+11 (t '-t )+ 

For the contribution of diagrams l(b) and I (c) to the anomalous 
dimension we then obtain (for t , t ' satisfying (3. 9)) 

2 ' 
y (K,t,K',t ') "'-C2 _g_ o(K-K') (O(t-t ')2...::!._ __!_ + 
Ib+Ic 2 4rr 1 -t ' ( t -t ') + 

+ 0 ( t '- t) ....!..:!:!_ - 1-- + 28 ( t -t ') ] . ' 
1+t' (t '-t) 

+ 

Incorporating in (3.1) the factor Z2 for the external legs 

we finally get the following expression for the anomalous dimen­
sion 

y(K,t,K',t') =O(K-K') y(t,t'), (3. 13a) 

2 
y ( t , t ') = -C 2 -L [ 0( t -t ') 1-t + 0 ( t '- t ) 1.±.l - 2 ( 0( t -t ' ) _1_ + 

8rr 2 1-t' 1+t' 1-t' (3.13b) 

+ O(t '-t) -~) + 2(0(t-t ') - 1 - +O(t'-t.) - 1 -) +3o(t -t ')]. 
1 + t ( t -t ') ( t~ t ) 

+ + 

It is not difficult to verify that (3. J3b) may be written as 

8 

2 
y(t,t ') = -CL ....&..:... (y

0 
(t,t ') + y (t,t ')), (3. 14) 

8rr2 reg 

where 

r
0 

( t , t ' ) = o ( t -t ' ) J...=..!..... ( 1 + - 2- ) + o ( t '- t ) ..!±..!._ ( 1-~- ) (3. 15) 
1-t' t-t' 1+t' t-t' 

and the regularizing part is 

I 
y (t,t ') "'-o(t-t ') r Y. ( r,t ') dr' (3. 16) 
reg -I o 

or, explicitly 

I ' 
y (t,t') =-o(t-t')[fdr..!.:-~(1+-2-,)+fdr 1+ 7,(1-~)1P·I7) 
reg t' 1-t r-t -I 1+t r-t 

However, the formulae (3.14) through (3,17) represent just the 
Brodsky-Lepage kernel v8L(t,t ')/6 • 8 • 9 / in the usual notation 

2 
y(t ,t ') =- ~VoL(t,t ').Note that the regularization (3.16) (or 

8rr 

(3.17) resp.) coincides with that introduced in ref./8 /. 

4. CONNECTION WITH THE LOCAL CONFORMAL LCE 

In order to establish a connection between the nonlocal ex­
pansion introduced in sect.2 (see (2.10), (2.11)) and the stan­
dard local conformal LCE /I/ we shall exploit the following par­
ticular representation of the o -function: 

oo I 1 2 a--
o(t-t ') = ~- (1-t ) 2 Ca(t) Ca(t '), (4.1) 

n=O T]a n n 
n 

where C~ are Gegenbauer polynomials and TJ~ are the corres­
ponding normalization factors 

I 
I a---

Jidt (1-t
2

) 
2 C~(t) C~(t) = TJanonm. (4.2) 

Substitution of (4.1) with t =Xq_/;q into (2.10) together with 
the Taylor expansion of exp(i KXQ )yield the result (for brevity 
we drop again flavour indices) + 

• 
R (j ( x) j 11 ( 0) S) .. ~ F c ( x 2 11 2) R ( 0 c S) 

fl nm nm ' om 
(4. 3) 
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with 

(4 .4) 

2 2 
(x, II. ) 

1 a c 2 en ( t ) F (X • K, t ) . 
lJa 

n 

It is possible to see that (4.3) along with (4.4) coincides 
with the local conformal LCEII/ for a = 3/2. 

According to (2.11) and (4.4) the nonlocal conformal operator 
may be written as 

(4. 5) 

The inverse relation reads 

I 
c a m a 1 c 

q;m ""<ra-)\K•O ( dt en (t)- {1 (K,t ). 
K -1 !J~ 

(4. 6) 

Using the relations (4.5) and (4.6) we are now able to recover 
the well-known relation between the Brodsky-Lepage kernel and 
the local conformal anomalous dimensions/6 •8 /. We shall start 
£~~= t~e £~~~! ~~£i~i~inn/IO/ nf thP anomalous dimensions. for 
the local and nonlocal operators resp. 

m(IU S)a-I(y , '+ 2y 2 5 , 5 , )On'm' nm , , nrtWl m nn nwn 
(4.7a) 

n m 

(4.7b) 

with m"' 11. Lm, where _a_ acts on the 11. -dependence introduced 
a~~. a~~. 

by the subtraction operator m and y2 denotes the anomalous 
dimension of the corresponding external field operators. Now we 
insert (4.5) into the l.h.s. of eq. (4.7b), use (4.7a) and ex­
press the local operators in terms of nonlocal ones via (4.6). 
Further, we employ the identity 

m d m 
f(x). ( dx f(x) (-1) (dX) 5(x) (4. 8) 

and eq. (4.1); the terms involving y2 then cancel and we final­
ly obtain the relation 

10 

l 
I 

y(K,t,K',t ') • 

(4. 9a) 

the inverse then reads 

The diagonality ofy(K,t,K',t') inK (see (2.13)) implies the 
diagonality of Ynm n'm' in the indices m,m' and vice versa. In 
such a case we have 

and thus it is clear that the diagonality in n,n' is an 
tional case, occurring if e~ are the eigenfunctions of 
( 1-t )a-~ y(t, t '). As is well known, the local anomalous 
mensions in (4.9) are diagonal on the one-loop level just 
a 3/2/I/: 

'\I - ._ "\I li ~ • • 
'nmn m 'n nn mm 

2 

where y .. L. y with 
n 8rr 2 n 

n+ I 1 
- 1 + 4 I ..,...) . 

j-=2 J 

excep-

di­
for 

(4. 10) 

From (4.9) and (4.10) we then immediately obtain for the one­
loop nonlocal anomalous dimensions 

"" 1 
y(K,t,K',t ') .. a (K-K') I (1-t2) ~ e3/2ct) e3/2 (t ') Y 

n~O _ "' 2 n n n 
1J n (4. 11) 

or, in view of the results of sect.3 (see (3.13a) through 
(3.17)) 

V8L(t,t') = i_ (1-t2 ) -h en3/2(t) e:/2(t');n. 
n=O 1J 3/2 

n 

(4. 12) 

Of course, (4.12) expresses the well-known fact that e3/2 are 
the eigenfunctions and Yn the eigenvalues of the Brodsiry-Lepage 

ll 



kernel/6, 8, 9/: 

I 3/2 
( V 8L(t,t') en (t)dt 

3/2 
= Yn en (t'). 

-1 

5. AN APPLICATION 

The purpose of this section is to illustrate methodical vir­
tues of the formalism developed in sections 2 and 3. 

Let us consider a simple light-cone dominated exclusive pro­
cess, discussed earlier in the literature (see, e.g.,/21), na­
mely the two-photon production of a spin-zero, flavour nonsing­
let meson 

in the kinematical region 

q2 ~o. 
I 

q2 -> _..,, 
2 

P.Q--~-

(5. I) 

(5.2) 

f i YPrl (5. 3) 

Note that w ~ 1 for q1 , q 2 satisfying (5. 2). We shall work in 
the c.m. system and consider transversely polarized photons 
with equal helicity. The amplitude of the process (5.1) may be 
written as 

T(Q2 ,w),.. /
1 

/'
2 

(d 4 xe;Qx <MI Ri (~) i (-~)SI 0>, 
• J1. 2 v 2 

(5. 4) 

where fJ , f 2 are the polarization vectors of photons and jJl. is 
the electromagnetic current. For simplicity we shall only deal 
with the case when the final-state meson is scalar. Such a rest­
riction will allow us to circumvent the (otherwise inessential) 
complications stemming from the tensor structure of the product 
of two currents in (5.4) (which we have also suppressed in 
sect.2). 

We wish to recover the standard evolution equation/2•6· 8 / for 
the "meson wave function" in the leading order in QCD. To this 
end, let us calculate first the coefficient functions of the 
nonlocal conformal LCE in the Born approximation. It is suffi­
cient to calculate the product of two currents in (5.4) with 
one quark and one antiquark external line, in the free-field 
theory.One thus easily obtains the coefficient functions of the 

12 

expansion corresponding to (2.7), pertaining to the operators 
not involving y5 (only these are relevant to our scalar-meson 
case): 

i i 
F ( 2 1 2 1 2xq_ _,2xq_ 
. x • xq+) = - ei ( e -e ) , 
• - 2112 (x2+i f) 2 

(5. 5) 

withe; being the charge of the i -th flavour. In arriving at 
the last expression we have used the Feynman propagator of 
a massless fermion in the x -representation 

SF (x) = _, 1 -J..:...L....,. 
2rr2 (x2+i f) 2 

Note that (5.5) multiplies the following combination of opera­
tors: 

(5. 6) 

where of~ schematically denotes the operator analogous to 
(2.7), with i y replaced by x y~ (and corresponding to the 
i -th flavour). However, the l~st two terms in (5.6) do not con­
tribute to the amplitude (5.4) (as will become obvious later) and 
thus we are effectively left only with the standard nonlocal 
operators discussed in sections 2,3. From (5.5) we may now pass 

&~ ............. .: ..... - ..... -C ~\... .... ---1 ___ , ___ .c ____ ., T nn --~ _ 
.L. ..... .a.,..,_~.L.V.&..&.U V.I.. 1..1.1.'-- Ll.VI.I..LV'-G..L \...U .. .LJ..V.LU'-CL.J... UV.L.o V .LGI. 

(2.9); we get 

c 2 
F (x , K, t ) 

(5. 7) 

1 ( 0( K - t2) - 0( K + _2t ) ) • 
(x2+if)2 

Next we shall consider matrix elements of the nonlocal con­
formal operator (2.12) between the meson state and vacuum. Using 
the covariance under translations and the homogeneity properties 
of {}c(K,t) w.r.t. x, we may write 

<MI Rn~ (K. t ) s 1 O> ,.. i. p x; c t, p 2. J1. 2) 8 ; K;r. (5. 8) 

For the operators involving x y or i y resp., instead of 
( ( 6)) 

.v ll J1. v . 
gJl.vx·y see 5. , the matr1x elements correspond1ng to (5.8) 
would be proportional to P or Pv resp. and this would lead 
to factors P· <J or P·f 2 i~ the amplitude (5.4). However, 
P. <1 ,..p. <

2 
= 0 for transversely polarized photons in the c.m. 

system. 
13 



The amplitude (5.4) in the kinematical region (5.3) may be 
then written as (we omit the p2 -dependence of the x ) 

1 t t 
"'~ e2 (dKdt Q p ------( o( K---) -o( K+-)) X. (t,l-!2) 

i j Q2( 1 + .&q 2 2 I 
(5. 9) 

w 
2 I 1 1 2 

.., ~ ei ( dt (- - -w--t ) X
1
• ( t, 1-1 ) • 

I -1 W+ t 

In arriving at the last expression we have used (5.7), performed 
the Fourier transformation setting x ... x, and neglected every­
where terms of the order O(P2;Q2) . Horeover, we have used 
£1 • £2: 1. Note also that we take for granted the support proper­
ties of x w.r.t. variable t (cf. the end of sect.2). 

In order to obtain the desired evolution equation, we shall 
employ the renormalization group equation for the renormalized 
nonlocal conformal operator; owing to the diagonality property 
(3.13a) of the relevant anomalous dimension this immediately 
implies the following equation for X: 

(5. 10) 

Finally, we setl-!2.., Q2 and use the one-loop approximation for 
y(t,t ')obtained in sect.3. Thus, we may write, within the 
leading order approximation 

where 

!l>i(t,Q2)"" xi(t,Q2) -xi(-t,Q2) 

and !l> satisfies the equation 

2 a 2 c Q2) I 
Q aQ2 !l>(t,Q).., a~" !I V81.(t,t')!l>(t',Q~dt'. 

(5. II) 

(5. 12) 

Note that eq. (5.12) follows from (5.10) and the following sym­
metry property of VoL(t,t ')(which is obvious from (3.13b)) 

VBL ( t, t ') = V BL ( -t, -t ' ) . 

Eqs. (5.11) and (5.12) represent the desired result, which has 

14 

been derived earlier by different method/2 • 6 • 8~ Although this 
may be the matter of personal taste, we feel that the above 
derivation is particularly compact and straightforward and il­
lustrates nicely the utility of the formalism developed in this 
paper. 

The authors are indebted to M.Bordag and Th.Braunschweig 
for useful discussions. 
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npeAflaraeTcA HOB~H sapHaHT HenoKanbHoro onepaTopHoro paano*eHHA. 
Ha cseTosoM KoHyce AflA KX~. AHOMaflbHaA paaMepHOCTb cooTseTCTsy~ero ~ep­
MHOHHoro onepaTopa, HeCHHrneTHoro no apoMaTy, B~4HcneHa s OAHoneTnesoM npH-
6nH*eHHH H nOKa3aHo, 4TO OHa COBnaAaeT C AAPOM 6POACKOro-nena*a· 06Cy*AaeTCA 
CBA3b Hawero nOAXOAa CO CTaHAapTH~M flOKaflbH~M KOH~OPMH~M onepaTopH~M paa­
flO*eHHeM. B paMKax npeAno*eHHoro ~opMaflH3Ma paccMaTpHsaeTcA npocToH 3KCKn~-
3HBH~H npo4ecc s seAy~eM nopAAKe s KX~. 3son~4HOHHoe ypasHeHHe, nony4eHHoe 
paHee APYrHMH MeToAaMH, soccTaHosneHo oco6eHHo npocT~M H npAMOflHHeHH~M 
nyTeM. 

Pa6oTa s~nonHeHa B na6opaTOPHH TeopeTH4eCKOH ~H3HKH OHRH. 

Geyer B., Horej~i J., Robaschik D. 
Nonlocal Conformal Light-Cone Expansion in QCD 

E2-83-351 

A new variant of the non local 1 ight-cone expansion in QCD is proposed. 
The anomalous dimension of the corresponding fermion flavour nonsinglet 
operator is calculated in the one-loop approximation and shown to coincide 
(up to a trivial diagonal factor) with the Brodsky-Lepage kernel. The con­
nec tion of our approach with the standard local conformal 1 ight-cone expan­
sion is briefly discussed. An exclusive 1 ight-cone dominated process is 
considered within the framework of our formal ism. The evolution equation 
obtained earlier by different methods is recovered in a particularly 
straightforward and compact manner. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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