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1. INTRODUCTION

As is well known (see refs.’1" %/ where a complete list of

original papers is given), the conformal invariance allows the
complete two- and three-point functions to be determined up to
a few constants only on invariance considerations. However, in
the important case of pauge fields, i.e., the four-vector fields
with a scale dimension to be equal to one (in units of the
inverse length), the corresponding conformal covariant two-point
functions have only a longitudinal part, i.e., these lields are
pure gauge. To avoid this difficulty and to construct the non-
trivial conformal invariant theory in the case of gauge fields,
Backer and Johnson /2 8/proposed the hypothesis that special con-
formal transformations follow from some restricted class of
gauge transformations. In papers’#® using this hypothesis

the nontrivial model of nontrivial conformal-invariant quantum
electrodynamic was constructed.

To clarify the origin of above-mentioned difficulties of
unification of conformal and gauge symmetries, it is essential
to consider the corresponding representations of the conformal
group. In general the symmetric traceless tensor field of rank
n and scale dimension d is transformed by the representation
X = 1ﬂ.n!/12{ When n=1 and d# 1,3, the representations
x =1d,1} are irreducible. However, this is not the case, when
d =1,3, the so-called exceptional points, for which the rep-
resentations y are reducible but not decomposable. For the
representation yx = 11,1} there is one invariant subspace formed
by longitudinal vector-fields d, ¢ ,i.e., pure gauges, and for
the representation ¥ = 13,11 the corresponding invariant sub-
space is constructed from conserved currents a“j =0. This can
explain a pure longitudinal nature of two—point gtnctions for
the electromagnetic potentials and a pure transversal nature
of the corresponding functions for conserved currents transform-
ing according to the representation x =13, 1l. Nondecomposabili-
ty of the representations x =11,1l, by which the electromagne-
tic potentials are transformed, is used in papers’sy where
also an Euclidean nontrivial model of quantum electrodynamic
has been proposed.

In the present paper we also use the nondecomposability of
the representations y =11,1} and ¥ ={3, 1] of the conformal
group S0(4,2 according to which the electromagnetic potentials
and currents are transformed. Tt is supposed that the potentials
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and currents are transformed according to the nonbasic repre-
sentations, i.e., such representations of conformal group which
are nondecomposable for any scale dimension (see refs. /1:2/ ),
A short description of the nondecomposable representations is
given in the second section. These representations are charac-
terized by that the generators of the special conformal trans-
formations act on the fields Ay x) at point x =0 1in a nontri-
vial way, i.e., [Au(”'xhlx=o =0.As a consequence we See that

the invariant two-point functions have a nonvanishing transver-
sal part. The explicit form of these two-point functions is
found in the third section. In the forth section the invariant
action is given for the model under consideration from which
the equations of motion are derived. In sect. 5 the problem of
quantization is discussed.

In part two of the present paper the above results will be
generalized to the nonabelean case.

2. NONDECOMPOSABLE REPRESENTATIONS
OF THE CONFORMAL GROUP

Here we will cite some results from ref.flﬁ which will be
used later. The irreducible representations (IR) of the confor-
mal group SO(4, 2) (in the Euclidean case SQ(5, 1)) in general are
labelled by three numbers y =|d,v1, V2l, where d is the scale
dimension and v; and v, are the numbers labelling the IR of the
Lorentz subgroup (SOOQ?. Here we consider only the scalar
vy = vg=0 and four-vector vy = vy =1 Trepresentations, which
are labelled by x =1!d, 0], x = {d, 1|, respectively. As has
been pointed out for the exceptional points d=1,3 the four—
vector representations are not decomposable.

The same is true for the scalar representations with scale
dimensions d =0 and 4. The representation space is denoted
by Cx. Corresponding invariant subspaces are:

Cio.0l 2 Figop=11€€ Cyy g = const],
Ciy a2 Fryp=1t, € Gyt =98, 8 Cip gl

(2.1)
oM
Cis, 1] 2 Dyg =11, € Cigffd f, = o,

i Pt
Cia0l DFh.ol’“ € Quop f =9 B, By Gcla.ﬂl'

The peculiarity of these representations can be established by

c0n§iqering the conformal group Casimir operators. The second
Casimir operator is given by’!/



AR, =3 :¥s A% L4, (2.2)

2 AB uv

¢, =L1
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where A and £, are the dilatational and Lorentz generators
acting at point X = 0. Then for the basic symmetric traceless
tensor fields

[czv D

b greee un(x)] = [n(n+2)+d(d- mtp”i (x) (2.3)

l"'l#n

from which it follows that for any of the considered four repre-
sentations the r.h.s. of (2.3) vanishes. As a consequence of
this degeneration of the spectrum of the Casimir operators, for
some values of scale dimension and tensor rank there is the
above-mentioned nondecomposability of the corresponding repre-
sentations. As is known (see ref. /1y the conformal group

has a class of representations, the so-called nonbasic represen— °

tations. These representations are nondecomposable for any
scale dimension and are characterized by the action of special
conformal generators at point X =0, which is nontrivial, i.e.,

[®(x), Kplx=0 =kﬂ°(0) £0. (2.4)
Here k, is a nilpotent operator (¥ x )g =0, £=23,.. and b,

is an arbitrary four-vector. In the case of nonbasic represen-
tations the second Casimir operator is given by

¢ _1 ;aB _ 1 ew 2 ’ u
c2_2J JAB“‘Q"X Zw-ﬁ + 4iA + k P“l . (2.5)
where P, =id is the translational generator.
Consider the following five-component potential fields
R(x)
Alx) = (2.6)
A, (® .

where R(x) is a scalar field with scale dimensional d and A
is the four-vector field with scale dimension d+ 1. When d=g,
A is the electromagnetic vector potential. Suppose that the
field A(x) has the following transformation properties with
respect to special conformal transformations

R(x)
] K =8

I
A @

2x (d+x"d ) - 2%, 0 R
=1 V. 2a 180 Vix O
28, [2x,(@+1+x79,)-x 9,18, +24x" (X)), | A, .
2.7)

where (Ew)a = i(sfg,,p —533“‘, ) are generators of the Lorentz
transformations in the vector representation. Consequently, kK,
for the considered here representation is given by

0 0
k = 2i\ (2.8)

0

Substitutung (2.8) in (2.5) (for d=0) and taking into
account (2.3) we have

0

[A(x), c2] == 2\
d,R

i.e., the action of the Casimir operator (2.5) on the field

(2.6) for d =0, is given by the projection on the invariant
subspace Fll T i.e., on the subspace of longitudinal functions.

3. COVARIANT TWO-POINT FUNCTIONS

Consider the two-point function of the five-component poten-
tial field A (2.6) in the case of arbitrary scale dimension.
For our purposes it is convenient to find this function in the
Euclidean momentum space:

4
Qx-y) = [ L
(2r)

] - -~
& p(x-y) &) =

(3.1)

. <RMR()>, <R®A, (>,
=< A(x) A (y))o =
<A (0OR(y)>; <A (@A, (9>,

where AT(x) is found from (2.6) by transposition. Note that from
the Euclidean two-point function (3.1) a time ordered Green
function can be found in the Minkowski space by the substitution

Py +iDg. PE2DE-P2-1e, 8, g, (3.2)

and the corresponding Wightman function with the following limit
(see ref. "2/
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Wx,, x) = lm G (x, —¢ —ix,).
0 €x0 ¥ (3.3)

The covariant function (3.1) can be found up to some con-—
stants only from the symmetry considerations. Indeed, the co-
variance with respect to special conformal transformations gi-
ves the following equations:

<TAM, K ,)AT@pg + <A®IAG). K 17>, = 0, (3.4)

where the invariance of the vacuum state is supposed, and the
action of the special conformal generators K# is given by (2.7).
By taking into account the covariance with respect to the Lo—
rentz and dilatational transformations, the solution of egs.
(3.4) is found in the following form

\
id \
Tcl CyPy \
Gy= ®2)*F2, (3.5)
de iAe E
-¢ Py = - =] u; +GP, P,
2(1-d) 2(1-d) p

Here ¢, , are constants, one of which can be determined from
the nmormalization condition. We point out that for any value

of the scale dimension d+1 of the four—-vector potential, but
the value d =1 for which (3.5) is singular, the covariant
function has the transversal part. Consequently, for d =0 (3.5)
contains the conformal covariant two—point Green function for
nontrivial electromagnetic field. In the limiting case d - 0
from (3.5) we have

1 2% P
T 5@ (®) = :2
2 o@m 21 AP (3.6)
G(p) = lim G ,(p) =
o0 _ 2 _Pu _ Bw PuPv
A @®)2 pZ (p?)?

where the limit is taken in the sense of generalized functions
and ¢ = -2i/A is substituted to find the Green function of
the electromagnetic field in the standard normalization. From
(3.6) it follows, that the conformal-covariant two-point Green
function is given in arbitrary gauge — the conformal invariance
gives no restriction of the gauge fixing parameter c¢. As has
been mentioned above, the corresponding covariant time-ordered
Green function in the Minkowski space can be found from (3.6)
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by the substitutions (3.2), and the Wightman function by the
limit (3.3). The Fourier kernel of the Wightman function has the
following form

- =% L )
- 2) A (3.7)
W) = 8y

2i s g2
- P8 07 -8, 80°) + o8 (%)

Here ©(p,) is the ordinary theta-function, ensuring the spectra—
lity condition.

We point out that for any value of the parameter ¢ the Green
function is nondegenerate and its inverse which is found from
the condition

G lp)dp) = GEE ) =1 (3.8)

has the following form

2= ix
T(l_ @?)? —é—PyDB
Qi) - (3.9)
A
-5 Pup® G DF % By Dy

Remark. Strictly speaking (3.8) is not satisfied as an operator
equation on the subspace of functions V0 satisfying the fol-
lowing equations

G¥F =0, ¢ 1'% .o,

where F, ¥ ¢ vg.
It is easy to check that the Wightmann function (3.7) satis-
fies the homogeneous equation

G lp) W) = 0. (3.10)

Also it is easy to check that G™!is the covariant Green
function for the five-component current

D(x)

I(x) = (3.11)
Ju(x) C



which is transformed under special conformal transformations
by the law

D(x) =
> Ku L)
i, ®
(3.12)
1 2x, 3+ x"9,) - x%3, -2g, D(x)
0 [2x, (3+3%9,) - 2%, 180+ 2xV (2 N P] |4 (0

Here D(x) is a scalar field with scale dimension four, and

j (x) 1s a vector current with scale dimension three. It can

be established that the inverse Green function (3.9) is the
interwining operator of representations T and T which transform
the fields (2.6) and (3.11), i.e.,

(el S et (3.13)
In an infinitesimal form (3.13) has the following form

-1 > -1

G XAB= XABG . (A'B z 0.1.2.3,5.8), (3-13')

where ¥  pare generators of the conformal group. For generators
of the Lorentz subgroup and dilutations the equality (3.13")
can be checked directly. In the case of special conformal trans-
formations, by substituting Ky from (2.7) and K, from (3.12)
after some algebraic operations we find that (3.13") is also
satisfied.

At the end of this section it is necessary to point out
that the scalar field R(x) has extraordinary properties which
follow from (3.6) and in the X-space read

x
- < #
<R(x), R(0) >0 const, <R(x), A ” (0)>0 =

==
Consequently, for the field

R(®) = R(X) - <R(X)>,
we have

<RERO)>, -0, <§(x)Au(0) - _:1; . (3.14)

To prove the existence of the field R(x) with the properties
(3.14), it is necessary to propose the nilpotent properties for
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R(x). One representation with such properties 1is given
by

0 r(x)
R(x) =
0 0
[0>
and the degenerate vacuum state (0> = also must be sup-
posed. {0>

4. COVARIANT EQUATIONS OF MOTION
Consider the following invariant bilinear form

I - {d“xl-;_AT(x)c'l(a)A(x) FATWIM] =

i

fd4xi%A”(x)(gwn -3d,9d,) A" (x) + %(R(x)naHAu(x) -

2
A¥ (oo, RG) + Msl_i)a(x)nz R(x) +

+ 2@ 0 + REODWI, L

where G'l(m is obtained from (3.9) with the substitution pigd ,
and J(x) 1is the five-component electromagnetic current of the
matter fields, transformed by the law (3.12). For the matter
fields the standard basic representations are supposed (see
refs. /127

The invariance of (4.1) with respect to the Lorentz and di-
latational transformations is evident. To show the invariance
of (4.1) also with respect to special conformal transformations
consider first the interaction term of the Lagrangian

int

€ AT Ix) =A* (x)j,, (¥ + RED() . (4.2)

The variation of Lint under the infinitesimal special conformal
transformations has the form

9, - 8x8a) 8 + 28 "R, () -

int

—&Ba“R(x)j#(x) aS(JlSa)fml ,

where a is the parameter of special conformal transformations.
Consequently, £, is transformed as in the case of the basic

fields. As the Jacobian of special conformal transformations is
given by



ot |M| = -8(x8a),

the interaction part of (4.1) is invariant with respect to spe-—
cial conformal transformations.

As a consequence of the fact that G_1 (d) is an intertwin-
ning operator of the potential (2.7) and current (3.12) repre-
sentations the kinetic part of (4.1) is also invariant.

Suppose that (4.1) is an invariant action of the nontrivial
conformal invariant model of electrodynamics under consideration,
from which we get the following equations of motion

G"HA® + I =0, (4.3)
In terms of the components A, and R(x) egs. (4.3) read

(8,0 - a#év)A"(x) - 4 00, R®) + j,() =0, (4.4)

2
N(-0) 1200 + Aoaka p® + DX = 0. (4.5)

Equations (4.4) are the Maxwell equations in the presence of
gources (given by the matter current). If it is required that
this current is conserved (0j =0), from (4.4) we get that
the scalar field R(x) satisfies the fourth~order free field
equation

o0®R(x) = 0. (4.6)
With the latter equation, eq. (4.5) becomes
%—n&“A"(x) +Dx = 0. (4.7)

The conformal covariance of eqs. (4.3) or (4.4) and (4.5), that

can be checked directly, is a consequence of the invariance

of the action (4.1). We point out that the parameter ¢ depen-—

ding on the choice of gauge in the propagator of electromagne-

I%(ix(i field (3.6) enters only into eq. (4.5) for the scalar field
To investigate the behaviour of the action (4.1) under the

gauge transformations

Au(x) - Ap_(x) + auci:(x), R(x) -+ R(x) (4.8)

we write down the free field part of the action in an equivalent
(up to the full divergent terms) form
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2
U= refxi-L PYE, +;—B<x)a”au(x) + "—%"c—)n"'(m. (4.9)

where the notation B(x) =oR and F,, =d,A, -d, A, is used.

It is evident that (4.4) coincides with the actlon of a free
electromagnetic field with the gauge fixing term /107 Note that
the equations following from (4.9) when B(x) is considered as
a Lagrange multiplier

i A
a"F,, - 59,B=0,

I A(l-¢) _
d Au(x) + —2—-B(x) =0,

are not conformal covariant.

5. CONFORMAL COVARIANT QUANTIZATION
OF THE ELECTROMAGNETIC FIELD

Quantization of the electromagnetm field will follow the
procedure proposed in ref. where the formalism of Gupta-
Bleuler for the nontrivial conformal invariant models is gene-
ralized. The intrinsic difference from the standard Gupta-
Bleuler formalism is that the Lorentz condition (as expected)
separating the physical space is replaced by eq. (4.7) (as
expected) Notice that eq. (4.7) is conformal invariant, that
is not the case of the Lorentz condition 4 Au’ 0. The condi-
tion (4.7) with D =0 is considered in papers /89/ where it
has been observed that the Lorentz condition is inconsistent
in the presence of strong interactions. Note also that the sub-
sidiary condition (4.7) is different in form in the free case
(D(x) = 0) and in the interaction case (D(x) #0).

For simplicity consider first the free field case, when eq.
(4.7) has the form

M
od A“(x) =0, (5.1)

which is conformal invariant if eq. (4.5) is satisfied. Consider
the following one-particle states

+
@g> = [a*x £ @A 010>+ n@R @101, (5.2)
where A';(x) and R+{x) are positive frequency parts of the cor-—

responding fields, £#(x) and y(x) are arbitrary functions
£, (), n(x) & S(R?), which are transformed by the current rep-

11



resentation (3.12). To ensure the transversality of the physical
states (5.2) and consequently, their gauge invariance, the
following condition is required

"€, @ =0, (5.3)

i.e., f (x) ¢ Dls 1 (see (2.1)). Note that (5.3) is a suffici-
ent condltlon for the separation of states \¢ > with a positive
definite norm. Indeed, from (5.2) we have

<@,10,> = [a'xa*y 1E4@DE W, x-y) +
+EX@OEW, x-y) + n®DEHW , (x-y) + (5.4)
+ 7@V (x-y) 1,

where W'(x-y) are components of the Wightman function (3.7)
in X-space representation. Going to the momentum-space repre-
sentation in (5.4) and substituting (3.7) we have

3 X 2
<00 > = r%rp—l.t.fg(p)(l_ c0s%@) + %_|q(0)|21> 0, (5.4%
il

where cos® =£.p/|€||pl, 0<® <, and it is taken into account
that ImA # 0 and the condition (5.3) holds.

As a consequence of equation (3.10) we get that in the free
case the equations of motion are satisfied as expected on the
average (for the one-particle states), i.e.,

<O|G*1(6)A(x)|¢!> :IO' (5'5)
which in terms of components are written down
<0 39, )4" A 348
| (g,,0~9,0,)4 () ~-50dREI|®>=-0,
<016“DA#(1){®1> =0, (5.7)

Note that the subsidiary condition (5.7) is satisfied not
only for the physical states for which (5.3) is satisfied, but
also for any one-particle states. To find a connection between
the condition (5.3) separating the physical space and eq. (5.7),
recall that the transversal components do not form an invariant
subspace (see (2.1)), i.e., the corresponding transformed com-
ponents depend also on longitudinal components. Using the in-
variance of eq. (5.7) and following paper’®’, we require that

12

Juu—-—-roih L, 9> =0, (5.8)

where x°? = (xP+aPx®)/(1 +2ax +a®x®) is a special conformal
transformation of the coordinates. It is checked that (5.8) is
satisfied if £, € Dfgq} , i.e., the transversality condition
(5.3) is fulfilled.

Notice that the requirement that £ (%) and n(x) are trans-
formed by the currents representation (3.12) results in the
identity

<OlA ()| > = <01A X P](X)>, (5.9)

where the transformation law for states is given by

107> = [a*si£  MALMI0> + x “WRT®I0>1. (5.10)

At the end we point out that the above given procedure of
quantization can be generalxzed to any n-particle states, in-
cluding the interacting case. In the interaction case eq. (4.3)
should be satisfied on the average, i.e.,

<167 AM + IO > =0, (5.11)
U, k=0,1,...)

from which we get the following subsidiary condition separating
the physical states

Aga® " B il D
“’152“9%*"(’”‘”;’ 0, ¢ )

Here j (x) and D(x) are currents of external sources or mat-

ter currents -
A consistent scheme of canonical quantization for the conside

red model and the corresponding nonabelian model will be consi-
dered in the following papers on this subject.
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3alikos P.II.

0 xoHGOPMHON HHBADHAHTHOCTH B KalHOpOBOUHEIX TEOPHAX.
KpanToBas snexTpoguHamMkKa

E2-83-28

B pabore npeanaraercs HeTpHBHANbLHAaA KOHGOPMHO—HMHBApHaHTHAaA
MOJenb KBAHTOBOW 3JIEKTPONHHAMHUKH. (OCHOBHBIM HBIAETCSH npeanono—
KEeHHe, 4YTO 3J/IeKTPOMATHWTHLIT NOTEHIHANl BMeCTe C AOTNOJIHHTEIbHbM
CKallApHLIM nosleM npeobpasyercsa MO HEOCHOBHOMY H, ClleJOBaTeNnsHOo,
HEpPasJIoxMMOMY TpeacTaBieHHln KOHGOPMHOIT rpymmsl. Ilonyyeus HeTpu—
BHallbHbIe (QYHKIHH DacHPOCTPAHEHHA, HHBapHaHTHOE nOelicTBHe H Bhl—
BefdeHHble H3 HEro ypapHeHHA [ABHKeHHMA. PaccMaTPHUBAeTCA KOBapHAHT—
Haa npouenypa KBaHTOBAHWA M NOKA3aHO, YTO HOPMA OINHOYAC THUHBIX
COCTOAHHIT NoJIOXKHTEJIEHA .

Pabora pemonuena B JlaBopaTopuH TeopeTHuYecKOl duanku OMUAH.

Npenpuut 06bEAMHEHRHOrO MHCTWTYTa AfePHuX Mccnegosandi, fly6na 1983

Zaikov R.P, E2-83-28
On Conformal Invariance in Gauge Theories: Quantum

Electrodynamics

In the present paper another nontrivial model of the confor-
mal quantum electrodynamics is proposed. The main hypothesis
is that the electromagnetic potential together with an additio-
nal zero scale dimensional scalar field is transformed by
a nonbasic and, consequently, nondecomposable representation
of the conformal group. There are found nontrivial conformal
covariant two-point functions and an invariant action from
which equations of motion are derived. There is considered
the covariant procedure of quantization and it is shown that
the norm of one-particle physical states is positive definite.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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