nubenuuennuﬁ

- .‘ HHCTHTYT
hfxzn ' AAEPHBIX

| L, MCCABAOBANNA
\~ AYGHA

YO‘/9/£3 - %«/B

E2-83-253

I.V;Barashenkov »

STABILITY PROPERTIES OF SOLUTIONS
TO NONLINEAR MODELS POSSESSING

A SIGN-UNDEFINED METRIC
Submitted to "Acta Physica Austriaca"

1983

N L T e e e o e e S S W =
5



1. INTRODUCTION

In the last decade there was a rapidly growing interest to
the nonlinear systems with noncompact global invariance groups.
Noncompactness presents a number of attractive opportunities,
for instance, extension of the set of permlsslble boundary con-
ditions and consequent17 spectrum of solutions’! /.Multlcompo—
nent magnetic systems’ ,nonlinear optlcs/3/,stat10nary axi-
symmetric gravitation .supersymmetry"/.and extended super-
gravity 6/ is the list of fields, though rather incomplete one,
where noncompact models find their active application.

As in any nonlinear quantum theory, stability of the rele-
vant classical solutions plays an important role for the class
of models under consideration. In this note we analyze stabili-
ty properties for systems of more general type, namely, for
systems possessing sign-undefined metric of isotopic space
(speaking otherwise, for those with sign-undefined kinetic
term). The two models considered here are Lorentz-and Galli-
lean—invariant, respectively.

A traditional way of ‘stability investigation consists in
consideration of the appropriate energy functional in the vici-
nity of the given solution. As stated by Dirichlet's theorem,
the stability is immediate if the solution appears toc realize
a local energy minimum. On the other hand, minimality is only
a sufficient but by no means necessary condition for stability.
The problem of inversion of Dirichlet”s theorem is not solved
completely even in the case of systems with finite degrees
of freedom 7/‘There are several well-known examples from classi-
cal mechanics which in spite of the absence of the energy mini-
mum demonstrate some other stabilization mechanlsm, for in-
stance, the gyroscopical one.

It turns out that similar situation exists in the theory of
sign—-undefined metric models. In the present note we show that
an arbitrary solution of the corresponding evolution. equa-
tions is not a local minimum of the energy. Moreover, it ap-
pears impossible to minimize the energy even conditionally,i.e.,
by imposing any number of physically reasonable integral con-
straints on trial perturbations., Dirichlet”s theorem is, there-
fore, inapplicable. However, examining the equations of motion
linearized with respect to the small fluctuation, we find that
models from the said class can possess stable solutions. In the
case of systems with the indefinite klnetlc term, the stability
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. criterion, ensuing from that examination, differs essentially
from the minimality condition whereas for positive metrics/8/

they coincide (in the absence of velocity-dependent, gyroscopic
forces).

In conclusion we remark that the above assertions on the
nonexistence of the minima do not refer to systems with non-
linearly realized internal symmetry group (o -models, for in-
stance). In the latter case the difficulty may be avoided by
the construction of field-dependent positive metrics /6/,

2, CRITICAL POINTS OF ENERGY

We study two multicomponent field models in D spatial di-
mensions. The first one is Lorentz-invariant with lagrangian

. g .
£-fa xigvob, -V ¥ Vo - U . $) (L)

and the second is Gallilean-invariant with lagrangian

D = P
£-a xi4l1g%y08, -1 81-Ve 1 Vo- U, #)1, (16)

where ¢ is a 2olumn-vector formed of n complex functions
darA=1,..n;¢is a Hermitian-conjugate row. Yo 1is the metric
tensor in isotopic space,

Yo = diag{ +1,...,+1(p times); -1,..., -1 ( q times)},

P+q=n , and y= la/ax,.....a/axn! Nonlinearity U must assure
a non-vanishing interaction between the first set of components
¢,  where A=1,..,p and the second one, where A=p+1,...,n.

The aim of this restriction will become clear later. The Euler-
Lagrange equations for the ¢-field take the form

v9(9%/0t® -9 )p+0U/38* -0, (2L)
y (-i0/9t -~ghHe+9u/ae’ -0, (26)

where the definition 9/d¢* stands for the colummn constructed

from n operators d/d¢*% . The related energy constants of mo-
tion are 2

D o e
Ep=fd xig)y ¢, + ye'y, Ve+Ul,
: e .
Eg=fd x{Ve'y,Vo+Ul.

In order to minimize the energy by some solution ¢(X 1) of evo-
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lution equations (2), the nearby ¢(x,t) solutions shozuld'
ensure the condition 8E=0 and positive definiteness of 8°E.
The latter functional looks like

2 D = = 1.2

SE =2/a xi8¢y, 8¢, + Vog'y, Vo 45570}, (3L)
2 - 2

5B, = 2dex{V8¢+y0V 8¢ +%.s ul, (36)

where we have put 86 (x,t)=¢ (x,t) - ¢ (x,¢).

Since the difference E[&(x,t)]-E[ ¢(x,1t)] is an integral
of motion, it is not necessary to analyse the sign of it for
arbitrary time-dependent perturbations &8¢ (x,t), and we can
only restrict ourselves to the use of variable initial values

Sp(x,0) =08y (x); 8¢t(x, 0) =55

for the case of equation (2L), which is of the second order
with respect to time, and

3¢ (x,0)=8 y(x) only

for the case . of the first order equation (2G). On the other
hand, making the above restriction we are permitted not to care
for the approximation

El¢(x, 1) 1 -El$(x, 1] = 1/25°E

to be satisfied at any instant of time. It is quite sufficient
if this approximation holds at the initial moment only.

Since we are going to prove the absence of extrema, we have
the right to confine ourselves to certain choice of &y and dn.
So, hav1ngz chosen &n(x)=0 in eq. (3L), one finds that §° EL =
= 82 Eg = . Keeping this equality in mind, hereafter we shall
not make any distinctions between the two cases. Let us impose
the following boundary conditions on the remained piecewise-
smooth vector-functions &¢:

(-0  as |x]|-+w,
and consider them small with respect to the metric of '(L2)2° =
n
= I @ L (RD) space of 2n-component vectors £
B .
+
P €= [ s e = 2. )

¢ ,
In eq. (4) & =1{8y*,5¢ ], and & stands for the Hermitian-con-
jugate column.




It is not difficult to check that the functiomal (3) is not
bounded from below. Indeed, taking in the equation for 8°E,

8’E=2/a"x1V 8y ") V oy + 172 % U} (3)

the first p components of trial perturbation to be zero, we
obtain the first term ("deformation energy contribution") as

n |y Ve N e ‘ -
-2 Afw;d x VoyrVaoy . )

The modulus of this negative expression can be made arbitrarily
large even if eq. (4) is fulfilled, whereas the last term in
(3), which depends quadratically on &/, is bounded thanks to
constraint (4). Hence, the second variation can be lowered below
zero, and the solution ¢ does not minimize the energy in (L2)2“
space. In this narrow sense one may call it "energetically un-
stable" with respect to the metric p.

What additional restrictions should the trial functions obey
in order to make 52E positive definite? We can try to bound
the "deformation energy" introduced by &y, making the nega-
tive contributj.on’ (5) limited. Let us define the metric p,

n
of Sobolev ’spd?:e (Wzl)zn = Ag l@w;(RD) and require the va-
L

riations to be small now with respect to this metric:

P21 = falxe T @REG = €%, (6)
where ﬁ is

e 9o ' @

a being diagonal 2nx2n matrix with positive elements. Further
we may impose some integral constraints on examined deviations
rather than considering only unconditional "energetic stability",
as we did before. For example, it is reasonable to demand the
excited solution to have the same values of conserved quanti-
ties as the initial solution. The said integrals are charges

in the case of Lorentz-invariant system’/9%/ and partial numbers
of particles in the case of Gallilean-invariant model/10/, -

3. INTEGRAL CONSTRAINTS

Suppose, the equations (2) are covariant under the action
of s-parameter internal symmetry group, and, herice, possess
8 integrals of moti?n F; =F,; [¢,¢, | . In accordance with the
Q -stability idea’%, we require any ! of them to be unper-
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turbed, i.e., :
F,l6x,0: ¢, x0l=F,[¢6@x,t); ¢, (x,t)]= _
=F [¢(x0+84(x,t); ¢, (x,0)+38¢,(x,1)]= @)
=F, [¢(x, 00+ 3y (); ¢, x, 0)].

By considering the deviations infinitely small with respect to
p or p, norms, we are led to a simpler form for eq. (8):

¥, 1€, £ el Hel, i, ; (9)
where % are linear in £ and ¢ functionals. Note, that these

functionals also depend on ¢(x,0) and ¢, (x, 0).
‘The equation (3) may conveniently be rewritten as

5%E - falxétne, (10)
where Jacobi operator H is
-2 : i
H="0°yov+ v, i (1])
and
a%u a’u
dptag LIp* gt
+ : : .
byl (12)
il a*u
e PR

Here o, =diag{1,1] and 2nx2n matrix oyy, is merely diagly,,y,l
¢t -and ¢-dependent matrix 92u/dyd8 1is defined as the direct
product of the colomm 9/3x and the row dU/dB.

Let us suppose, the perturbation ¢ is descri]laed with the
help of the metric p. The stationary points of 8°E under the
condition (4) then may be found by solving Sturm-Liouville .prob-
lem,

Hy () = Ay (). (13)

Since the above operator contains the sign-undefined term
-ogyoy> its continuous spectrum includes npt only the positive
el i lo/ hall see

semiaxis of A, but the negative one as well -As we s

below, it is just this very fact that does not allow t:,he energy
to possess any minima. On the quantu.x%}?vel it makes impossible
the construction of the Bethe ansatz .

5




1f the condition (4) is replaced by (6), the generalized
Sturm-Liouville problem emerges as

: : (14)

-

Hy(®) =ARy(x).

Given the nonlinearity U, let us confine ourselves to the type
of boundary conditions imposed on ¢ .under which the V-matrix
asymptotical value is independent of direction of the vector X:

VE+V® as [x|+w, x € RD

Let, furthermore, V° be diagonal (this holds, for example, for
the case of the vanishing conditions). Hence, as [X|+»~ we
are led to the following 2n decoupled equations with common A: .

-2 -
-2 -2
(+v + Vi, )9, ®=A(-v + a,,)y, (X)), 2p+1<Ac2n. (16)

The last 29 equations provide the existence of the negative
branch of continuous spectrum, which, however, does not gene-
rally coincide with the whole semiaxis. Nevertheless, if the
eq. (16) is regtesentedin the form

-2 . . |
VY,@=a, A-ve alyasnly, .

the existence of the non-vanishing vicinity of A=-1which is
entirelly filled by the continuous spectrum, becomes obvious.

1 vFtieel vet2P+2 | _y"<0, we can shrink that vici-
nity to a single point through the special choice of a =
=agp,2p = 'vSn.2n :
discrete negative eigenvalues converging to A =-1 would emerge.
For the nondiagonal Vg the negative branch of the continuous
spectrum still remains, but the high coupling of eqs. (15)-(16)
complicates the proof. :

When the infinite number of eigenvalues lying below zero is
present, it is always possible to construct the trial function,
which gives the functional (10) a negative value and satisfies
eq. (9) at the same time.

To start with, let us form 't + 1) vectors in the following
way ' ' :

fi(x)~=- f‘d)\xi()«)y)‘(x). i=lee,r+1
Q

Here @ is the above-mentioned continuous spectrum domain,
Qc{~=,0);y, (x) is the n-component eigenfunction of the prob-
lem (11) (or (12)) and x;(A) €Ly(Q). Let f be defined as the
linear combination

6
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In this case the infinite seq&gﬁég%k 3

r+1
t@ = % Cf®= [dxN)y) @. (17)
1= ﬂ

Owing to the linearity of J¥,. the requirement
3"k[£]=0, k=t ...,1

is equivalent to the following set of equations

r+1
s 3 qki(?.i =0, k=1....r;

i=1

where q.;=%, [f; 1. We can find (r+1) unknown quantities C; from
these r equations and substitute them in eq. (15). The vector-
column f obtained in this way satisfies all the r constraints
(9) simultaneously. The value of 82E is given by the formula

3’k -
D+ Pl - D, _+ (18)
=2fd xf. Yo Hf=2 fdA’x (M)x (M%) fd Xy, (x)yOHyA,(x).
0
After y, (x) assumed to be orthonormalized, the last integral
in (18) becomes equal to

dexy; (X)A’ ﬁ&,(x) =A8(A -A'),‘

which finally yields 82E=2 [dA|x(A)]2A < 0, since QC(-w,0).
Thus, the sign-undefined. metric models have no any even-condi-
tional energy minima. b

Note that our conclusion has no relation té the Lorentz vec-
tors, though in nonlinear models of ‘this type/!2/ the kinetic
term is sign-undefined as well. The invariant local constraint
) @ -0 is usually imposed on the field @% which can lead to
the positive definiteness of §2E,

Suppose now that in lagrangian £ the interaction between
the set of components with A <P and that with A z£+1 is equi-
valent to zero and £ can be expressed as the sum £=£; (¢l,...¢p)+
+ 22(¢P+1 seee b, ). This means that the same gquations of motion
might have been obtained from the lagrangian £-£, - £,. There-
fore, the stability may be established through the investigation
of the functional E =E,;=E, which now possesses positive metric.

4, CRITERION FOR STABILITY

It is known that a solution to evolution equation is stable
or not,greatly depends on the applied definition of stability.
As a rule, the following definition is used. For any ¢ >0 it



is possible to find such & >0, that if initial data are given
to be {¢(x,0)+ 54(x, 0) , ¢,(x,0) + 8¢,(x, 0)} (8¢ and 8¢,

being small in terms of some norm p;,i.e.,
p[86(x,0), 84, (x,0] <8),

then the subsequent time evolution keeps the solution near the
unperturbed configuration, i.e.,

: P2[8¢(x' t)v 8¢‘ (x' t)] <é€, t G’(O'“‘)- -
From the physical point of view, however, such a definition is
unsuitable. Indeed, consider some localized (particle-like)
solution. It is just this very type of solutions that is mostly
applicable in physics. We can increase the velocity of its pro-
pagation by a small quantity,

*

V-V = v+dv

at the initial moment, and compare the two configurations after
a certain time t. Then if the interval t is greater than the
ratio

(the chara,teristié size of the "particle')/dv,

the difference will not be small anymore. In that way,in spite
of that the shape of the solution is completely preserved, the
above-mentioned definition classifies it as unstable. To remove
such a discrepancy, we shall have to modify- it.

By stability of particle-like solution we shall mean the
stability of its shape. In other words, we demand that the equa-
tions of motion, when linearized about the analysed configura-
tion, do not admit exponential growth in time. Note, that per-
turbations growing slower than exponentially with time (say,
polynomially) do not indicate 1nstab111ty. They simply transform
one localized solution into another but in no way destroy them’13/

Now let us derive .the. .stablhty criterion for sign-undefi-
ned metric systems., As we shall see, it differs essentlally from
the minimal energy condition. We limit ourselves to static solu-
tions ¢(x) and to the solutions reducible to them via the refe-
rence frame transformations (through Lorentz and Gallilean boosts,
respectively).

Let us begin with relativistically invariant system (2L).

The associated linearized equation takes the form

-"}'of" = Hfo , (19)

where ¢ = {66%(x,1),54(x, 1)} and H is given by (11) and (12).
With a monochromatic ansatz

£ =y explwt].
eq. (19) may be wriften as
Yo HY®) =2y(x), : (20)

where A =-w?.The existence of negative eigenvalues A of the
operator ygH is closely connected with instability. This ope-
rator differs from the one in (13) (minimality condition) by
the factor y( - Therefore, the continuous spectrum of y,H,

-2
Yofl==0p g + vV
contains the positive semiaxis only. Let, for instance,

V(x)—— V° a8 [x{+e, VOo=diag{Vy}. :
Along with this, if we impose (ggyg) ,VR 2 0 for any A=1,..,2n,
then there won“t be even a limited domain of continuous spect-
rum below zero; only a finite number of discrete eigenvalues

may be located there. In such a situation the complete absence

of the negative discrete eigenvalues would evidently mean stabi-
lity. On the other hand, if they do exist, the possibility of
solution ¢(x) to be conditionally stable should be explored.

In the case of nonstatic ¢ the H operator in eq. (19)
is again of the form (11), though the "potential"” Vv is no longer
given by formula (12). The latter observation cannot, however,
prevent us from expanding our conclusions to arbitrary time-
dependent fields.

Investlgatlon of the nonrelativistic model (1G) may be car-
ried out in the same way. Since the related equations of mo-
tion (2G) are of the first order with respect to time, the emer-
ging eigenvalue problem is a symplectic one/8/, By squaring the
involved operator, one easily reduces that problem to a familiar
Sturm-Liouville equation for some new differential operator,
which now is of the fourth spatial order. The possibility of
stable solutions to exist ensues from the arguments completely
analogous to the ones presented above.

5. CONCLUSION

Solving the small fluctuation equations one is led to the
eigenvalue problem for certain differential operator. A similar
problem arises in the energy functional minimization. Both ope-
rators possess at least the same spectrum structure (continuous
spectrum occupies the positive semiaxis), provided the metric
is positive definite. They merely coincide if, in addition to




that, we restrict ourselves to the case of static fields, velo-
city-dependent forces being "switched off".

Introduction of the sign-undefined metric results in the
multiplication of the operator, connected with the second varia-
tion of energy by the sign-mixing matrix y*. As a consequence of
this,the spectrum structures become essentially different and Di-
richlet”s theorem turns out to be inapplicable. The energy in
a model with indefinite kinetic term cannot have even a condi-
tional minimum, but contrary to the untuitively appealing opi-
nion on the equivalence of stability and minimality, classical
solutions are not forbidden to be stable.
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CBoiicTBa YCTOMYHBOCTH DelleHMIl A KjlacCa HeJHHeHHHX Mopeneii
CO SHaKOHeolpeZelleHHOH MeTPHKOH

; PaccMaTpuBawTCs MHOTOKOMIIOHEHTHBIE HEHHElHbie MOHESIH COo
3HaKOHeoNpenesleHHONH METPHKOH H3OTONMMYECKOI'o NpOCTpaHCTBAa,

B YAaCTHOCTH C HEKOMIAKTHOIN Ipynmnoit BHyTpeHHel cummeTpuu. Ilo~
KasaHo, 4YTO JHEeprHs He MOXeT HMEThb [Oaxe YCJIIOBHOI'O JIOKAIBHOT'O
MUHHMyMa., [JokashiBaeTCA, YTO HECMOTpPsS Ha 3TO BOSMOXHO CymMecT-
BOBaHHE CTAaOGHNbHBIX YaCTHILENOXOOHBIX pemeHHH COOTBeTCTBYOIHMX
9BOJIOHHOHHKIX YpPaBHEHHH ,

.

PaGora BhmonHeHa B JlaBopaTOpPHH BHYHCIHTENBHOH TEeXHHKH
¥ aBToMaTusauuu OHAH.
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We investigate multicomponent field systems possessing
a sign-undefined internal space metric, in particular models
with a noncompact global invariance group. It is shown that
the energy cannot have even a conditional relative minimum.
We demonstrate, nevertheless, that the corresponding nonlinear
equations of motion are permitted to possess stable particle-
like solutions. 5
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