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1. INTRODUCTION

The Schwinger source theory (ST)/1£/ deals with symbolic
idealizations of realistic phenomena observed experimentally.
The space-time description is preferred. The basic notion of
the theory is the physical source, an abstraction of any proces-
ses that lead to the creation or absorption (detection) of a
real particle in the localized to a certain extent space-time
region. This region is a carrier of the function descrlblng the
source in the coordinate space. The source function is propor-
tional to the amplitude of the quantum state in question crea-
tion probability.

The ST ideology is well illustrated by the free-particle con-
sideration. If only two sources are in the laboratory, one
emits a particle in some quantum state and the other detects
the same state (destroying the latter), one says about the free
propagation of a ('"physical') particle between two sources
(Fig.1). It is important that the boundary points of particle
evolution are situated on finite, experimentally controlled
distances, since the infinitely remote source cannot be physical-
1y realized. The smooth limit from arbltrary large to infinite
distances, which is in fact assumed 3/ in quantum field theory
(QFT), is absent here. One may say that ST is reduced to QFT
as the sources are shifted to the infinity and thus are no longer
physical sources.

Notice that the primary notion in ST is an interaction act
(the source) through which the free particles in particular are
determined.

ST has some essential advantages over QFT. The ultraviolet
divergences are absent, there are no asymptotic states and rela-
ted difficulties. It is just diagrams that have a physical mean-
ing.

The appearance of a nonphy31ca1 pole 72/ of the total photon
propagator in ST like in QFT 4/ 1ooked strange in such a pro-
sperous picture.

The present paper shows that in ST nonphysical singularities
do not arise provided the basic principles are kept carefully.
Thus, the momentum-transfer region,where the theory is formally
applicable, is expanded. Our consideration is suitable for any
types of Green functions, however, we consider only the photon
propagator.
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A In papers /5/, where the ¢% model is conside-
red, and in ref./el, devoted to the Wess—Zumino
model, the tendency towards conservation of
nonphysical singularities in an exact expression
for total propagators is marked. It is remarkable
that these singularities are the same as in one-
loop leading-logarithms approximation for a po-
larizable operator’® . Thus the investigation
of this approximation acquires an additional
sense.

E In section 2 the calculation of the photon
propagator in the two-particle exchange appro-

Fig. 1 ximation (analogous to the QFT one-loop appro-—
ximation) within the framework of ST is briefly
reproduced and the reasons for divergences to be

absent are discussed. In section 3 an important property of, the
extended source localizability is shown. In section 4 a modifica-
tion of such a source is demonstrated. In section 5 an expres-—
sion without nonphysical singularities, however, being analyti-
cal in the coupling constant a = 1/137 around zero is construc-—

. ted. Finally, in section 6 the comparison with QFT is done and
the reasons for nonphysical singularities are established.

2. PHOTON PROPAGATOR IN ONE-LOOP APPROXIMATION

Sources turn the vacuum of a given quantum state into this
very state and vice versa. Suppose, we have an emission source
E(x) and an absorption source (x)(F1g 1), the source Jj
being localized in time later than . Then the vacuum-persis-
tence probab111ty amplitude <0, }0_ >f:(we mind the probability
of non-emission of‘Photons or the emission with subsequent ab-

sorption) equals ’1

<0+|0_>J = exp(iW), . )
= L PRy ’ »
W= 5 [ dxdx”J (x)Do(x-x)Ju (x, ()
duitay-v0, gt c3k. g8
where J“(x) is real.
4 2
Dx-x) - S0 emln@-x)} (3

@Mt p2-10
Terms in the exponential expansion (1) describe /1’ the exchan-
ge of a various number of free photons. In particular, the one-
photon term includes the contribution:
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where dwp =-d—P§- 1 s P°=+VP,
2n) 2p° :
and (3) is partially integrated bearing in mind the inequality
Xp> Xjp.
The photon field @u(x) is defined in the Lorentz gauge by

Q" = [dax’'Dy(x -x")I" ) (5)
and satisfies the equation
~a% 0w -t . (6)

An analogous treatment is suitable for spinor sources 7(p),
their field ¢ (X) and the propagator Go(x-x") too.

The photon source J7, can produce the e* e~ pair (such a source
is called the extended source) due to the photon-fermion inte-
raction in the following way. The source emits a virtual
(k >4 m2) photon which cannot propagate at macroscopic distan-
ces, but is able to turn into the real pair capable to reach
the remote absorption source I¥ where the reverse process can
take place (Fig.2). Such a mechanism leads to the alterations
in the propagator Dg.

Indeed, the term appears (see page 29 in 2') in the vacuum
amplitude (1)

P fdo, GHO)IMZ)A ), TEATG 7)
(2m)?

Here

%
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Fields GA E are connected, respectively, with sources JA E
through the type (5) correlation. For example,

i - Bany
@E(k) _1-2-.12(1:) ——FJE(k)' (?)

The substitution of expression (9) into (7) gives

2
i 0 aM2l§1!4_li fdo, IL 0T 0. (10



But
ifdo, I% (k) I =

- fdxdx’JK(x) [i fdo, glfz x )y I ™).

‘ -
In brackets we recognize the quantity analogous to (4). We would
remind that here Xg > Xg, k%2 M2,

Joining this term that is bilinear in sources, with the cor- ?

responding term (4) from (1), we get in the momentum represen—
tation

D(p?) = ! ++f” dm® 1M%) 1 , at)
-p2-i0 (em)® M4 -p%.+M2.i0

what is identical with the one-loop approximation in QFT where
the renormalization is performed at the zero point /3.

It should be stressed that there are no ultraviolet diver-
gences in the expression (11). This gratifying circumstance is
a straightforward result from the multiplier M™% in expressions
(10) and (11) that has appeared in the course of transition (9)
from fields to sources. It means that the production of the cor-
responding functions turns out to be well defined. That situa-
tion became possible because of the consideration of sources
situated at finite distances. The refusal of the description
based on such sources immediately leads to the appearance (see
page 10 in ref. 7%/ ) of ultraviolet divergences. 2

It should be stressed that ST is not reduced to the packet
formulation in QFT, as the packet obeys the homogeneous field
equation (cf. (6)) and thus could not be created by any physical
source.

3. LOCALIZABILITY OF EXTENDED SOURCE

ST is based on two principles /1 These are the
space-time uniformity (this principle is expressed
through the Euclidean postulate) and the causality principle.
The latter in ST means the requirement that a limited (locali~
zed) in space-time region of the emission and correspondingly d
absorption may be pointed out for every real particle or a sys-
tem of real particles. The absorption region is localized, of
course, in future with respect to the emission one.

For instance, if the source of a real particle is realized
through a collision of the other particles, the emission region
is the region of intersection of the initial-particle beams.

4

An ete” pair source formed by an extended
~N photon source is localized near the photon
(' ‘, one, as a virtual (k2 > 4 m®) photon cannot
leave the source region. In Fig.2 the locali-
zed sources are encircled by dashes.

Let us consider now the space-time struc-—
ture of the contribution to the propagator
(Fig.2). Two sources interact by exchanging
a real ete” system at arbitrary large distan-
ces while virtual photons are localized in

Y™ a microscopic vicinity of the sources.
( \\ The localizability problem is discussed
7 in ref, (pages 267, 362, 364) and in
S e

ref.’? (page 389) in detail. Here it will
Fig. 2 * be exemplified for free spinless particles.
The field ¢ created by an arbitrary source
distribution K is (A is the causal propagator)

d(X) = [dx"A(x -x)K(X’)

% olpx ) K@) .

@m?* —p?4+mP-i0

Being interested in the virtual-particle contribution we put the
source equal to zero on the mass hyperboloid, that means.the
elimination of this hyperboloid from the integration region.
From the Sokhotski relation

1 =P ! + ird(~pZ2+M2), (12)

p%+M2-i0 -p2+M?

it follows that the elimination of the hyperboloid is.equivalent
to the change of the rule for going around the poles in the
propagator:

1 1

> . (]3)
b M0 -p?+M?

This rule is also confirmed by the following reasoning. The
probability of the virtual time-like particle exchange between
the source and remote detector is obviously equal to zero, |
because only the real particle has the propagation characteris-
tics. Hence it appears’! (cf. (1), (2)), that

|<0_,_|0_>K|2 = exp(~2 ImW) =1,




that is,
Im fdxdx’K(x) A(x ~x’) K(x’) =0.

The last expression combined with (2) leads to the rule (13).
Notice that the presence of real and virtual particles in ST
on equal status is a consequence of the Euclidean postulate /2/,
Let us return to the ekxtended sources. Let the source has
emitted a time-like virtual (k®=MZ>0) photon (No 1) that
rapidly has decayed into a system (No 1) of real particles
(electrons, positrons, and (or) photons). Suppose (see Fig. 3)
that having not yet reached the remote detector, the system No |
has recombined into the virtual photon No 2 rapidly decaying
into the real system No 2. The decay of the photon No 2 is the
source of the real system No 2. However, this source is not lo—
calized elsewhere as the kinematics of the experiment does not
give the possibility of determining where(when)the creation and
decay of the photon No 2 has happened. An additional detector
is necessary to recognize this. An important conclusion is that
the creation and recombination (and in particular reiteration
of this process) of systems of real particles is possible only
in the microscopic vicinity of a localized source or a detector,
i.e., the extended source of a real system must be localizable.
We proceed to construct an expression for such a souyrce. The
rule (13), with M as a spectral mass now, will play a special
role here.

4. MODIFICATION OF THE EXTENDED SOURCE

While calculating the correction (Fig.2) to the propagator,
we used expression (9) for the virtual photon field which enters
into the expression for the fermion-pair source:

@ ® = ph &®) 14w . oW
2. (k) o k7)IT(K)
/, \\ The propagator obtained from the causal one
by the rule (13) is denoted by P.

The inclusion of the processes discussed
at the end of section 3 (Fig.3) leads to
the replacement of (14) by

/ \\ -2

| L] )=

\: / -]
NeY,

Fig.3

P
w0 -0 )", (15)

o b 7
where 4 (kg) is the virtual photon propaga-
tor with arbitrary number of iterations of
the process shown in Fig.3.

P B s
The equation for d may be constructed in the following
way/7/. Remind expression (11), which includes processes shown
in Figures 1 and 2:

+ 00
D(t)y=Dy® + [ ———d—-——-—-D ®)I1E)D) (7). (16)
(2m)2 t - t—- i0

i P
The function I(t) (8) describes the real e'e pair and Dy -
the virtual photons. Consider the equation

t'

M) = Dy + P DE(e) I ). (17)

It corresponds to the procedure of consecutive decays and re-
combinations near the source: the previous decay must be loca-
lized by the rule (13) in order that the subsequent one has

_a physical meaning. Equation (17) meets the case of localiza-

tion of all loops but the last one before the flnal decay.Thus
only one propagator Do(t) is substituted by 3/(t)

The solution of Eq. (17) looks most 51mp1y in the phase
representation (the latter is in accord with the Kallen-Lehmann
representation):

+00 - »
d(t) = Dy(¥) exp[- _;t_ or - d: " ‘ﬁt(t )], (18)
Sty

$(t) = arctan [~ D, (O1(1)].

g

Mention that ap(ﬂ = Red(t). Bearing insmind Egs. (15), (7) we
have constructed the expression for the source of the real sy-
stem which after arbitrary number of decays-recombinations in
the microscopic vicinity of the source J, has flied out at the
macroscopic distance (time).

5. TOTAL PHOTON PROPAGATOR

We have already seen that the sources exchange by the real
ete~ pair, as in Fig.2, and any changes due to the iterations
of decay-recomblnatlons are concentrated in both the special-
type propagators a¥ descrlblng the virtual photons. Let us
come back to expression (16) corresponding to the_substitution
(14) Now we shall replace both the propagators D, (t’) by
d G ), 1i.e., go to the substitution (15):
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‘~t ~ 10

D(t) =Dy (1) + r 9 (t')I(t‘)a (t) (19)

The 3%1') here is given by (18). We have got the representation
for the total photon propagator.

All the reasoning and expressions (18), (19) remain obviously
true if the words "ete— pair" are changed by the words "arbit-
rary real-particle system described by the function I (t) ", The
spectral integration then runs from zero to infinity.

The total propagator (19) expressed through the polarizable
operator, has the Kallen-Lehmann form. It is easy to make sure
that the spectral weight is positive definite. It guarantees
the absence of nonphysical singularities.

In paper ‘8 it is shown that the expression (19) is in accord
with the renormgroup equations. The first term of the asympto-
tical expansion of (19) in the vicinity of point t =—-w= is
found in /9’

O W
Dyt 2 4mE (20)

K = —2— arctan [ lim »T Ml<1i.
”

T 00

The limit exists at least in a finite-loop approximation for
1(t). For one-loop (see (8)):

t—l I »a/3n; k= 2a/3m = 1.5x 10“3

2/

: ¢ »g/3ﬂ(1-+3a/4n), what leaves x practi-

For two 1oops/
cally unchanged
The region of nearly reaching the asymptotics (20) will be

pointed out below.
6. COMPARISON WITH QFT
It is interesting to compare our expre531ons (19), (18) for

the total photon propagator with the QFT /3’ one:

Dy 1)

et -0

where the polarizable operator » renormalized at zero point is
expressed through the function I(t) from (19)

8

—

‘o =t5( & It ") L
t =t - 10 t°2

Consider in particular the one-loop approximation for 7. Then
the expression (21) possesses an unphysical pole oar tpole
~-4mZexp(3n/a). This limits the applicability region of expres-
sion (21) while the representation (19) is formally applicable
at arbitrary t.

Compare two expressions at not very large |t|. While both
are analytic in a at a = 0O, we compare term by term the expan-—
sions of both the representations in powers of a.

A simple but bulky computation demonstrates the identity of
terms of both the series in powers a° a, a® . In power ad and
higher a slight discrepancy smoothly increasing with |t| takes
place.

This situation allows us to conclude that the version sug-
gested of quantum electrodynamics will retain the excellent ag-
reement with low-energy experiments.

The analysis shows /%/ that the expression (19) is in good
agreement with (21) while {t| is increasing from zero. Strong

deviations begin when <t,0)¢ comes nearer. Expression (19) quick-

ly achieves the asymptotics (20) here.
Consider the Dyson equation corresponding to (21):

D(x - %) = Do(x~ %) + [ & 4" Dy(x - &)mi€ - £°)DE "~x ). (22

Let us establish whether the latter contradicts any ST pro-
perties and whether such an equation can be constructed here.
Consider the electromagnetic field produced by a localized sour-
ce J:

Q") = fax’D(x-x") J*x").

Substituting (22) into this expression we obtain
@*@ = fax’D (x ~x) 3@ +
+ [dx’d Dy(x - x)n(x°=£) @ (£).

In the second term the role of the source is played by the com-
bination

fagn(x €)@ €). (23)

. u ; i s h
Even if the field @ (&) is localized in some region, the combi-
nation (23) does not possess any localization. This in particu-
lar means that the virtual (k®>0) photon is able to propagate

9




at arbitrary large distances. The completely nonlocalized source
(23) cannot correspond to any really existing process and thus
breaks the causality principle in ST (see section 3). Hence

the Dyson equation (22) may be constructed in ST only with vio-
lating the source localizability property and simultaneously

the causality principle in the form cited in section 3. The small
value of discrepancies in expressions (19) and (21) at not very
large |t]| is explained simply by a small value of the coupling
constant a.

7. DISCUSSION OF RESULTS

On the example of the construction of the total photon pro-
pagator we have seen that ST is free from internal inconsisten-
cy, i.e., it is self-consistent. The equations for the electro-
dynamics total Green functions are necessarily consistent with
spectral representations for these functions. This statement
which deals both with exact and approximate solutions of such
equations is absolutely not transparent in a standard QFT ap-
proach in electrodynamics.

Since the proposal about a small value of the coupling cons-
tant has been never exploited, the formal applicability region
must be more wide as compared with QFT.

The departure from the Feynman diagram technique, connected
with clearing up the difference in properties and roles of real
and virtual particles, has allowed us to give the manifestly
causal description of intermediate processes in the diagrams
and to observe the basic principles of the theory at every
stage of calculation.

We have come to the requirement that any transitions of real
systems into virtual time-like systems and vice versa must occur
in a microscopic (i.e., experimentally uncontrolled) vicinity
of sources. This property leads to the picture of radiative cor-
rections where remote sources exchange only by the real system
of particles. In the space between sources no such transforma-
tions occur with those real systems (Figs.2,3).

The problem of construction of the approximate expressions
for D(Y) in Kallen-Lehmann form has been solved in papers/10.11’
with the help of the summation rule in the spectral integrand.
The finite value of D/Dyg at t » ~ and the non-analyticity
of Dla) near a = 0 were observed. It is seen that the method
investigated in the present paper is quite different from the
mentioned one. It does not require additional hypotheses and
utilizes only the basic principles of the theory.

It should be mentioned that the total photon propagator
representation without nonphysical pole and simultaneously ana-
lytical in coupling constant is offered for the first time.
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Method of obtaining equations for the total Green functions
of quantum electrodynamics, exact and approximate solutions of
which are free of nonphysical singularities and approximate
ones are analytic in the coupling constant at zero, is develo-
ped on the base of the Schwinger source theory. The correspon-
ding space picture of virtual- and real-process contributions
to the total Green function is given. A comparison with quan-
tum field theory equations is presented.
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