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I. INTRODUCTION

A consistent description of the composite system in QCD re-
quires the usage of the wave function defined in a gauge-inva-
riant way. This follows from the fact that the wave function is
directly connected with such measurable quantities as the - puv
and ¥ 5 3y decay widths. Moreover, the gauge-noninvariant
values do not exist in QCD in the general case because of the
presence of infrared divergences' ',

A meson, that can be considered as a bound state of quark ¢
and antiquark gq interacting with each other via the gluon gauge
field Ay (x) can be described by a gauge—invariant wave func-
tion*

X9

Xp (12%y) = Sp<O| Tha(x))(x )expl ig [dx A )1f|P>, (n
b |

where the spur is calculated by the colour indices, and |P> is
the state vector of a colourless meson with the 4-momentum P .
In the general case the presence of the exponential factor in
(1), which makes the standard Bethe-Salpeter wave function to
be a gauge—invariant object, hinders the derivation of a dyna-
mical equation for the wave function y p(x;,%;).

The choice of the light-cone gauge A, = Ay+ A3 =0 allows one
to leave in the gauge exponent in (1) only transfer variables
that are considered to be small at large momentum transfer Q.
Thus, it is possible to get rid of the exponential factor in (1)

5 =0 = 1
up to the power corrections @™ This method of ruling out the
gauge exponent has been used, for example, in papers '®5.1/

Nowadays it becomes clear that while describing the dynamical

quantities an essential role can be played by the interactions

at large distances, for which such an approximation is irrele-
vant. Besides, the description of the properties of composite
systems,of the form factors,for example,on the basis of the dyna-
mical equations of quantum field theory without any complemen-
tary suppositions like factorization hypothesis, requires the
knowledge of the wave function at small and large distances.

b

5
*The discussion of the role of the operator explig fdx"AP(x)l

X
can be found, for example, in/3/, :

2

In the present paper we shall derive the Bethe-Salpeter equa-
tion for the gauge-invariant wave function (1) without using
any approximations.

The starting point in our consideration will be the analysis
of expression (1) in the Fock gauge™

(x - 2" &) (xixg) = 0, (2)

where Xp is some fixed point in the 4-dimensional space~time.

In contrast with widely used gauges such as the Lorentz gauge
d,A" (x) = 0, the Coulomb d;A' (x)=0, (i =1,2,3) and axial gauge
n,A#(x) = 0, condition (2) has no translation invariance. This
fact will be reflected in an explicit form of the Green function
of the gauge field A, (%), which will contain in the momentum
space (as we shall see below (see (25)) the ordinary term pro-
portional to 8'*)(p + k) and additional terms of a different
structure.

An important feature of the Fock gauge (2) consists in the
pgesence of a simple formula that connects tpe potential
AL(x:x)) with the field strength GVF(Y)/G (see Appendix)

RF _ 1 Voo
u (xixg) = J’du(x - x9) d G, lal(x - xp) + x0]. (3)

Because of the gauge invariance of the field strength Gyu(y),
it follows from (3) that the behaYiour of A, (x,xp)at transla-
tions is given by the formula (U3 G, (y) U, = G, (y - a))

~lq =, =F
U, A,(xixg)U, = A) (x:xp) = A, (z-23: 39 -2). (4)

Let us mention also that the theory does not contain ghosts in
gauge (2).

2. THE WAVE FUNCTION

For simplicity let us consider that quarks have equal masses

and define the following variables: a coordi?atexof the center
]+ &g
> and a relative

coordinate X = X2-Xxj.Let us choose for the contour of integra-
tion in (1) an interval of a straight line that connects the
points X; and x,.In this case the integral in (1) can be re-
presented in the form

of mass of the system of two particles X =

/1-11/

* Gauge (2) has been considered also in refs, where it is

named "fixed point gauge'" or Schwinger gauge
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*2
‘dgﬂﬁz (€. x9) = T(x,X:;2g9) =
L % F
K .
= j%df}x Ap(ﬁx + Xixg).

Y

(5)

The behaviour of expression (5) at translatjons is evidently
given by the formula

1. "
U, I(x, X;25 )U, = I(x,X-1a; Xg —a), (6)

i.e., the translations do not influence the relative coordinate.

Let us take now for a fixed point Xg in (2) a coordinate
of the center of mass of the system Xg= X , i.e., we shall
choose a gauge condition

il
(x - X\ A, (x) =0 (N

F
for the potential ﬁ;;(x) (in what follows we shall omit the
ﬁj#ed point X0 = { from a set of variables of the potential
Al (xi %9 = X) - A} (x). wWhile dividing in (1) the relative mo-
tion and the motion of the system as a whole, we use the transla-
tion operator Uy . Formula (6) allows one to represent the wave
function (1) in the form
-iPX
Xp(xl .x2)=e Xp (x), (8)

where the wave function of the relative motion is
x — ~
Xp (%) = 8p<0| T1a(-5)a(—)expligl(x,0;0)|[P>.
But from (5) with the use of inversion formula (3) for a gauge

(7), we find

;
%

. ] :
1(x,0;0)= [ aB-B-f da .a-x" G, (aBx)x" - 0. (9)

-% 0

It is easy to see that in a more general case, we have also

T(x,X;X) = 0. (10)

Thus, for the wave function xp (%) in the gauge (7), we have
finally

xp(x)=Sp<0|TIq(—%)a(—;)HP>. (1

3. EQUATION FOR THE WAVE FUNCTION

It is obvious that in the Fock gauge due to formulae (8) and
(11) the wave function (1) in the case of absence of an inter-
action satisfies the equation

.9 3
(lm~m)(lm"m)xp(x1lx2)=0' (12)

In the framework of the Fock gauge the Bethe-Salpeter equation
in the ladder approximation is

s ~

lif —mlli=2 - m)yxp (xg,%g) =
x] 612

(13)

= _ig2y“)pD§V(xllxz)y(z)l/xp(xl , 32),

&
where D“V(X| ,X9) is the Green function of the vector field in
the gauge (7).
Passing to a Fourier transform with respect to a relative
corrdinate X = X, —x,,we obtain from (13)
L. A5 = L& a
e [(=P - q)-ml[(xP +d)-mly,(q) =
2 2 P
(14)
X

L (Dp F
= —ig [dxy FD#V(X——-, X+ —3) ¥

2w —iqx —iPX
) € e

xp (%)

In the case of translationally invariant gauges the Green
function Dy, (x,y) depends on the difference of arguments X and
¥,i.e., in equation (14) DFV(X—-g—.X+%)depends on a relative

coordinate X, and the separation of the motion of the system
as a whole from (14) can be done in an evidenF way. In the
translationally noninvariant Fock gauge (2) D,, (x,y) does not
depend on X-y only. Nevertheless, it will be shown in the next

section that Dy, (X —-%,X+—§)does not depend on X in the gauge

(7). Taking into account this fact the Bethe-Salpeter equation
we are looking for will be

1= ~ 15 . =
[(?P_q)—.m”(?l’+ q) m]XP () (15)

Mep L (a = a0y, (@),



wpere the function 5#u(q) is connected with the Green function
DFV in the gauge (7) as follows:

g 4 iqgx _F x X
Du,_,(Q)=fd e DW(*E’?)z

4 F (16)
o e Dy (24 + k,k).
(2#)

From (16) one can easily see that in the case of translationally
invariant conditions D#I,(q) is an ordinary propagator of a
vector particle.

4. GREEN FUNCTION

We shall consider here some different ways of deriving the
Green function of a vector boson in the Fock gauge./¥?f first
of them is a standard method for the gauge theories’'“’.The others
use the specific features of the Fock gauge, namely the presen-
ce of the inversion formula (3).

Let us put for simplicity a fixed point at the origin of the
coordinate system (i.e., we pass to c.m.s.) and consider an Abe-
lian case. The potential in this case obeys the gauge condition

2 Ay (x) = 0, (17)

The generating functional of the free Green function is writ—
ten in the form of the functional integral

Bal 3] = N“‘rDAQ 5 (x" A, (x)) x

(18)
x exp i fdxl -%(aua,,- 3y A ¢ 1, () A* (01
Let us use a representation
150x" 4, (x)] = (DA expl-ifdx. %" A, (x)A(x)]. (19)
Then Z, [J] can be rewritten as
Zo03] = N"IIDA-DAaanfdx{-%Ap (x)+
(20)

B 30) A8 )4 (e 5 A" « x AFKCI
(8 (=07+10) + 3, 8,08 )+ 3, 4% +x AP AGONN

Let us perform the translation
o Q
A,x) - Ap(l)— A”(x);A(x)»,A(x)-A(x), (21)
where Kpand A satisfy the equations

a

[(-32+10)g..+ 3, 318 +J -x. A =0
—0 w S gt Py 1 '

o
(22)
o
x#A =0
in the coordinate space and the equations
2 i oV i a _
[(p” + 10)gm,-p'upv]A + 1y +13-p‘—lA = 10
L]
(23)
d A# )
9Py,
in the momentum space. We shall then have
i Q
Z,[31 = exp!—%fdeF(x)Au(x)l -
(24)

. F
i H v
= expl—?fdxdy.l (x)D,, ()T (9.

Here D:V(x. y) is the Green quction we are looking for.

Thus, to find the function D, (%,y) , one has to solve equa-
tions (22) and (23). After solving them (see Appendix) we find
in the momentum space

(4)
guys (p + k)

F
D (p-k) = -
g pZ4 i0

(4)
bt == g JABE Y (B £ B &
1

pz+i0 aP“

(25)

2 1 00
3 (4) d (4)
+p#a—puv—£dm§ (ap + k) + by Ty [da [485 aBp + D)1,

T?ﬁ first term in the right-hand side of (25) is proportional
to 87 (p+k),like in the case of translationally invariant

gauges.



In the coordinate space we find

2_F 1
(Eﬂ) D’.l.l" (xllxz) L gw -

(2] — x9 )2— iG

1 1 1 1

-0y, X, Jd@ —————— -~ 3y, %, [Af —————— (26)
Mo (ax -12)2-10 ¥ “0 (xl—Bx2)2—i0

i 1 Kl 32
+8,y, 9y, [da[dB E .
0 0 (ax1-Bx2) =-i0

From (26) it is clear that only the first term in (26) de-
pends on _the difference of X; and x5 , while the others as well
as the D, (x1,%x2) function as a whole have a more complicated
structure.

Let us present here another way of deriving the Green function,

which is based on the inversion formula (3). For the gauge (17),
we have

1
Au(x) = faaly® Gpy (9015 ax - (27)

wherefrom we find

¥
—iLD,“,(x 10X2) = <O| TIA, (x))A,(x)}|0> =

(28)

1 1
p o
=[{dalbr dﬂz [yl Yo <0|TleF(y1)Ga,_.(.Vz)” ®

The field strength G, (x) is a gauge invariant value. Thus, the
term <O0|TIG,, (Y])Gov‘(YQ)llU > can be easily calculated in any
suitable gauge like the diagonal gauge.

Let us consider now the third method of derivation of the
Green function Dy, (x,y) and prove the statement of the previ-
4 F aw
ous section that D, (X -%; X . —g-) is independent of X
in the gauge (7). The potential AF (x) in the Fock gauge (7) is
related with the potential A, (x) in the diagonal gauge by

.
AL (x) = Ay (%) - 3,4A (x), (29)

Let us multiply both parts of (29) by (X ~-X). As a result we
get the following equation for the A(X)-function:

(x-x)"3, A(x) = (x - 2)¥A ,(0), (30
whose solution has the form (see Appendix)

1
ACx) = [da(x - X)F Ay lax + (1 -a)X ]+ A, (31)
0
F
Thus, the T-product of the operators Ay in the Fock gauge
(7) can be easily expressed through the known T-product of the
operators A, in the diagonal gauge

—_—

A, (DAY () = A (DA, (y) -

d_ A (0A(Y) - 2 A(x)A,(y) + (32)
2 dxH :

yV

4 —n

—a— A(X)A(y),
' ax‘“ay

where the operator A(X) is connected with the operator A,(x)
according to (31).

The first term in the r.h.s. of (32) is the Green function in
the diagonal gauge. Let us consider in detail the second term in
(32). Simple calculations give

d
A, (x)A(y) =
Ay H Y

a 1 1 1
= d (y -X) =
ay‘{, a2 Plx —ay -(1-a)X]*=i0
€223
! E }'d . +
= — By a v .
42 o (x—ay —(1 ~a)X] -0
1 2alx —ay — (1 —a)X]
¢ 2 da(y - %), <A s
47° 0 x —ay=(1-a)X1° -i0]

)



While substituting (32) and (33) into equation (l4), one
should change the variables

X-X—i,

2

X
+ X+ —.
¥ + >

The expressions that enter (3)

rule

y_x-.ii
2

X —ay - (1 -a)X > —(1+a)—;-

Thus, we see that expression (33)
variable X and after calculating
the form:

(34). F " - )
Thus, the vector field propagator DPV (x._7;; X + -5-) in

i [ Egyp . xy X,
4n®  x? -0 (x*-i0)?

(34)

should change according to the

(35)

becomes independent of the
the integrals over g , it takes

(36)

Analogously the independence of the third and fourth terms
in (32) can be shown in changing % and y in (32) accroding to

equation (14) can be calculated with any value of X ; with the
use of (26) (gauge (7) at X=0) this leads to the following form
of an interaction kernel in equations (14) and (15):

F % -  SEO-N -
D#V(X_E_. X+?)=D“V(x)_
= 4 igx = F
B,, (@) = [d xe D, (x).

X xv
g 2 | 2
.U»V x2 e iO
2 s ) (37)
el |
(38)

From (37) it is clear that the Fock gauge in the coordinate re-
presentation has the same form as qbg Lorentz gauge in the mo-
mentum space, and the form of the D,, (x) function (37) is ana-
logous to that of the Green function in the diagonal gauge in
the momentum representation.
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In our next publications we shall study in more detail equa-
tion (15) with an interaction kernel (37) and (38).

The authors express their gratitude to S.P.Kuleshov, V.A.Mat-
veev, S.N.Nickolaev, A.V.Radyushkin and V.I.Savrin for valuable
discussions. The authors are grateful also to N.V.Maksimenko
who drew our attention to the work of V.A.Fock.

APPENDIX

Here we shall consider the solutions of equations (22) and
(23). By differentiating the first equation, we obtain an equa-
tion for a function

i K( | QJP (x)
i Ax)] = —m — (a.1)
u ax#

X

or

aJu(x)

ax
©

E
[4+x#~3—-§lx(x)= (A.2)

Equations of the (A.2) type appear often in using the Fock gauge.
For example, they appear at deriving an inversion formula (3).
Let us study the equations of such a type in more detail, The
general form of this equation is as follows:

[k + 5, =2~ 11(®) = $(x).

3
¢ dx, (A.3)
From (A.3) it follows
Kk—1 d
a [K + ¥ "(')y—,l]f(}')y=ax=
(A.4)
k=1 d d 1
=i [k + a —1f(ax) = —[a¥t(@x)] = a® $(ax).
da da
From (A.4) we find
1
f(x) = [da a"_lqs(ax) + const, (A.5)
3 :



where

-1
const = fim a‘ dlax )
u-co

Thus, the solution of equation (A.2) has the form

o 1 al,(y)
A(x) - [da.e® —E—_ ;
x { a-a ay“ [y=ax (A.6)

or in the momentum space

o

) =
A) = —ifda.(a)" 2u sheRy -
. I} a a

- -1[4Bp, 1* (8p). (A2

From (23) it follows that a general representation of the funcri-

on A, (P) can be written in the following form:

dA(p)

2 1
A (P)=-——-1[1J Y+ i - f 1.

An equation for the function f(P) can be obtained if we

choose a gauge condition dy A¥(p) = 0 for the potential (A.8).
As a result, we have

M 2
[2+p, 2 11(p) = 2L ,; 9 AR (A.9)
£ ap, apt ap’

where we have taken into account that

o
~ dAp)
K -
p J#(p) +1ip, v =0, (A.10)

(1

The solution of (A.9) according to (A.5) has the form

a'@ 3@
aq!‘ * aqz q=ap

1
f(p) = [da-al (A.11)
0

12

o
By substituting the found values of A(p) and f(p) into
(A.8), we obtain

4

d M 9

fos ;’ 15(P)A, (B) =
“m

1 s 4 _u 1 (4)
_(2_"5;‘[(] pd kJ (p)’-ﬂ-[gyya (p+ k) +
+

(A.12)
v 3 e (4) a 1 4
+ ——p, [dBE (pB + k) — p, —p [ dad (ap + k) -
apt "V A “ op o

2 1 oo

d (4)
= Py =z Py [ da [ABD
dp o 0

(aBp + K1 I (=k).

The expression in figure brackets has the sense of the Green
function of the gauge field in the Fock gauge.
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The gauge condition of Fock (x - K”)r A“(x}‘ 0 is vsed to
derive the Bethe-Salpeter equation for a gauge—invariant wave
function of the two-particle system. The Green function of the
vector field is found in the Fock gauge.
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