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1. Statement of the Problem .

In the recent years & remarkable progress has been achieved in
calculating higher-order corrections to various quantities. Different
and very involved methods of multiloop calculations have been deve-
loped/1’2’3/. They enable ueg to advance in a number of loops in
Peynman diagrams integrated by theee methods. Nevertheless new ap-
proaches arise which not only simplify the calculations considerably
but allow us to evaluate more camplicated diagrams. The present
paper presents the description and development of one of these ap-
proaches based on the so-called ™uniqueness" relation.

The method 1s aimed at calculating massless Peynman integralsof
the propagator type dependent on one external momentum or one extermal
coordinate. All the calculations are performed within the dimensional
regularization and MS scheme, The dependence on a single dimensionsal
parameter is determined by pure dimensional considerations end is
power-like. The aim of the calculation is the coefficient function
depending on a I =dimension of space-time. Por D=4-2¢ it is the lau-
rent series in € , and of interest are the coefficients of negative
and of few first positive powers of € .

2. Formulation of the Method

Por the completenese we give here all the main formulse includ-
ing already present in non-numerous references on the topic /4’5/.
Hereafter we use the notation of ref. 4

All the calculations will be performed in the coordinate space.
The lines of graphs are associated with simple powers like ﬁﬂbczfﬂ

d being called the index of the line. For the ordinary line it is

(D‘Z)& in a D -dimensional space due to the well-known Pourier trans-
form

DS 2 4T SO
Jeh HC0BARNY
BURIICTENRA



Sdpepx 2 22 (%)

: 2 ) i S o L
2] == i = . + 5
P [m ] 2 2% 0(5 ‘D"Zdi"d;‘d;) s db 3 dz d}"‘i
‘ a0 (1)
where | is the Buler [ ~function. For an arbitrary index V it .
reads
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It can be obtained by integration by parts.
We will al d th 4ot of She 1n76x oF A YeWter of & triang S. In cage of the one-gtep-deviation from uniqueness, i.e. when
ew also nee e concept o of a s -
: the ind f th rtex 1 - o {(7) due to (6) takes the form
le and of a diagram - the sum of the indices of constituent lines. ::onni:fr:r @ vortex laD-1 » % n s to (6) 2
The line, vertex, and triengle will be called "unique" if their in- ] :
dices are equal to 0 , D , and D/p , respactively.
Calculations are carried out according to the following rules: d, Zq\'_ =D-1 iy (8)
1. The contribution of a simple loop is an ordinary product
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2. Chains are integrated using the graphical identity
g %2 = U(d dz dy) dy+dy =T (4) 6. There is an extra useful relation which is the inversion of
st 2 (8) for the triangle one-step-deviating from the uniqueneess, i.e.
Shire with the index equal to Dp+ 4 15/,
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3. The main element in integration of the vertex is the well (=4 Y (dy- 1) o odeva |

known "uniqueness™ identity
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7. In case when the indices do not obey the desired propertiee
(6) of uniqueness there exists a point group of transformations allowing
’ ‘ the change of thoir values. The summary of these transformations
is given in ref. « They include the insertion of a point into a
line, transition to a dusl (in a sense of the Fourier transform)
diagram, conformal mapping of inversion. We discuse the application
of these techniques below.

connecting the "unique vertex" with "unique triangle”.

4. Por the vertex with arbitrary index the following equality 1is
valid




3. Illustration

A. Two-loop integrals

We 1llustrate the simplicity and efficiency of the "uniqueness"
technique calculating the self-energy diagram

& (10)
J,_qy < . :
The majority of our graphe are reduced to it during the calculation.
Hereafter the value of a diagram means the value of a coefficient
function. The dimension of space-time is D= 4-2¢, S,= 34+dqvd,tds
and S;=32 4+dy+dy+ds are the indices of two vertices of the integra-
tion, +,=3+d,+dy+ds and -l;z= 34d,+d3+ds are the indices of the
left and right triangles, d.: 5 +dy+dtdym ideis the total index of
the dlagram.

Let for simplicity all d,;=0 . Then using eq. (7) foF¥ the
lower vertex we get

(11)
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A further calculation is straightforward due to eq. (3) and (4). The
result is
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In the same manner we calculate a more complicated integral
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Another characteristic example is the diagram with two triangles
and one vertex one-step-deviating from the uniqueness, i.e. with

t=Dpad , +2=Pp+4 , S,=D-1 . Using eq. (8) for the lower vertex
we get
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The first diagram in eq. (14) is integrated now due to the "unique-
ness™ of the left triangle, the secondone - due to the "uniqueness”
of the right triangle. The third diagram is trivial,

Congider now the graph with ordinary lines, i.e. with indices
equal to 4-§¢ . The recurrent relation (7) does not produce any integ-
rable diagrams in this case. One should make the transformation of
indices. It is useful to go to the dual diagram. For this purpose
we carry out the Fourier transform of the initial graph and treat the
obtained momentum diagram as a coordinate one with transformed indices.
In this particular case the dual diagram is topologically equivalent
to the initial one. Az a result, we have =

NG [i Q{s-g) 1 1
SN a (1-3¢) @
The resulting diagram hes already been considered above.

We see that the basis of integrability 1s always some kind of the
uniqueness. The diagrams with uniqueness are straightforwerdly integ-
rated due to eq. (6). The next class of integrable diagrams consists
of those one-ptep-deviating from the uniqueness. A single application
of the recurrent eq. (7)-(9) reduces them to the sum of diagrams with
the uniqueness. Note, however, that to be integrable the diagram
should be one-step~deviating from the uniqueness in three parameters
gimultaneously. For instance, for diagrams (11), (13) one-step-de-
viating from the uniqueness there are three lines (d4, W, and ds ),
for diagram (14) these are 4, , %, and S, .

In gerioral for the diagram under considerstion there ars four va-
riants of ite complete integrability (up to the obvious permutations):

I. II. I1I. Iv.
dy= 0 4,= 3¢ 4,z 3-¢ d,=0
d,=0 t,=3-& S,=3-2¢ dp =0
ds=10 Sp,=3-2¢ S5,=3-2¢ d=5-3¢
Ay + Ay -2¢ ds #0 Ay 0 oytds =28

=]



Three one-step deviations from the uniqueness (three lines, two tri-
angles, and one vertex, two vertices and one triangle, two lineas and
total index) ensure the integrability of a diagrem after applying the
recurrent eq. (7). (In the last case one should also use the insertion
of a point into the central line). The fulfilment of inequalities gua-
rantees that the denominators in eq.(7) are not zero, Otherwhise one
should introduce the regularization keeping all the uniqueness condi-
tions unchanged. It leads to the derivatives of I' -functions in the
final result.

To be sure that the diagram (10) is calculable, one should estab-
1ish whether there is some kind of the uniqueness condition (I-IV);

If not, whether it can be obtained with the help of point {ransfor-
mations. The latter im easily estzblished in two-three steps. Other-
whise a diagram is not integrated by the proposed methods.

Of a practical interest is the diagram with d;=a;€ , where &;
are some numbers. In this case we are not interested in the exact
expression for the diagram, rather in first few terms of the expan~
sion in £ . Pour variants of the total integrability (I-IV) enable
us to get four terms of the expansion for an arbitrary diagram. The
result is:
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We use here the well-known oxprossion for the [~ -function

/-(1+3C)—e:x:pz yx +Z, ()chﬂ: } (16)

where Y is the Buler constant and g(n)_ Z
function.

Practically this formuls is sufficient for four- and almost for
all five-loop calculations. To be precise, we keep the exponential
in front of the braces. It can be omitted being absorbed into the re-
definition of the angular integration and gives no contribution to
the final result.

is the Riemann 1; -

B. Three-loop inte 1ls

Congider now examples of three-loop calculations. The characteri-
stic greph now is

1+d;

A14ds 444y

Let for simplicity all d;=0 . Applying eq. (7) to the left upper
vertex we get

AN £ Lo <]

(18)
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The remaining two-loop disgrems ere easily integrated -pplying eq.
(7) to the upper vertex.

We have succeeded in reducing thc three~loop diagram to the
two-loop ones due to the presence of three lines ( ds s 94 d; )
one-step-deviating from the uniqueness. In general it is always
necessary to have three such conditions. They may be: one vertex and
two adjoined triangles, three triangles, three lines. If there is no
such conditions, one should use the point transformations of indices.

Consider, for instance, the diagrem with ordinary lines. It
has no kind of the uniqueness. However, the transition to the dual
diagrem gives
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Applying now eq. (7) to the central vertex we immediately reduce this
diegrem to a sum of two-loop ones.

In general, the diagram (17) can be reduced if there are three
parameters one-step-deviating from the uniqueness or if they can be
obtained by transforming indices. The latter is easily established
in éach particular case, Otherwise the diagram cannot be calcula-
ted by proposed methods. However, like in the previous case we can
got few terms of its expansion in & . For d;=@A;E we can get two
terms of the expansion for arbitrary @, that corresponds to the
expansion up to 55 in eq. (15). The result is:
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Notice that the coefficient %(6) like coefficient ?(4) in eq. (15)
is independent of &; . An analogous expansion can be obtained for
the dual diagram

_ expl-3(ye+¥9eY)
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Practically these formulas are sufficient for four and even for the
most of five-loop calculations. The calculation of any one diagram
nonintegrable by the rules (1)~(7) allows us to extent the expansions
(15), (19) end (20) by one order for arbitrary indices.

Hence the general conclusion of our ccnsideration is the follo-
wing., The integrability of a diagram is associated with some kind of
the uniqueness. The presence of one uniqueness or simultaneously
three one-step deviations from the uniqueness lead to the one-loop
reduction of a diagram. The procedure is rspeated until all the
loops are reduced. If it is not possible at some step, the expan-

izo*?cs) + e[ 503(6) -

sions like (15), (19) are very useful. Being obtained once they can
be used further as a table.

4. Five-Loop Calculations in the ‘fl' Model

We present here the application of the described technique to
the 5-loop renormalization group calculations in the (py model. Re-
call that the four-loop anomalous dimensions and ﬁs-function in this
model in the MS scheme were calculated analytically in ref. 1/ using
the methods of rof./1’2/. The anomalous dimension x& in a 5-loop
approximation was calculated lator/B/ with the help of integration by
parts 3 « Now the 5-loop calculation of the /5 -function is perfor-
nnd/9 o« This has required to calculate nearly 120 diagrams. All of
them but four were calculated analytically by the integration by parts.
Por the remaining four.diagrams the Gegenbauer polynomial expansion
in X -apace enables us to present the answer in the form of three-fold
infinite convergent series,The computer summation of these series
leads to acceptable accuracy. However, quite understandable is the
aspiration for an analytical answer.

To make clear the possibilities of the "uniqueness" technique,
we apply it to the calculation of these four diagrams. Graphically

they are
' ) ) <)

Notice that the very fact of the calculability, 1.e. representation
of the amswer through the :; ~functions for these diagrams is an open
question. The authors of ref. succeeded in the analytical summa-
tion of the series for the diagram a) and represented the answer in
terms of (5) and (6). Whether it is possible for the other diag-
rams, is an open question.

The method of "uniqueness™ gives the following results:

a) Por the diagram a) the problem is equivalent to the calcu-~
lation of the diagram {J)-up to O(€) . This diagram can be reduced
to the ¥V -1ike dimgram (17) which should be also known up to O(€) .
The last task has already been solved in section 3B, In this way the
an-wor/wag found to coincide with that of the summation obtained in
ref.

a)



b) Por the diagram b) the problem is equivalent to the calcula-
tion of the nonplanar crogeed diagram -®-up to O(e). This task
18 not so simple due to the diagram being nonplanar. The point trans-
formations do not give the needed "uniqueness™ here. However, we may
use the identity following from the independence of K R," for the diag-
ram on external lines:

KR’ @ = KP\'@‘

Changing the index of the external enveloping line in one of the di-
agramg from 4-g to 4+t , we create the "uniqueness" in the other
diagram where this line is internal. In this way the initial problem
is reduced to three ¥V -1like diagrams which should be known up to
0(e) - The latter is of no problem and gives:

3(5)  E3e- 530>+ L3%3) on

g? &

KR'=-

c) The diagram c¢) doess not contain divergent subgraphs. This
means that to evaluate KR’ , one should know the diagram -@ up to
a constant. This enables us to choose the indices of all lines so
as to create the needed one-step deviations from the uniqueness. The
available arbitrariness is sufficient to reduce all the loops. The
result is

263705 (22)
= |

KR' =

d4) The mein problem ig the last diagram, It does not contein di-

vergent subgraphs as well, so we need to know the jN-like diagram

-@- up to a constant., Choosing the indices in the form {+4;f we
reduce the disgram to three 'V -1ike ones which should be known up to
O(&z) or to nine two-loop diagrams (10) which eshould be known up to
O(&*). Hence the expansions (15), (19) ere not sufficient here. The
available arbitrariness is sufficient to evaluate eight out of nine
obtained diagrame. The last diagrsm is not calculable by this method.
It can be represented es

10
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end we are interested in the coefficient ~ E". In case when the diag-
ram 1is integrable, this coefficient contains two structures - g (7)

and 7 (3)'% (4). Assuming the same dependence for the diagram of in-

terest, we can try to find the coefficients. Omitting further details
we give the final answer:

ln eﬂel”
KR'= e 1) .

where the integer number can be found from the comparison with the
numerical calculation. This comparison gives

o aad 41, 117050783135... (23)
L8 408 %”) 3

The result of numerical calculation is -~ 11,11705(1). Notice that
the deviation in the integer number by unity leads to the discre-
pancy in the second decimal digit.

This result is equivalent to the knowledge of the diagram (10)
up to Eq and enables us to extent the expamsioms (15), (19), (20)
by one order for arhitrary indices.

Applying the obtained results (21), (22) and (23) to the /3 -
function together with the answers for other diagrems given in ref.

we may write the final analytical answer in the five-loop ap-

proximation: ( ££M‘= . 461’ k(Pl’)

Pms(h) = %hl_ (il (2 63(3)>k

(24)
( 3’-‘-‘29- +393(3) - 93(4) + eogw)) K
+ | 167261 '-}965 44?7 20‘19
( it g (3) - 3(9) + =2=3(5)
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Note that % (7) appears only in one diagram (as well as 3 (3) and
Z (5) 1in previous orders) and needs a further confirmation.

In conclusion the author expresses his deep gratitude to
VeVeBelokurov,A.N.Vassiliev,A.A.Vladimirov, 0.V, Tarasov and D.V.Shir-
kov for numerous useful discussions., I want aleo to thank K.G.Che-
tyrkin, S,G.Gorishny, S.A.Larin and P.V.Tkachov for kind informa-
tion on the results of pape 9/ prior to publication and useful
discussiona.
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Kasakos fl.H. £2-83-323

BuunucneHue (eliHMAHOBCKMX MHTErpanos MeToAoM ''yHukansHocTeir'

flaHo passuTHe # OBCYMAAOTCA NPUNOKEHUA MeTOoaa pacueTa GeaMaccoBhix
GeMHMAHOBCKUX WHTErpPanoB Ha ocCHoBe cooTHOwenun ''ynukanbhocTu''. flpoyeaypa
NONYYEHWA OTBETE COCTOMT M3 HECKONbKMX anreGpauuecKux WAroB v He COAEPHNT
HM B3ATHA MHTErpancs OT 3fIEMEHTaPHNX UMM CHEeUManbHbiX GYHKLUWA, HU PasNOMEHUA
8 GecKOHeuHNe pAaW W WX CyMMMpOBaHuA. MpocToTa M adPexTMBHOCTL MeTOoAa
WUWCTPUPYETCA Ha NPUMEPE BUYMCNEHMA ABYX- M TPEXNETNEBbX Pa3MEpHOperynapu=
30BaHHBIX MHTETrpanoB. B KauecTae NPUIONEHWA NPEANOKEHHOW TEXHWKW A3IHO BHANU-
THUECKOE BBMUCIIEHME NOCNEAHMX AMArpaMM, 3aBepuwanyux NATUNETNEBHE PEHOPM=
rPYNNOBHE BHUKCTIEHUA B Teopuu ¢t .

Pabota BunonHeHa B NlaBopaTopuu TeopeTuueckon puankm OUAW.

MpenpuHT O6GBLEAMHEHHOTO MHCTUTYTa AAEPHEX uccnepopawwii. flyGra 1983

Kazakov D.I. £2-83-323
Calculation of Feynman Integrals by the Method of "Uniqueness"

We develop and discuss the application of the method to calculate
massless Feynman integrals based on the “uniqueness" relation. The procedure
consists of several algebraic steps and involves neither integration of
elementary, special or any other functions, nor expansions in and summation
of infinite series of any kind. The simplicity and efficiency of the method
are illustrated by the calculation of two- and three-loop dimensionally
regularized integrals. As an application of the proposed technique we give
the analytical calculation of the remaining diagrams completing the five-
loop renormalization group calculations in the ¢* model.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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