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1. INTRODUCTION

In a previous paper’/! we proposed a new technique for sum-
ming up divergent but Borel-symmable series. We argued that the
Borel transform, when suitably defined to be free from singu-
larities in the finite complex plane, can mimic the asymptotic
behaviour of the underlying function and that a finite number
of terms are sufficient to probe this behaviour. This possibi-
lity offers arguments in favour of considering modified Borel
transformations which lead to a certain entire function as the
Borel transform of the divergent series under study. The un-
avoidable approximation of the Borel transform is a much easier
task for such functions because it is no longer necessary to
perform an analytic continuation. In/1Y/, as well as in the pre-
sent paper, we use a power-—law approx1mation of the generalized
Borel ‘transform although, in principle, alternative options are
available.

In what will follow we shall give further evidence of the
applicability of our method by setting it to work on the per-
turbation theory expansions for the ground state energy levels
of the quantum mechanical anharmonic oscillators

H(x)=_21.p2 +lx2 +gx2N’ N = 2,3,4,... (1.1)
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While the N=2-case has always been the number-one favourite
among the inventors of new summation procedures, the series
generated by the perturbation theory for N greater than 2 are
not so popular because their coefficients grow too rapidly for
the Borel-method to be applicable in its standard form. Our
method, however, which, as we said, is based on a generaliza--
tion of the Borel summation formula, is much more democratic

in this respect. Otherwise, even for a higher-order anharmoni-
city, the perturbation theory expansion for the ground state
energy level is still the perfect test-ground for any new summa-
tion technique both because of the plentiful nonperturbative
results available and of the very large number of calculated
expansion coefficients., These will be reviewed briefly in the
third paragraph of this paper, after first giving a description
of our summation method in our second paragraph.
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2. A REVIEW OF THE SUMMATION METHOD
Consider a serieskz()fg})EFollowing Borel (cf.e.g.,/7/ ) we

ascribe a "sum" f(x) to it by means of the integral
f(x)= e B(xtydt » 2.1)
0

provided it is convergent. The function B(z) is the analytic
continuation of the so-called Borel transform of the series

oo f .
A (2.2)
k=0 k!

This is an example of a regular summation method which means
that, when applied to a convergent series, it yields the cor-
rect result, Formulae (2.1) and (2.2) can be generalized in se-
veral ways, one of which is this:

f(x)= Fe“ t“EM(xt”)dt .

9 K (2.3)
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The Borel summation method and its modifications provide us with
a tool for tackling the so-called reconstruction problem which
consists in trying to recover a function from its asymptotic
expansion. The existence of functions whose coefficients in their
asymptotic expansion are all equal to zero points to the neces-~
sity of additional information about the objective function if

.~ a unique solution of the reconstruction problem is what we need.

The Watson-Nevanlinna theorem justifies the Borel summation as
the unique solution of the reconstruction problem when f(x) is ana-
lytic in a sufficiently large domain and the difference between
f(x) and the truncated series is suitably controlled.

From now on we shall use the term "summation" as a synonym
of "reconstruction" and in the context of the perturbation theory
we shall be concerned with the summation of divergent asymptotic
expansions of which but a few coefficients are exactly calcula-
ted and for the rest only the large-order asymptotic behaviour
is known/45/,

It is by looking at the leading term of the asymptotic formu-
la for the expansion coefficients that we know what values of
and g in (2.3) will lead to an entire-function Borel transform

(z) We believe, and in this we are backed by the numerical
analy81s/ /, that when f(x) obeys a power law
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then this is felt by the generalized Borel transform B (@
(2.3). The opposite is obviously true, i.e., when By @) ~ zP,
Z > « , then the Borel sum f(x) (2.3) behaves powerw1se too, as
in (2.4). Unfortunately, in real life, we are not in a position
to study the large-z  behaviour of the true Borel transform
'V(z) since we know but a limited number of exact coeffi-
c1ents f, . Instead, we can construct an approximate Borel trans-
form

M+L k
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Buw(®) =3 X, 5 __ B
k<M I‘(uk+y+1) k=M+1 F(vk+y+1)

(2.5)

where the additional L coefficients f, are found from an ex-
trapolation of the exact coefficients, based on the whole avai-
lable information about the asymptotic behaviour of f, . The
expression (2.5) is a reasonable approximation of the actual
Borel transform only for values of z which are below some z_,,.
The latter depends on the number of terms involved, on u and v
as well as on the accuracy of approximation required and for
alternating series is determined from the size of the first of
the neglected terms. Next, for Zz < zZga,we try a power-law fit
for B,,

B,, @ ~ cef ; (2.6)

and find a power p which turns out to be a function of g and v.
We emphasize this fact because it helps to wave off the arbitra-
riness we brought about by introducing the two new parameters g
and ¥ with the egs. (2.3). If we want to link the P 1in (2.6)
with the power-behaviour (2.4) of the objective function (£(x)
then any (u,v) -dependence is undesirable. We explain the appea-
rance of such dependence as being the effect of the truncation
procedure doomed to vanish when we add more and more new terms.
But, as was already mentioned, additional terms are available
only through the extrapolation procedure and it is apt to in-
troduce error when overdone. Hence we give up the hope of seeing
the dependence on ¢ and v die a natural death and turn to the
principle of minimal sensitivity, proposed by P.M.Stevenson/2/,
It instructs us to study the function p(u,») and find its sta-
tionary points or, more generally, its points of minimum varia-
tion, the idea being that at such points we are nearer to the
ultimate (#,v) -invariance. Should it turn out that there are
more than one stationary points and, moreover, the values of p
vary significantly as we go from one such point to another,
then, obviously, we could not depend on the principle of minimal

4

sens1t1v1ty alone and would need some additional criterion. For-
tunately, in the examples we have studied the numerical analysis
seems to indicate the existence of but one stationary point. Let
us denote it by (gg.,vy) and the corresponding power by p . We
postulate that the approximate Borel transform is given by the
finite sum (2.5) for values of Z < zy,, and by the extrapola-
ted power-law fit (2.6) for 2z >ZpayFinally we perform the in-
tegration in (2.3) and get the result of the summation.

3. THE ANHARMONIC OSCILLATOR

The quantum—mechanical anharmonic oscillator

H(x)=% p2 +T§-x2 + gsz (3.1)

has a ground state energy Eg (3, N) for which a simple scaling
argument, credited to Symanzik, gives the following power-law
asymptotic behaviour:

Eqe M=yg (14062 ), (3.2)
where
a=1/N+1), (3.3)

Very accurate numerical results are avallablels/for the ground
state in a wide range of values of g and for various N. The
analytic structure of Eo(g,N) as a function of g has been
exhaustively studied’” "and it has been found that the singu-
larities are not positioned in a way that would interfere with
the requirements of the Watson-Nevanlinna theorem. Perturbation
theory has also been carried out up to a very high order

and the large order asymptotic of the coeff1c1ents in the expan-
sion in the powers of g has been found

iy k

1
E,@N=—=+23 Arg,
a 2 k=1 K (3.4)
Ap =[N - Dxltafke1 oLy,
where
o IV -1) 8 (3.5)
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b=-2?

(3.5)

1, (N- 1) @N/AN - 1)
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In Table | we give the absolute values of the first several
coefficients Ay for N-=2,...,5. The numbers which correspond

to the quartic (N=2) anharmonic oscillator are the same as
in/®, For the time being we shall leave aside the question of
whether the summation procedure 1is unique and we shall proceed
with its actual implementation. As it was explained in the pre-
ceding paragraph, in order to implement our summation scheme we
have to study the behaviour of the power P (see eq. (2.6)) as
a function of ¢ and v with reference to any stationary points.
Our numerical analysis, performed on 25 terms in the approxi-
mate Borel-transform, shows that there is a saddle-point of
plp, v) for all of the studied values of N. Graphically this
is shown on fig.la,b, for N=3.
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Fig.l. The function p{(g,r) in the case N=3 (a), and its

variation \/(ap/au)z + (ap/au)z (b). The step in both (a)
and (b) is 0.017. :

e.8., (2). 546 = 0.546x10°2

Table 1
The absolute values of the first several coefficients Ai

in the perturbation theory series (3.4). In our notations,

k Ne2 N=3
1 =75 ( 1).1875
2 ( 1).2625 ( 2).54609375
3 ( 2).208125 ( 4).484248046875
4 ( 3).2412890625 ( 6).815996912842
5 ( 4).358098046875 ( 9).221275751656
6 ( 5).639828134766 (11).882689884590
7 ( 7).132973372705 (14).487941808745
8 ( 8).314482146928 (17).357700987914
9 ( 9).833541603263 (20).336138986250
10 (11).244789407028 (23).394149172293
1 (12).789333316003 (26).564244023521
12 (14).277387769635 (29).96856 3504957
13 (16).105564665831 (33).196385531864
14 (17).432681068354 (36).464374894191
15 (19).190081719760 (40),126662552918
16 (20).891210175364 (43).394748846698
17 (22).444255088999 (47).139403316931
18 (24).234646430681 (50).553751811712
19 (26).130915026105 (54).245816339035
20 (27).769399985382 (58).121233211849
21 (29).475124077343 (61).660789166175
22 (31).307579295113 (65).396156847401
23 (33).2083010094 34 (69).260108567638
24 (35).147290492138 (73).186298347574
25 (37).108552296005 (77).1450296 38553
26 (38).832483627531 (81).122306719529'



Table 1 (continued)

T R=2 N =3

27 (40).663329371112 (85).111391832870
28 (42).548392431329 (89).109251775090
29 ((44).469782420783 (93).115087134189
30 (46).416502699806 (97).129890801920
k N =32 N=5

1 ( 1).65625 ( 2).2953125

2 ( 4).210984375 ( 6).136774907226
2 ( 7).313710058594 (10).477358783720
4 (11).124141097987 (15).630594517692
5 (15).103187117942 (21).226960465827
6 (19).15600896 3407 (27).182192256092
7 (23).388856541451 (33).285286662138
8 (28).148824783055 (39).791825237512
9 (32).828991567444 (46).362592298265
10 (37).644612572672 (53).259081857592
" (42).676742466618 (60).276265835393
12 (47).933387374939 (67).423895641311
13 (53). 165321756794 (74).907915664710
14 ( 58).368863047903 ( 82).264564828799
15 ( 64).101976557053 ( 90).102602938985
16 ( 69).344369698233 ( 97).519572011856
17 ( 75).140283032202 (105).337865309279
18 ( 80).681784211044 {113).278009958644
19 { 86).391461706620 (121).285702435182
20 ( 92).263220647532 (129).362427286572
21 ( 98).205640264007 (137).561573251045
22 (104).185331826340 (146).105276566733

] Table 1 (continued)
K N=4 N=5

23 (110).191436145026 (154).236719729378
24 (116).225296191399 (162).633402307120
25 (122).300454278797 (171).200225164574
26 (128).451778135228 (179).742770937729
27 (134):762410905654 (188).321376910922
28 (141).143784957932 (197).161258418118
-29 (i47).301e38279834 (205).933424918883
30 (153).702694671501 (214).620219703731

The behaviour of p{u,r) along the two perpendicular lines
p=pp and v=vy is shown on Fig.2a,b. The picture is quali-
tatively the same for all of the studied values of N. In Table 3
we give the values of the power p we have found as compared
to the exact values (3.3). :

P(F,\’o )X 10 a) | P(}J.,V)X‘lo b)
2511 271
249] 26
2470 25|

-06 -05 -04 M 36 27 78 v

Fig.2, The function p{u,v) in the case N=3 in the vici-
nity of the stationary point (uj.vy) pg = -0.51, vy =
=:2::733

The loss of accuracy for bigger values of N is probably due
to the insufficient number of input coefficients. Finally, in
table 3 we present the results of the summation.



Table 2
The values of p at the stationary point

Exact
N Ko Yo Plgsvy) values
2 -.4 2.318 «334+.002 1/3
3 -.51 2.733 +251+.002 1/4
4 345 3.83 .17+.05 1/5
5 1.54 5.256 .12+,05 1/6
Table 3
The results of the summation of the perturbation theory
series for the ground state energy E,(g, N) (a),
and the non-perturbative results (b). The estimated
.errors are given in the brackets
N=2 N=3 N=24
95 a b a b a b
1 .8037(1) .8038 .8018(8) .B050 .806(30) .8207
10 1.507(2) 1.505 1.272(10) 1.282 1.12(13) 1.1909

100 3.147(20) 3.13%  2.159(27) 2.193 1.62(36) 1.816
1000 6.78(10) 6,694 3.,77(9) 3.851  2.35(B6) 2.833

HnueB A.C., Murpomkux B.K. E2-83-281
CyMMHpOBaHHE aCHMIITOTHYECKHX ganon:
AHrapMOHHYEeCKHH OCHWUIATOD gX N

IIlpepgnoxeHHas HaMH panee/l/ TeXHUKa CYMMHDOBAHHA TNIpHMeHeHa
K psidaM TeOPHH BO3MYIEHHH [Jisi OCHOBHOTI'O YDOBHJ 3HEprHH aHrap-—
MOHHMYECKHX oclmuIaTopoB V(X) = gx2N B KBaHTOBO! MeXaHHKeEe.
llokasaHo, 4YTO upesBHYAHO GBICTPHIT POCT KO3dQPHIHMEHTOB paanomennﬂ
B S5THX IIpHMepaxXx He MNpelsATCTByeT NpHMeHeHMIo Hamell Iponemypb
cymmMupoBaHHA. Ocoboe BHMMaHHe ObUIO YOEIIeHO HCNOJIb30BAaHHIO
NPHHUHMIIA HaHMeHbmell 4YyBCTBHTEIIBHOCTH, NpemioxeHHoro II.M.CTtuBeH—

COHOM B paﬁoTe/zﬂ

Pa6ora BhmonHena B JlaBopaTopHH TeopeTHuYeckoil dusuxu OMIH.

NpenpuHT 06beAWHEHHOTO MHCTUTYTA AAEPHHX uccneposaHuid. flyGHa 1983
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Summation of Asymptotic Expansions:
the gx?N_Anharmonic Oscillator

The summation technique proposed by us in’" has been
applied to the perturbation theory expansions for the ground
state energy of the quantum mechanical anharmonic oscillators
VE) = gx2 . We show that the extremely rapid growth of the
expansion coefficients in the above example is not an obstacle
for our summation procedure. We have elaborated the utilization
of the principle of minimal sensitivity proposed by P.M.Ste-
venson in’/?/.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR. :
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