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1. The starting point of the inverse scattering method (ISM)
description of nonlinear differential equations ig the definition of
a proper L-M peir/1/. Unfortunetely, the form of this pair is as a
rule simply guessed. Only after that, ISM comes into play. The treat~
ment of ISM in the AKNS-approachlz/ allowed one to analyze from the
common standpoint most of the integrable two~dimensional equati-
ong known to date (KdV, sine-Gordon, Liouville, etc,), Nevertheless,
this approach provides as before no answer te the question what is
the primary principle defining, in one or another specific case,the
concrete structure of the basic differential 1-form ), for which the
zero-curvature representation is written down

J“tﬂ.. = aﬂn'/\ ﬂu (1)
(the symbols o‘ué and /A mean exterior differentimtion and multi-
plication). The only requirement to be satisfied by f). is that it
should belong to the algebra SEGLR)(in generalizations of the AKNS-
?:jhod, fl. takes values in various algebras 3 and superalgebras

Je : :

In the present paper we argue that a more general approach is
possible, within which the necessary parametrization of Ale emerges
in a natural way. It relies upon the ides of embedding of the(super)
algebra 9£to which f), belongs into & more extensive infinite dimen-
sional (super) algebra & . With this procedure, the fields entering
into.fl, and satisfying a given integrable equation acquire the mea-
ning of coordinates of a certain coset sﬁace of the infinite para-
meter group G constructed by 4 . Thus, they support a nonlinear
realization of G . The 1-form Q.,ia identified with the g, -compo-
nent of the whole Cartan form l on the algebra Y . The zero-cur-
vature condition for £, and the specific parametrization of O,
follow from the Maurer-Cartan equation for 0 ana additional dyna-
mical constraints which covariantly reduce the original coset space
to its certain connected fully geodesic subspace,

The main advantage of the suggested scheme should be seen in
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the possibility of reducing the problem of searching for the new equa-
tions possessing the zero-curvature representation to the classifica-

tion task of listing proper (super) algebras 5’ and Sﬁ + Por the time
being,we have managed to understand in this language the Liouville
equation and its supergymmetric extensions 5 but it is plausible
that other integrable systems can be interpreted in a similar way (the
principal question here is which algebras Y are connected with
these systems). The constructivity of the method has been already de-
monstrated by us in ref, where the N=2 supersymmetric extension of
the Liouville equation has been set up with its help,

The present paper contains a more detailed description of our
approach by the simplest example of ordinary Liouville equation

W,_=m e:“', {2)
?zu' & ]

where u.._.q-—,—”_ , and 2% 2 x%s x*f are the light cone coordi-
nates of {(1+1) - Minkowski space, and[mlJSL” In this caﬂe, .=$£(a
and % is the direct sum of two contact algebras “(‘(1) ) {Sect, 2).
The related group G is isomorphie to the conformal group in two di-
mensions. We choose the basic coset space to be @/S0(1,1), S0(1,1)
being the (1+1)-Lorentz group. The field W(X) is identified with
the coset parameter associated with the dilatation generator, Equa-
tion (2) appears as one of the conditions of the covariant reduction
of G/S0(1,1) to the pseudosphere SL{2,R)/50(1,1). Another reduction,
which yields the free equation for u(x), is to the pseudoplane
P (1,1)/50{1,1) where 3°(1,1) is the (1+1) Poincaré group., We explain
how the relevant zero-curvature representations emerge in this pictu-
re (Sect. 2) and how to construct the general solution of eq. (2)
{Sect. 3). The Backlund transformations relating different solutions
of eq. {2 ) to each other and to those of the free equation are in-
terpreted as the constrained right gauge shifts on the coset space
G/SO(1,1) preserving the reduction conditions (Sect. 4).

*
2, The contact algebraaﬂ('(ﬂ are formed by the infinite Bet of
generators l:._;_ which fulfill the commutation relations

L, L31=r-m) L™ il U020 5 (n,m=-4,0,1,2,...). (3)

The algebra Y= ‘K’“)@'K-(‘l) coincides with the conformal algebra of
(1+1)-dimensional Minkowski space, The standard Virasorc algebra
is a central extension of 9 continued to all negative indices
.(n,m= 1,200 )0

—
J We basically follow the terminology of refs./7/.

.

The algebra (3) containé several finite dimensional subaslgebras,
We will be interested in the subalgebra S((‘Z,R)generated by the follo-
wing combinations of L"! il

R¢=L.14'M"L'_,R-=E‘."'m‘(—4+|U=L°+—I:- ' 4)
;[gﬂg_]bgmﬂu , LR, Ul=%Rs. (5)

In the contraction limit mM=0 (4) and (5) go over to the algebra
of the Poincaré group P (1,1). We identify U with the generator of
the corresponding Lorentz group S0{1,t) and L... with the transla-
tion generators.

Let us consider the nonlinear realization of group G with the
algebra & in the coset space G/H,where H=S0(1,1) is the above Loren-
tz group. An element of the left coset G/S0(1,1) can be parametrized
as followa* .

RERY 4 ploatel 2 A ] o
3"6'/3 .x-L, e.z‘(:.)}_t e‘z‘(x)l'*,., ecutx)(L.+L-). -

Here, X% are (141)-Minkowski space coordinates, and b((l),'if(x).z:(ﬂ‘

constitute an infinite array of coordinates-fields, The group G acts
on the coset (6) from the left:

g () glx, u,%,,..) = 9@ W, RL,) h (2], .

where g,a)is an arbitrary element of G:

g.(R) = exp( Z ).‘ ) (8)

ne-q
and h belongs to the subgroup H., The dependence of h on the group
parameters ) and the coset space coordinates is unlquely fixed by
the commutation relations (3). The arrangement of the group-factors
as in (6) is convenient in that the transformation law of coordinates
coincide with the ordinary (1+t)-conformal transformation:

Sxt= dt(x)= Z (=20 2 (©)

while the group variation of W(X) and the element lh depend only

on the Minkowski space coordinastes JC!’, but not on the coordinates-
fields:
Suix)=w'(x)-ulx)= %(9* A0 L)

h(3,2)= expfi[§ (2,2~ 9.1« 2AM]U}- e




The geometry of the coset space G/F is described by the Cartan
forms which are' introduced by the familiar relation 2
+ 00
8-‘d3=:'z w; nﬁ=1QEL(Qo*Q4)- (11)
n=-4
The forms .Q., and _Q.4 are defined so that they lie in the algebra
'Sl(z,R) (4) and its orthogonal complement,respectively (the latter is
spanned by the infinite set of generators L-:-'mz L‘.. s L-:-m" L‘g
L°.,,"L'_ 5 L"! s Lsg ,)
The whole i-form Q transforms under the shifts (7) according
to the standard law of nonlinear realizations 3

] « =1 =
Q' =-ck ol + D) h. (12)
All the components of_Q. ,.except for that of the generator,U 2
transform homogeneously. Let us quote several firat components ex-

plicitly
-4 -
w, =@ dx-!

wge =du-2£$dx! (13
wi = e (dr: ¢ (=) dat - 322 )
w

2u
= b 4 p 5 4
¢ (g + by 2 dat- 4xt dat).
We will also need to know the structure of components of the form
R Q. Ury.
S), = 6094'24_"0)° R_ +t W, [J'
w 4 ( 2 .~4 1
o = (mw, rwl)

wila 18 (bt 0?) (14)
2m

U Sl
w’ = 240{.’5 ‘%:AL+'

Note that the components of the form Q,, associated with the gene-
rators E‘,,- "U_, B L’,,_ result from w“’, w? through the
change m%*_op - %

By construction, the 1-form L) (11) satisfies the Maurer-Car-
tan equation on the full algebra Y ,

al""t_Q.=«'-QA-Q-Q (15)

Let us stress that at this stage eq. (15) is satisfied identically
and has no any dynamical content. The dynamics arises as a result

of covariant reduction of the coset space G/SO(1,1) to its subspace
SL(2,R)/S0(1,1) . This reduction is effected by setting the G/SL(2,R)-
component of Q equal to zero

Q,=o0. (16)

The constraint (16) is manifestly covariar‘xt under the z‘xction of the
group & . Expanding §),in generators L, -m? L Elomt L‘.. :
+ : 2 i ik

L +L°_ ; B s L-‘i . L:, .ss Wwe obtain the infinite sequence

-4
of the relations

2 -
wi =m'wF, (17
Wl +Ws=o0, (18e)
‘wlazo (n32). , _ (18b)

Each of them yields two equations,for the coefficients of J%*and
odx™ in the corresponding &) . The equations for the coefficients
of dxtin w: and for those of ofX™ in «a express the higher pa-
rameters-fields Zf (x), ’z,f(x),,.. in terme of the single object,
the dilaton M(.T.):*

23(x) = Dsuxy, (1%a)

25y = 4 {Fum +[ 9 u] ], o, (195)

The dynamice is concentrated in the relatioms (17¥); upon in-
serting tBe expressions (19) in the form Wy , each of the equa-
tions obtained by projecting (17%) respectively on AL ana ol re-
duces to the Liouville equation (2). ¥e prove in Appendix that the
rest of eqs. (17) and (18) do not impose sdditional restrictions on
WU(X) and are fulfilled identically.

It cen be easily seen that the zero-curvature representation
for eq. (2) automatically arises in this picture. Indeed, upon im-
posing the constraint (16) the 1-form £} (11) reduces to the
81(2,R)-valued 1-form £2,°" depending on the single field U(X)

*) The conditions (17) and (18) are the particular case of con-

gatraints of the inverse Higgs phenomenon 10 having a wide area of

application in nonlinear realizations. It immediately follows from

the general theorem of ref./10/ that all parameters-fields 211_'-3%‘
!

2},.-- are expreseible in terms of “(X) ., To see this, it is of no
need to know the detailed structure of Cartan forms, it is suffi-
cient to analyze the commutation relations (3),

S
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Q Q'Rd . t""‘-’f-g W, U" e (JG}R v R )*\a Adx - Uedxt )U(ZO)

Inserting eq. (16) into the initial Maurer-Cartan eauation (15) imme-
diately yields the zero-curvature condition for Q 3

p‘“t_de= Lﬂs y fpf (21)

° .

It is a simple exercise to verify that eq. (21) is equivalent to the
Liouville equation.

Let us discuss shortly the geometric meaning of constraint (16).
According to Cartan/11/ equations of this kind (the Pfaff equa-
tions) always correspond to extracting some connected fully geodesic
submanifold in a given group manifold, In the case we are conside-
ring such a submanifold is the two-dimensional pseudosphere
SL(2,R)/S0(1,1).The field u(x) specifies the embedding of this pseudo-
sphere into G/S0{1,1). In order to be convinced that the components
of the 1-form (20) actually describe a pseudosphere (ahe*,ua?* -
are covariant differentials, @o 1is the 50{(1,1)-connection), omne
should construct the relevant invariant interval

ds* = wp,wg__ = e-zua/x*/x‘ (22)
and evaluate the curvature of the metric. When u(x) is subject to
the Liouville equation (2) this curvature is equal to -5 m%

Another connected two-dimensional subspace of the coset space
G/S0(1,1) is the pseudo-Euclidean plane 97(1,1)/30(1,1). One may per-
form the covariant reduction to this subspace too. It is achieved
by singling out of the whole form .Q. its part associated with the
Poincaré group generators L;, L” =12 and by nullifying its re-

maining piece spanned by the generators L+, L' +L2 L3 PO L,. 0
The relations (17), (18) are replaced by the following ones:

k):o—w,’so) wi=0 (n31) . (23)

(they are simply the contraction limit of egs. (17), and (18)). The
higher parameters-fields are expressed in terms of u(x) by the same
formulas as before while the field ulx) satisfies now the free equa-
tion:

Ww,.=0 ; (24)
for which the zero-curv&ture condition on the group 3’ (1,1) emerges
(the corresponding .Q. is again given by the expression (20) but
with R,, R- replaced by the ordinary translation generators L: y

L' ). as 16 expected, the curvature of the metric in eq. (22)
vanishes in this case. Thus, in the present approach the Liouville

6

equation (2) and the free equation (24) are described in the uniferm
manner as the conditiqns of extracting different connected subspaces
in the same coset space G/S0(1,1).

The described mechanism of implementing the zero-curvature rep-
recentation is advantageous in that the necessary structure of the
basic 1-form .Qo is completely fixed within its framework by the choi-
ce of extended algebra.g , the stability group algebra K. and the
algebra S(, to which Q,belongs. The choice of the two-dimensional
Lorentz group S0(1,1) &s H in the present case is dictated by the
minimality requirement; with eny wider H the array of essential,
unremovable parsmeters of the coset space would include other fields
begides u{x).

Let us explain why the algebra g should be infinite dimensio-
nal for our construction to be valid., At the first sight, we might res-
trict ourselves to the maximal finite dimensional subalgebra s0(2,2)
ofg with the generators{L+ L +, L‘ } . The relevant Carten
forms are given by the first three of expressions (13) in which one
has to put zt © « The equations by which the subspace
SL(2,R)/S0(1, 1) is singled out coincide with (17) and (18a).One again
obtains the Liouville equation for u(x) but it is followed now by the
additional constraints

9._: uex) + [ 9 u@)}*=o0 (25)

(these originate from the relations (19b) after setting there 2f=0).
The conditions (25) are compatible with eg. (2) but they strictly fix
the coordinate dependence of u(x), selecting a class of particular
selutions of eq. (2).* « Thus, in order to obtein the Liouville equa-
tion without extra restriectione the original structure of 1-forms
wf should be the same as in eqgs. (13), i.e, one ghould include
from the begining the paremeters 2" (x} in the coset space, and,
hence, the generatora L.. in the algebra & . But adding of L+ to
the generators L + Lt s Lt inevitably producee the whole algebra
KY()® K" (1) vecause commuting of L% with L% gives L% ari so on.
Once the explicit structure of_Q_ is egtablished, one mey re-
adily write the linear set for eq. (2)./ /, i.e. the systen of equa-
tions for which (2) serves as the integrability condiiion. This set
looks as

L'y vy
*( 4) 4 Qltco( Co)

'lf,, :v;.

) These solutions are of the form u.o:):&[c,x'x'm,x’oc,xnc.,],
€als—~C4Cy = m?
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withS)E‘J being the matrix 2x2 in the fundamental representation of
SL(2,R) with the generators:

(o m e o : ¢ 0
= = i . 27
R" o °),Q"(-|'.m0 ) U 2{ {0 -0}~ {1
Explicitly:
4 a2 4

w\ (U mpe\w) (W) [-iu- o \[w
9 = ,'a. = p (28)

Yflo -fuflt o \- ’%- AUA

Here we have introduced the spectral parameter 7 by a constant right
S0(1,1)-rotation of the coset element (6).

To close this Section, we briefly discuss the Euclidean case.
9'13 now the complex algebralk;(1), the corresponding group G is
isomorphic to the conformal group of Euclidean plane, the generators
Lﬁ. LT_ are mutually conjugated, the same is true for the coordina-

,tes)x",x‘ and the parameter-fields 2: (n>1). When H is chosen to
be the group of two dimensional rotations 80(2), the single essential
parameter of the coset space G/H is again the relevant dilaton. The
Euclidean analog of subalgebra so(2,2) is so(1,3) while subalgebra
81(2,R)= go(1,2) with generators (4) has two anslogs, s0(1,2) and
go{3), turning into each other with mw—m?2(in the pseudoeuclidean
case, the change m*-» — m® in formulas (4) yields again 81{2,R)).
Hence, there exist covariant reductions of the coset G/H to three
connected subspaces with the same isotropy group S0(2): sphere
50(3)/s0(2), the Lobachevski surface S0(1,2)/S0(2) and the Euclidean
plane gi /80(2). These reductions yield, respectively, two Euclidean
Liouville equations which differ in sign before nz‘, and the free
equation,

3. In this Section, we show how to construct the general solu-
tion of eq. (2) within the present scheme. The method we apply has
been used in refs, and proceeds as follows. Once the 1-fonm£$fhi
=gﬁig belonge to 81(2,R) and meets the zero-curvature condition,
it is representable as

. ed_

‘ = g:'dg. (29)

with 3, being some element of SL(2,R), Taking ga,in the paramet-
rization

Ay T ?

idR, igR- iyU
3,== e e €
where o/, B, ¥~ are arbitrary functions of x% 2~ for the moment,
we express u(x) through these functions by the condition (29). Since
the structure of j}ﬁ is fixed by the formula (20), notall of the abo-
ve functions turn out to be independent, there arise some relations
between them, Besides, their coordinate dependence is specified in a
definite way. Indeed, the r.h. side of eq. (29) is as follows:
R -r
W ’= e O(J\
£ 2.2
a)e = ¢F~(aqs-+yn.p o‘d) (31)

wY = dp-- 2rnfpaﬁ£-

(30)

bl

Comparing eqs. (31) and (20) gives rise to the following restrictions

orxqgjs,3~ :

A= W(x?), = (mwe?) + V), = u e n Yalz) (32)
$.(x7) ¥ (xT) (33)
explu) = — ) « vl

where Y(x*) and ¥(x~) are arbitrary functions of x* and x~ ,
respectively. The expression (33) gives the desirable general solu-
tion of the Liouville equationm.

It is worth noting that the functions ¥(z*) and P(x”) enter-
ing into the general solution (33) simultaneously solve the equatilons
of motion of the nonlinear § -model on the coset SL(2,R)/S0(1,1)
associated with the Liouville equation through the relation (29)*).
In terms of 1-forms (31), these equations read as

R
9... l.d_+ + LI)‘.,U(‘)_R’. =0

(34)
?+wf-—a)1}w_n'=o’ .

where th uu are the coefficients of o/x-and a/x+in wp"t UU To
- + ) .

gee that eqs. (34) are satisfied when (31) is equated to _fZR:d (20),

it suffices to write (34) in terms of u{x). Relation between the Liou~

ville equation and nonlinear G - model on the coset SL(2,R)/S0(1,1)

has also been discussed in refs. 13 in context of the relativistic

string theory.

F3

) It seems that an analogous correspondence exists between super-
symmetric extensions of the Liouville equation /5,6/ and nonlinear
6”-models on certain internmal supergroups.
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4. Now we turn to considering the Bédcklund transformations. The
knowledge of them is crucial for determining infinite series of con-
served currents 14{ exposing the relevent hidden symmetries f15/,
and so On.

The standard Backlund transformation can be defined as a one-
paremeter femily of mappings which project the solutions of a given
_integrable equation onto the solutions of the same or seme other equa-
tion. These transformations do not affect the space coordinates and
are realized on the field u(x) and ite derivatives. The Backlund tra-
nsformations for the Liouville equation are well known (see,e.g./S/).
Here we derive them within our method.

Let us begin with transformations relating different solutions
of eq. (2) to each other. In the present scheme, they are implemented
as the right gauge shifts of the coset element (6):

4
im 8%y, e (L L)

g=ge @35)
restricted by the requirement of preserving the reduction const-
raint (16):

L4 Lo¥ad
Q1 _—_-o‘ (OD)

where
o~

Q‘=-L(§"J§-£ﬁ,)=ﬁ'ﬁo (37)

~
and _Q_aésf(l,il) . The condition (36 ) results in the following
equations far'gauge parameters g’éz)and a(x):

me u el fmU ,,,.,({)2 T# ;f-)

-a f_ 2 p
me W, = e (45 *mwf Trm (6w, — ;’g*} (38)
oda = m(g+w? + € LJ? )
2, 0.
with w7 ¥ w? 5 (du defined by eq. (20) into which the spectrsl para-
meter is introduced. Bearing in mind that the transformed field
U(x) is connected with u(x) as
M, w+ a

one may check that eqs. (33) are reduced to the following system:

WU, +u, = 2ym #h (G-u)
%%F[—(a’fu)]

It is not difficult to be convinced that the integrability condition
of the system (39) is just the Liouville equation for’H(x)

@39)

~
w_ ~u_

10

w,_ = mzuf("la) (40)

so the relations (39) define the Backlund transformation {the fact
that Qﬂx) obeys the Liouville equation follows directly from the form
of the constraint {36) to which all considerations of Sect. 2 are
applicable),

If, instead of the conditions (36), one imposes on 1). const -
raints of the type (23) which single out the pseudoplane 9?(1-1)£W(L1h

Bred; =0, W =0 (nrd) (47)
the relation between ﬁlx) and u(x) takes a slightly different form:
t-w

u++u+_mTe

—( ru
G oy "y ).

(42)

The field U(x) is subject now to the free equation

i, =0
which is the consistency condition for the system (42). Thus, the
relatinns (42) yileld the Backlund transformations from solutions of
the Liouville equation to those of the free one.

The present approach egsentiasily clarifies the geometrié and
group-theoretical meaning of Backlund transformations. They convert
into each other different geodesic hypersurfaces of the coset
G/s50(1,1)(a pseudosphere into a pseudosphere or pseudoplane) and
have a uniform representation by the right constrained gauge trans-
formations acting in the covering space. The digtinction between
Backlund transformations of the first and second kind has its origin
in the difference between the constraints (36) and (4I) fixing geo-
metry on the hypersurface to which one passes .

Note that the transformation (35) is the most general right gau-
ge shift which does not affect the coordinates a:t, does not spoil
the parametrization (6) of the coset G/S0(1,1) and is compatible
with the canstraints (3B) or (4I), The first two properties agree alsc
with the gauge shifts generated by L. (n32) but the constraints
(36) or (4I) force the corresponding gauge parameters to vanish.

*) In the contraction limit m *>o , the transformetions (39},
(42)g0 over to the “Backlund transformation"™ of the free equation:

b(_! tuU, =9, u+_.—.o, Upee=0.

11




The properties that 22 do not shift under the transformation
(35) and the element 3 hasp;:,l}e same appearance 8s g imply that
the transformed 1-form i looks just as 07 (20) but with
U(x) instead of Uz} (in the case of the conditions (4I), one hes al-
s0 to replace the generators 2*— by [.+ )« So, as far as the 1-form
075 is considered, the Backlund transformation of the first kind
jg effectively reduced to a certain restricted gauge SL(2,R)-trans-
formation. This fact has been mentioned in refs. 1 » In the case
of Backlund transformatlon of the second type, the relation between
12, and Sl proves to bhe more complicated; it involves right shifis
with the generators which lie outside of SL(R (in particular,
with L% +L°).

Note that the reduction constraints (16) and (23) possess from
the beginning an evident freedom with respect to right gauge SL(2,R)
and P (1,1) transformations, respectively.But these transformations
are of purely kinematic character, as they maintain (16), (23) from
the very beginning, with placing no restrictions on the gauge para-
meters (the freedom we talk about reflects an srbitrariness in the
choice of origin of coordinate sets in the coset spaces G/SL(2,R) and
Gyﬂf?ﬂ(). They act on the form (L,°(20) as ordinary Yang-Mills tra-
nsformations, inserting into its components three arbitrary functions
(the latter can be chosen, e.g. so as to alter the u(x)-dependence
of Qo ). The zero-curvature condition (21) is invariant in the ob-
vious way with respect to such redefinitions and is always equivalent
to the Liouville equation (or to the free equation in the case of
the reduced 5?(1,1)-form). The ngklund transformations radically
differ from these right SL(2,R}-and % (1,1)-shifts in that they
contain, when realized on the coset (6), the other generators of G
beyond those of the subgroups SL(2,R) or 5?(1,1).

To conclude this Section, we mention that in the Buclidean case
there exist several types of Backlund transformations relating to
each other the relevant geodesic subspaces 50(3)/s0(2), s50(1,2)/s0(2)
and P (2)/s0(2).

5. In the present paper we have shown that the simplest integ-
rable system, the Liouville equation, has an adequate description
in the universal language of nonlinear realizations and Crrtan forms.
Actually, one may treat the theory of this equation as a kind of
nonlinear §° -model associated with the conformal group in two dimen-
sions (the coordinates Xx¥ and parameters-fields 2:(3aare direct
analogs of Goldstone fields of ordinary ¢~ -models). The zero-curva-

ture representation and Backlund transformations naturally arise in
this picture and admit a transparent grop-theoretic interpretation,

12

It provides grounds for belief that the other properties of the
Liouville equation connected with its complete integrability, such
ag the existence of infinite series of conservation laws (different
from those caused by G-invariance), the existence of transform re-
ducing eq. (2) to a system of linear equations, etc., will also get
a simple explanation in the present approach. We note, in particular,
that the linearization of eqs. (17), (18) is achieved by passing to
some new special parametrization of the coset elements G/S0(1,1).
These problems will be discussed elsewhere.

In conclusion, let us indicate some further lines of thinking.
An interesting task is to generalize the present constructlon to
other integrable systems and their supersymmetric extenSions . AB
have been already mentioned, the main question one faces in carrying
out this program is as to what are the corresponding (super) algeb-
ras @ , analogs of the algebra (3). We know which superalgebras are
connected with various supersymmetric extensions of the Liouville
equation; these are the contact superalgebras I((1lN) (an explicit
construction has been given yet only for the cases of Nm{1 and N=2

). We have also verified that the simplest bosonic extension of
eq. (2), the complex Liouville equation 18 , arises when choosing
¥ to be the complexification KS()® K (1) of the algevra (3).
It still remains to learn which & correapond to more interesting
bosonic systems such as the sine-Gordon and KdV equations,chiral
models, the Leznov-Saveliev systems/12/ etc., One may hope to obtain,
in perspective, a kind of group~theoretic classification of comple-
tely integrable systems according to their (super) algebras 5’.

We believe that the presented method, being algorithmic enough,
will allow one to understand on a common ground the connections bet-
ween different two-dimensional integrable models, their relation to
realistic four-dimensional theories and will help in searching for
integrable systems in dimensions higher than 2, In particular it
wou}d be interesting to interpret in this spirit the self-dual sec- ©
tor of the Yang-Mills theory. let us emphasize that the Yang-Mills
theory, asnalogously to the Liouville equation, can be treated as a
nonlinear realization of a certain infinite parameter symmetr
Bearing in mind a possible integrability of gauge theories, this

‘analogy seems to deserve attention.

We are thankful to P.P.Kulish, D.A.leites and V.I.Ogievetsky
for valuable discussions.

s The statement that any integrable system is connected with so-~

me nonlinearly realized infinite parameter symmetry has been formula-
ted aas the existence theorem in ref./17/.
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Appendix

‘¥e prove here the self-consistency of the reduction conditions
(17) and (18). At first glance, the infinite sequence of equations
(17) and (18) might constrain the field w(x) more strictly than the
Liouville equation alone., However, it does not come about. To demon-
strate this, we write down the Mgurer-Cartan equation (15) in terms
of the 1-forms w;' :

-4 -4

dwe = wen wi : (Ata)
-1
dwht = -2Ws Aug (A1b)
/ 7 ’ L Al (A1c)
Aws = —Ws AWe +3ws <% c
-1 s
St s —dalawh ¢ 4wlnot o)
o « s . e el Sl Y]
dwg = = (m-K)WEAWS . Hal
we ""-l Krmsn, m?K
Let us represent u, as
-1 nw od
u,_ U, ws wy + e w’’ | (A2)

where ¥ w"” are covariant derivatives. Then, that pasrt of egqs. (18b)
whose role ip to eliminate higher parameters-fields 25(117,3) can be
covariantly written as

Vewe =0 (nazy (43)
whence
u; = (V: “’_:)“’-;, (a4)
Inserting of the conditions (17 ¢ ), (18a) into (Atc) yields
a/w_. = w 4/\ w2 PR YEAD. & (15)

Comparing (A4) with (Ata), we find
-1
Wy A w, e (86)

z -
Since ey =(¢7;w3)w; in virtue of eq. (A3), it follows from (A6)
that

v ‘"i =0, (A7)

14

2
e 20, (28)
Analogously, taking into account (A8) one obtains from (A1d):
wi=o. 9)
Proceeding further by induction, it is possible to prove
”
Wer = ("?Z), {(A10)

Thus, the whole system of the reduction conditions (17%), and
(18) is satisfied provided the eguations (17%), (18a) and (A3) hold.
These equations have no other consequences apart from elimimation
of parameter-fields zf () (u »4) and the Liouville equation for
uix).
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Hsaros E.A., Kpusowoc C.0. E2-83-286

HenuHeitHan peanusauuAa KOHPOPMHON rFpynnb AByMEPUA
U ypasHenue Jlmysunns

Nokasano, uto ypasHewne fysunna u,_ =m2e™21 pmeer apeksaTtHoe onuca-
HME Ha A3bKe HEeNMHENHON peann3aunn GeCKOHeuHOMapaMeTPUUYECKON KOH(OPMHON
rpynne asymepuna G . KoopauHaTu ABYMEpHOro npocTpaHcTaa Munkosckoro x*, x™
+¥ none u(X) OTOKAECTBMANTCA C ONPEAESIEHHHIMW fapaMeTpamu GaKTOP-npocTpaH-
ctea G/H, rae H = SO(1, 1) - rpynna Nopenya asymepun. YpasHewne fNuysunnn
BO3HUKAET Kak OAHO M3 KOBAPMAHTHBIX YCNOBMI pepyKuuM GakTop-npocTpaHCTaa
G/H K ero CBA3HOMY reogeauueckomy nognpoctpaHcTsy SL(2, R) /H. Anevep-
HaTUMBHAA peayKumAa K noanpocTtpaHcTey P (1, 1}/H, rae ? (1, 1) - aBymepHas
rpynna flyankape, npusogut x c8060aHOMY ypaBHeHWo Ha w(x). CooTeBeTcTBYNOWHE
NPeACTasNeHnA HynesOW KPuBu3Hu W npeobpasosanus BaknyHpa npuobpetant B8 fav-
HOM MIOAXOAE NPOCTON TEOPEeTUKO-rPpyNNOBOR cmuicn. 06CYHAAETCA BO3MOKHOCTL
ofobieHnA NPeanoKeHHON KOHCTPYKUMM Ha Apyrue VHTETrPUPYEMBIE CUCTEMBI.

Pa6Gota swinonHeta 8 JlaBopaTopuu TeopeTuueckoi duauxu OUAN.

fipenpnHT 0GLEAUHEHNOrO MHCTHTYTA AAEPHHX uccnepoBanui. fy6wa 1983

Ivanov E.A., Krivonos S.0. E2-83-286

Nonlinear Realization of the Conformal Group in Two Dimensions
and the Liouville Equation

The Liouville equation u,_= m2e-2u is shown to have an adequate des-
cription in terms of the nonlinear realization of infinite parameter con-
formal greup G in (1+ 1) dimensions. The (1+1) -Minkowski space coordi-
nates x*, x~ and the field wu(x) are identified with certain parameters
of the coset G/H, H=80(1,1) being the (1+1)-Lorentz group. The Liou-
ville equation appears as one of the covariant constraints reducing this

.| coset space to its connected geodesic subspace SL(2, R)/H. . An alternative

reduction to the subspace 9(1,1)/H (P, 1 is  (1+1-Poincar€ group),
yields the free equation for u(x). . We demonstrate that the relevant
zero-curvature representations and Biacklund transformations get a simple
group-theoretic interpretation within this approach and discuss a possibi-
lity of its extension to other integrable systems.

The investigation has been performed at the Laboratory of Theoretical
PRysics, JINR.
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