


1. INTRODUCTION

There are various forms of the operator product expansion
near the light cone. Generally known, however, is only the stan-
dard local light-cone expansion (LCE), which represents a scat-
tering amplitude via an infinite sum of local operators. Such
an expansion may be rearranged and rewritten in terms of local
conformal operators, which possess diagonal anomalous dimensions
at the one-loop level:/1’/ This property is important for appli-
cations to exclusive light-cone dominated processes (see,e.g.,
refs./ 1.2/),

Besides that, there exists the so-called nonlocal LCE, first
introduced in/si, which unfortunately seems to be rather unfa-
miliar for most of physicists. This alternative expansion solves
some intrinsic theoretical problems of the local LCE, but the
general nonforward anomalous dimensions of its operators are
nondiagonal, so that such a form is not very well suited for
direct applications to exclusive scattering processes ({(for
a straightforward application to the deep inelastic inclusive
scatteriing, see, howevery? ).

These problems have been already considered in’%. There has
been proposed a new version of the nonlocal LCE which has the
nice property that the relevant operators are sufficiently diago-
nal to all orders of the perturbation theory. All necessary
properties have been proved there on the basis of the a -repre-
sentation for a scalar field theory. Motivated by the scalar
case, in the present paper we introduce the corresponding nonlo-
cal "conformal™* LCE for QCD. We calculate the anomalous di-
mension of the flavour nonsinglet fermion operator and this
turns out to coincide with the familiar Brodsky-Lepage kernel’6/.
The connection with the local conformal LCE is also briefly
discussed. Finally, in order to illustrate the virtues of our
formalism, we apply the proposed nonlocal conformal LCE to an
exclusive scattering process, discussed earlier in the litera-
ture from the point of view of the local conformal LCE (see

* Throughout this paper we employ rather loosely the adjective
"conformal" although the conformal properties of the relevant
nonlocal operators are never discussed. In fact it is the dia-
gonality of the anomalous dimensions which matters. Our termi-

nology is suggested by the existing results for the local LCE
(see/1l/ for details).




ref./?/ ). It becomes clear that within our formalism the de-
rivation of an essential result (an evolution equation) is
particularly compact and straightforward.

This paper should be understood as a direct continuation of
ref./5/ Therefore we do not explain the meaning of the symbols
already defined there.

2., NONLOCAL CONFORMAL LIGHT-CONE EXPANSION

In this section we shall describe the essential steps leading
to the nonlocal conformal LCE in QCD. For the sake of clarity
and simplicity we wish to avoid all the (inessential) complica-
tions arising from the tensor structure of the product of two
currents and therefore we restrict ourselves to the investiga-
tion of the scalar product of two electromagnetic currents. For
this case the following nonlocal LCE has been derived earlier /7/
in the acial gauge:
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Here & and A,= At" are the spinor and gluon fields of OCD. As
is a flavour matrix (the projector of the i -th flavour), the
symbol P means path-ordering of the matrices appearlng in the
exponential along the straight line connectlngxlx with kg X

For the rest, see ref. 4 note only that x is a_light- like
vector corresponding to x, satisfying x —x =0¢( /x2) Furthermore,
we have restricted ourselves to the flavour nonsinglet part of
the LCE, which involves only the fermion operator. The coeffi-
cient function X is determined in the following way: take the
x -proper functional of the renormalized product of two currents
with two outgoint fermion lines (we drop for the moment flavour
indices)

R(H (0§, (0)8) =
- z9 (2.3)
= fdzldzzF(‘]B(x, zy, zz): (pa(zz) Pexp(-inglAudz#) ¢,B(zl): +

pick up the following term of the kinematical decomposition

Fp(% 2,29 = n:BﬂLF(x’zl'ZZ) P (2.4)

take the Fourier transform
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~ ~iz)q-1i29qy
F(xz,xq..quJ = f dzldzze F(x,zl,zzL

substitute into this qx»qx,q,q > i (subtraction points of the
light-cone subtraction procedure), and perform an additional
Fourier transformation

2
S(x rKy1Kg) = @.5)

1 ~ o~ TR IR TiAgKy o9 =
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In this way the coefficient function in (2.1) is defined. Now
we make in a sense one step backwards and substitute this ex-
pression into the LCE (2.1); simultaneously we introduce the

Fourier transform of the fermion operator

- - ikl;x1+ik2;<2...
Q(k X kpX) = [dk dkye k. k) (2.6)

and get the result
R(# (0 j, (0)5) ~ Rf dq da F(x%%q;, 4 ;) M4y a9 8. 2.7

This corresponds to the eq. (2.5) i’ %. Now we follow the con-
struction of the nonlocal conformal LCE worked out for scalar
fields: The expression (2.7) is difficult to handle with;

the momenta must be eliminated from the coefficient functions.

For thls reason we introduce the variables Q+=q, ¥q; and t =
=q x/q+x and use the following representation

c 2 x ix;
ROE%, xq,. ) = (At dx F (x5 10) B(1 = ==y e (2.8)
xq,
with
= mikxg 2
Fc(x2n. K) = 2}; [.dxq e F(x ,xq+,txq+,uij). (2.9)

The insertion of this expression into eq. (2.7) leads to the de-
sired new version of the nonlocal LCE

R(F (07, (0)S) =% [ dt d Fo(x2t,«) RQS(L, ©)S, (2.10)
i
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If we furthermore represent the 0-function by a Fourier in-
tegral, the expression for the light-cone operator takes the
form

) x+Mt—Q -
0°= 14 fdr: W kwA(t-D))) yXAPexp(-ig [ A xHdr) g(x(xr A(E+IN):
! m idk K+A(t+]D) (2'12)

which is a direct generalization of the corresponding operator
in the scalar case.

Let us conclude this section with several remarks on the ge-
neral properties of the LCE (2.10). The first remark concerns
the integration range in (2.10): In ref./3 it has been shown
for scalar theories that by taking into account the support
properties of matrix elements of the conformal light-cone ope-
rator, the integration region w.r.t. variable t can be rest-
ricted to the interval (-1,1) which also implies a finite «' =
integration range. We expect that an analogous result holds
also for (2.10), although a detailed argument will not be given
here. The second point concerns the anomalous dimensions
y(k,t, x’, t’) of the operator (2.12). In the scalar case/ 5/
an analogous object has been shown to be diagonal w.r.t.«, i.e.,

y(k, t, k%5 ) = 8(k=x") y(t,t") (2.13)

to all orders of perturbation theory. Again, we expect the gene-
ral validity of (2.13) for the operator (2.12) but the proof is

not given. In the next section we shall calculate explicitly

the anomalous dimension of (2.12) in the one-loop approximation,

thereby confirming (2.13) at least in the lowest nontrivial order.

3, ANOMALOUS DIMENSION OF THE NONLOCAL CONFORMAL OPERATOR

We shall employ the following definition of the anomalous
dimension of a composite operator in terms of Z -factors:

" Eﬁf Z(ko b, k%) 07) = [ k7 At okt kST SR U k)
(3.1)
1PI

unren’
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where the symbol 1PI means l-particle irreducible graphs and Z,
corresponds to the external legs. In a practical calculation
this amounts to the evaluation of the uv -divergent parts of the
relevant diagrams. Instead of dealing directly with the operator
(2.12) we shall calculate the one-loop anomalous dimension of
the simpler operator
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6:( K't) =
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i AL t+1) +x

(i.e., with the derivative w.r.t. « removed from (2.12)). In
view of the diagonality in the variable « this should yield
the same result. One more important remark is in order here:
Although eq. (2.1) (which has been the starting point of our
considerations) has been derived in/7/ in the axial gauge, we
shall perform our calculation in the covariant Feynman gauge
since on the one-loop level it makes no difference and the cal-
culation itself is thus simplified considerably.

We have to calculate matrix elements of the operator (3.2)
up to the order 0(g2). The relevant graphs are depicted in fig.l.
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Fig.1. The one-loop IPI diagrams contributing to y( &, t,x",t").

In what follows we denote the scalar product a-x bya for
any four-vector 3. The Feynman rules for the operator vertices
are (cf. also/% )
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The contribution of the diagram in fig.l1(a) is

; 2 dX 0 A~ o~ oa
lia =18, Ai G [ momepf 5~ ¥ (k4 pp)y (k4 py) yx (3.4)
1 = () (A1) +x) + i BB ) (A(4=D) +x),

(R R RE(Ka D
where Ca is the C351m1r invariant, Colreuw(t® ®), 5. Proceeding
in the usual way, we introduce Feynman parameters, shift the
loop momenta, and perform symmetric integrations; we use the
dimensional regularization in order to isolate the uv -divergent
part. Note that the role of the light-like vector ¥ 1is twofold:
On the one hand it introduces the uv-divergences and on the
other hand it causes that only the first term of the Taylor ex-
pansion around k = 0 of the shifted exponentials in (3.4) con-
tributes when the symmetric integrations over d"k are carried
out. The uv—dlvergent part of (3.4) is then given by (setting
as usual (4—n) =IMn(A/u))

div 2 A ~ ! aa ! '
0, V=0 Z.f.z_en_u.a,sy)\ fz_.. fy dy x
0 (3.5)
-'—i—; VALL+1-2XY) + &) +-L; (Mt+lv-2y)+:<)
«fdxe 2! 202

Now we perform a change of variables(y, X »(t’, A”)in order to
get

At +1-2xy) = A" (t 7 +1), A(t+1-2y) = A"(t =1); (3.6)
this implies

L 2+4(1x) (7 =1) _ t+1 , (3.7)

(1) (t+1) ’ Y 2+(1x) (t"=1)

The expression (3.5) may then be rewritten as (see (3.3))

div
I—‘]B’C2Z—?-?n—-de dat ’ B(K K)X

- 1 4+t
x fde(t %) | 2t P .p, ).
1 X ((1=-x)t” +1+x)2 hires (< 1P2)

According to the definition (3.1) the contribution of fig.l(a)
to the anomalous dimension y (x, t, k', t7)1is then

)’] (Kv vKt ’) -
(3.8)

2 1
=,—Cz_ﬂ___ S(K-'K’)fdxﬂ(t'_:t_x ) Jt+1J
4172 0 1-x ((l-x)t’+l+x)2

In the subsequent sections we shall need y(x,t,«’,t”) only for
t,t e (1,1). 3.9)

The integration in (3.8) with the restriction (3.9) is easily
done and we get

(kb kit ==C -—2[0(t 4)1*‘

+0(t” )_._...] (3.10)
817 1+t7 1-¢°

The contribution of the graph in fig.1(b) is
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For the uv -divergent part we obtain. (after the standard mani-
pulations along with the change x » 1 —x ):

di v -E‘FI(A(!+1)+K-2A<14)42152(A(1_1)+K)
I]b -Cz——ﬁl &S A f fdxl—;—[e

(3.11)

—{pl(M{+U+K)+}p2(M§—U+K)]

Now we perform a éhange of variables (x, A) +(t°, A’)so as to have

A(t+1) =2A(1=x) = A" (Lt +1), A(t=1) = A7(t"=1).

This implies

e, Ae a2l (3.12)
t =1 t -1

X =




After some‘manipulations the integral (3.11) may be rewritten
as follows

div
= _E___p A de’dt “85( k-~ t =1 1
n e O O T

+ B(t-t ')] 5::;.,5 (K’,t ’; plvpz)-

Analogously, for fig.l(c) we get

div 2 A
[, = Cy B tn [du’de’ s(kr)l0(t —t) Ll 1
lc 2 oty (x=x") [6( )It Y (t,_t):

16 .
+8(t—t )] Qi;rs(K Wt ;plr pz)-

For the contribution of diagrams 1(b) and 1(c) to the anomalous
dimension we then obtain (for t ,t’ satisfying (3.9))

.

2
y (k,t,k%t ") = ~C 8 (k=x )[0(t-t )_._. 1,
1btle 2 4n2 1t ° (t—t')+

+6(t —t) AL —L— +25(t—°)].

1+t (t - +

Incorporating in (3.1) the factor Z, for the external legs

2
gz anl.
8n i

Zyg =1-0Cy

we finally get the following expression for the anomalous dimen-
sion

Yt k) = 85 (k=k") y(t,t 7). (3.13a)

y(t,t") = ~C —g—-[e(t-c )1“t +6(t ~t) 1” —2(6(t— ") L
1- t’ (3.13b)

+0(t -t) =Ly 1 900(t—t ") L O(t~t) L —t’
. 1+t,)+(( )(t_,+ (t-t) o ))+38(t t 1.

+

It is not difficult to verify that (3.13b) may be written as
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y(t,t”") = —0‘5&2-2- (v, (t.t7) + yreg(t,t')), (3.14)
n

where

I3

yo(tt) = 0(t—t) (e 2y b 2y (3.15)
0 1-t’ t=t’ 1+ t tet’

and the regularizing part is

y  (t,t7) = =8(t-t ") lfy (r,t)dr, (3.16)
reg 4 -]

or, explicitly

1+ 7

y  (t,t7) = =8(t-t )[fdr-l-—-—(1+—~g—-)+fdr (1__._)](3

reg t - r—t
However, the formulae (3.14) through (3,17) represent just the
Brodsky-Lepage kernel VBL(t,t')/Gﬁhg/ in the usual notation

2
y(t,t ") == EE?TVBL(t,t’LNote that the regularization (3.16) (or
m

(3.17) resp.) coincides with that introduced in ref./a/.

4, CONNECTION WITH THE LOCAL CONFORMAL LCE

In order to establish a connection between the nonlocal ex-
pansion introduced in sect.2 (see (2.10), (2.11)) and the stan-
dard local conformal LCE/l/ we shall exploit the following par-
ticular representation of the & —function:

o0 1
’ 1 2 a=-3 a
S(t—t ") = — - 2 a, . .
( ) n§0 . (1 -t%) C l(t) Clrn, 4.1
n
where C% are Gegenbauer polynomials and ﬂ are the corres-
ponding normalization factors

a_..._

1
[ar (1-t2) 2c%) ¢Sty = ) 4.2)
-1

nm

Substitution of (4.1) with t..xq_/xq+ into (2.10) together with
the Taylor expan51on of exp(ikxq )yleld the result (for brevity
we drop again flavour indices)

R, (0 ik (O8) =~ 3 Fe (x2 42) R(OCS) (4.3)
nm nm
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with
. -~ ~
Oncm = qul dq2 C:("“.-°) (xq+)m Q(Q]y‘lz)
a4, (4.4)
1 1 . m
c 22 2. a- 5 ix 1 c, 2
RO () = [ ar (1-t)* T T ranlle) CACERCTOE
n

It is possible to see that (4.3) along with (4.4) coincides
with the local conformal LCE/l/ for a« = 3/2.

According to (2.11) and (4.4) the nonlocal conformal operator
may be written as

l
Q° (k,t) = 2 Gx) c“(t)(1-t2)a 2 oc | (4.5)
,m m| n nm

The inverse relation reads

1
c m a c
Omm = (7%= mo LdtCnO):#-Q(MtL (4.6)
n
Using the relations (4.5) and (4.6) we are now able to recover
the well-known relation between the Brodsky-Lepage kernel and
the local conformal anomalous dimensions/6:8/ We shall start
€vom tha formal dafinitinan/l10/ nf the anomalous dimensions. for
the local and nonlocal operators resp.

nm

M(mnms)__'z(’ynm,mu, 2yp 8. 8- )0 (4.7a)
nm

M(RO(k,t )S) = = [dx’ dt"(y(x,tik " t") + . 7b)

+ 2y2 8(k=-x") 8(t—t ")) O(«’,t

with M = ugi_mh where 5@.- acts on the y ~dependence introduced
i i
by the subtraction operator JI and y, denotes the anomalous

dimension of the corresponding external field operators. Now we
insert (4.5) into the 1.h.s. of eq. (4.7b), use (4.7a) and ex-—

press the local operators in terms of nonlocal ones via (4.6).

Further, we employ the identity

d ‘m ) " da. m .8
(), Tx) = [dx £(x) ()" (3" 8(x) (4.8

and eq. (4.1); the terms involving Yg then cancel and we final-
ly obtain the relation
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y(kot,k5t") =

a_l. (46.9a)
mm” m’ m’ 2
=i (1) &) A« )Js—“‘” c*t) CXt Yy L,
nmn’'m’ dx 17:, n n m
the inverse then reads
Y ‘e =1 - )" [dtC (t)n? rdt “de’ (14¢2Y 5 c () (4.9b)

The diagonality of y(x,t,x’,t*) 1in « (see (2.13)) implies the
diagonality of ¥, ,’m 1in the indices mm’ and vice versa. In
such a case we have

1
Y oo.o=8 [ Co ey n° rdt'(l HT2U y 1)
nmn m mm n

and thus it is clear that the diagonality in n,n’ 1is an excep-
tional case, occurring if C% are the eigenfunctions of

(1-t )“"’ y(t,t’). As is well known, the local anomalous di-

mensions in (4.9) are diagonal on the one-loop level just for
a = 3/2/1/:

v e A L8 (4.10)
nmn m n nn mm

2
where ﬂ:’ji";n with
8r2

n+11

- 2
Yn =-02(m5—-(m -1+ 4 2 -—-)

From (4.9) énd (4.10) we then immediately obtain for the one-
loop nonlocal anomalous dimensions

Y(ator'st ) =8 (kmn’) B (1=02) —g G3/2(0) C¥2 (1),
Tn b.11)
or, in view of the results of sect.3 (see (3.13a) through

3.17))
- 2 1 ~3/2 3/2¢, 82 4.12
Vg (1, t7) n2“0(1 t )——7-3 - CHHt)y C/2(t )y, . (4.12)

Of course, (4.12) expresses the well-known fact that 03/2 are
the eigenfunctions and y Yo the eigenvalues of the Brodsky Lepage

11



kernel /6,8, 9/'

1 3/2 _. _3/2
[ VBL(t,t’) Cn (t)dt = Yo C n (t").
-1

5. AN APPLICATION

The purpose of this section is to illustrate methodical vir-
tues of the formalism developed in sections 2 and 3.

Let us consider a simple light-cone dominated exclusive pro-
cess, discussed earlier in the literature (see, e.g.,/2/), na-
mely the two-photon production of a spin-zero, flavour nonsing-
let meson

y*(a)) + v* (a,) » M (.1
in the kinematical region
2 R (5.2)
ql <0, q2 ,
i.e., (denoting Q=(g9,-9) /2, P=q +q,)

2
Q2 e PQ L W o= Q fived (5.3)

P-Q

Note that w2.1 forgq;,q, satisfying (5.2). We shall work in
the c.m. system and consider transversely polarized photons
with equal helicity. The amplitude of the process (5.1) may be
written as

T(Q%w) = 4‘ & oratxe’ oM R L (31, -85, (5.4)
where ¢; , ¢5 are the polarization vectors of photons and j is
the electromagnetic current. For 31mp11c1ty we shall only deal
with the case when the final-state meson is scalar. Such a rest-
riction will allow us to circumvent the (otherwise inessential)
complications stemming from the tensor structure of the product
of two currents in (5.4) (which we have also suppressed in
sect.2).

We wish to recover the standard evolution equatlon/26 8/ for
the "meson wave function" in the leading order in QCD. To this
end, let us calculate first the coefficient functions of the
nonlocal conformal LCE in the Born approximation. It is suffi-
cient to calculate the product of two currents in (5.4) with
one quark and one antiquark external line, in the free-field
theory.One thus easily obtains the coefficient functions of the

12

expansion corresponding to (2.7), pertaining to the operators
not involving y; (only these are relevant to our scalar-meson
case):

1
9 A,
ﬂ (x°, xq, ) = . e2.___L*..(e2 —e 2 ), (5.5)

272 " (x24i¢)2

withe; being the charge of the i -th flavour. In arriving at
the last expression we have used the Feynman propagator of
a massless fermion in the x -representation

Sg(x) = - _yx
F 272 (x24ie)2

Note that (5.5) multiplies the following combination of opera-
tors:

gaB
(888 ~8up Bup —BupBua ) O - (5.6)

where Q af schematically denotes the operator analogous to

2.7), w1th X y replaced by X 7 (and corresponding to the

i -th flavour). However, the last two terms in (5.6) do not con-
tribute to the amplitude (5.4) (as will become obvious later) and
thus we are effectively left only with the standard nonlocal
operators discussed in sectlons 2,3, From (5.5) we may now pass

A Fln AAREEI AT A £l ~ -F ..LA mem T il =T T AT
vvvvvv CCCELiIlilhnt LfUNCUTICHS Or Cunl niCliaGlas Clolrdiuwiasr wul via

(2.9); we get

2 i i
e’ dr —-i KT 1 -Zrt ——p f

Fc(x, ,t) = el —— ——t—— e - =
. ol e Ty ° ) (5.7)
C sy s s Ly
272 (x24i¢)2 2 2 :

Next we shall consider matrix elements of the nonlocal con-
formal operator (2.12) between the meson state and vacuum. Using
the covariance under translations and the homogeneity properties
of Q%«,t) w.r.t. X, we may write

ikx P

<M|RQS (k,t)8] 0> = x-Py, (t,P2 u2)e ) (5.8)

For the operators involving x Ly, °F 'y y, resp., instead of
g%y (see (5. 6)), the matrix élements corresponding to (5.8)
would be proportional to P, or P, resp. and this would lead

to factors P-¢; or P:re, in the amplitude (5.4). However,

P.e, =P ¢, =0 for transversely polarized photons in the c.m,
system.

13



The amplitude (5.4) in the kinematical region (5.3) may be
then written as (we omit the P2 -dependence of the y )

T(Q% W =c; e, fate ¥ 5 rdea Fix? i t)xPe 0y (1,42
1

zz e.2 rdK dt QP -———l;-o——-—-—( 6( K=- _t.-) ...8( K+ _t_)) X. (t’u2) (5 9)
i ! 2 2 2 i .
Q2(1+ LK)

w
1
2 1 1 2
= Eei_(l‘dt (W+t e )Xi(t'“ ).

In arriving at the last expression we have used (5.7), performed
the Fourier transformation settingx «x, and neglected every-
where terms of the order Q(P2/Q2). Moreover, we have used

€y €2 =1. Note also that we take for granted the support proper-
ties of ¥ w.r.t, variable t <{cf. the end of sect.2).

In order to obtain the desired evolution equation, we shall
employ the renormalization group equation for the renormalized
nonlocal conformal operator; owing to the diagonality property
(3.13a) of the relevant anomalous dimension this immediately
implies the following equation for X:

1
7 —d—’x(t.uz) == [ y(t,t7) y (t ud) . (5.10)
dy i -

Finally, we set ;2. Q2 and use the one-loop approximation for

y(t,t’) obtained in sect.3. Thus, we may write, within the
leading order approximation

1
T(Q%w) = Se? [dt -1 @ (¢, Q?), (5.11)
-1 wit 1
where

®,(1,Q%) = x, (1.G) -y (4,Q%)

and ¢ satisfies the equation

2

ae(Q
4

14

2 2 ) !
Q 5—%,-(1)0.(3 ) = -_{l VBL(t,t‘)d>(t’,Q?)dt’. (5.12)

Note that eq. (5.12) follows from (5.10) and the following sym-
metry property of Vi (t,t’) (which is obvious from (3.13b))

Vg (6,67) = Vg (=4, 7).,

Eqs. (5.11) and (5.12) represent the desired result, which has
14

been derived earlier by different method#q'6'&<Although this
may be the matter of personal taste, we feel that the above
derivation is particularly compact and straightforward and il-
lustrates nicely the utility of the formalism developed in this
paper.

The authors are indebted to M.Bordag and Th.Braunschweig
for useful discussions.
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