$2905 / 83$

объединениыя институт ядериых исследоваиии аубиа

E2-83-177
M.K.Volkov, A.A.Osipov
$\boldsymbol{\pi} \boldsymbol{\pi}$-SCATTERING LENGTHS

In papers $/ 1.4 /$ the model based on four-quark interactions has been presented which permits one to obtain the well-known phenomenological Lagrangians of the low energy meson interactions. All effective coupling constants are connected with one another and are expressed through the constants of two decays $\rho \rightarrow 2 \pi(g \rho)$ and $\pi \rightarrow \mu \bar{\nu}\left(F_{\pi}\right)$. It was assumed that all mesons are two-quark systems and may interact with one another through quark loops only. One may obtain simple relations between meson coupling constants if one considers only the divergent quark loops and neglects their finite parts.

In the present paper we take into account the finite parts of quark loops, called q^{2}-terms. These terms are necessary for describing electromagnetic radii of mesons, scattering lengths, slope parameters of different processes, etc. Efforts have been made to take account of these terms of the quark loops ${ }^{\mathbf{1 5}, 8 /}$. Here we follow these papers.

The relations between meson coupling constants obtained in ${ }^{1.4 /}$ are approximate, because we neglect the masses of external mesons. Here we assume that these relations do not change essentially when we take into account the q^{2}-terms*. All the
 logarithmically divergent quark loops. Therefore, the next step of the quark loop expansion needed for obtaining the q^{2}-terms leads to convergent integrals, and the coefficients of these terms are determined unambiguously. The problem is to redetermine the constant terms after the q^{2}-terms are picked out from divergent integrals. We shall proceed from the natural requirement that on the mass shell the form factor of the corresponding process should be equal to its physical constant. For example, the $\rho \rightarrow 2 \pi$ decay form factor is

$$
\begin{equation*}
\mathrm{T}_{\rho \rightarrow 2 \pi}=-\mathrm{ig} \rho_{\rho}\left(1+\frac{\mathrm{q}^{2}-\mathrm{m}_{\rho}^{2}+\mathrm{p}_{1}^{2}-\mathrm{m}_{\pi}^{2}+\mathrm{p}_{\mathrm{j}}^{2}-\mathrm{m}_{\pi}^{\mathrm{R}}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right) \mathrm{p}_{1}^{\nu} \epsilon_{i j k} \pi_{\pi}^{1_{\pi} j_{\rho} \mathrm{k}}, \tag{1}
\end{equation*}
$$

where q, p_{i}, p_{j} are the moments of the ρ-meson and pions, respectively, m_{ρ} and m_{π} are their masses, $F_{\pi}=95 \mathrm{MeV}$ is the pion decay constant and g_{ρ} is the ρ-decay constant $\left(\frac{\mathbf{g}_{\rho}^{2}}{4 \pi} \approx 3\right)$.

[^0]

The $\epsilon \rightarrow 2 \pi$ decay form factor is equal to

$$
\begin{equation*}
\mathrm{T}_{\epsilon \rightarrow 2 \pi}=2 \mathrm{~m}_{\mathrm{q}} \mathrm{~g}\left\{1-\frac{\mathrm{q}^{2}-\mathrm{m}_{\epsilon}^{2}-3\left(\mathrm{p}_{1}^{2}-\mathrm{m}_{n}^{2}+\mathrm{p}_{2}^{2}-\mathrm{m}_{\pi}^{2}\right)}{16 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right\} \epsilon \vec{\pi}^{2} \tag{2}
\end{equation*}
$$

where q, p_{1}, p_{2} are the moments of the ϵ-meson and pions, m_{q} is the quark mass and $g \approx \sqrt{2 \pi}=m_{q} / F_{\pi}$ is the strong constant of pion-pion interactions $\left(\mathbf{g}_{\rho}=\sqrt[q^{6}]{\mathbf{g}}\right)$.

The form factors (1) and (2) are easily obtained from the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\overline{\mathrm{q}}\left[\mathrm{i} \hat{\partial}-\mathrm{m}_{\mathrm{q}}+\mathrm{g}\left(\epsilon+\mathrm{i} \gamma_{5} \vec{\tau} \vec{\pi}\right)+\frac{\mathrm{g}_{\rho}}{2} \vec{\tau} \vec{\rho}\right] \mathrm{q} \tag{3}
\end{equation*}
$$

by using the method described in paper ${ }^{/ 3 /}$.
To describe the πr-scattering, it is necessary to take into account the quark box diagrams. Their contribution to the $\pi \pi-$ scattering amplitude is equal to*

$$
\begin{equation*}
\mathrm{T}_{4 \pi}=-\frac{\mathrm{g}^{2}}{2}\left[1-\frac{\mathrm{s}-\mathrm{c}}{\left(2 \pi \mathrm{~F}_{\pi}\right)^{2}}\right]\left(\vec{\pi}^{2}\right)^{2} \tag{4}
\end{equation*}
$$

Here $s=\left(p_{1}+p_{2}\right)^{2}$, where p_{1} and p_{2} are the moments of initial pions. c is the indefinite parameter. For the form factors (1) and (?) tho camo naramotorc wore fived hy the remuiromont thot on the mass shell the form factors equal the corresponding decay constants. Our definition of the c parameter for $T_{4 \pi}$ is based on the correspondence of our amplitude of the $\pi \pi-s c a t t e r i n g$ and the low-energy current algebra theorems.

All diagrams which give their contribution to the $\pi \pi$ amplitude are plotted in the figure. They lead to the expression

$$
\begin{equation*}
\mathscr{Q}(s, t, u)=-4 g^{2}\left\{1-\frac{s-c}{\left(2 \pi F_{\pi}\right)^{2}}+\frac{4 m_{q}^{2}}{s-m_{\epsilon}^{2}}\left[1-\frac{s-m_{\varepsilon}^{2}}{\left(4 \pi F_{\pi}\right)^{2}}\right]^{2}\right\}+ \tag{5}
\end{equation*}
$$

$+\mathrm{g}_{\rho}^{2}\left\{\frac{\mathrm{~s}-\mathrm{u}}{\mathrm{m}_{\rho}^{2}-\mathrm{t}}\left(1+\frac{\mathrm{t}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}+\frac{\mathrm{s}-\mathrm{t}}{\mathrm{m}_{\rho}^{2}-\mathrm{u}}\left(1+\frac{\mathrm{u}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}\right\}$.

[^1]

Figure

If we now require that the constant part of the amplitude (5) should correspond to the "improved" Weinberg formula $(G)(s)=\frac{s-m_{\pi}^{2 / 9 /}}{F_{\pi}^{2}}$,
we obtain the following value of c^{*}. we obtain the following value of c^{*} :

$$
\begin{align*}
& c=2 \prod_{q}^{2}\left(1+\frac{m_{\epsilon}^{2}}{32 \pi^{2} F_{\pi}^{2}}\right)=6,4 m_{\pi}^{2} \tag{6}\\
& \left(m_{t}^{2}=m_{\pi}^{2}+4 m_{i}^{2}\right) .
\end{align*}
$$

The amplitude $Q(s, t, u)$ can now be written in the form

$$
\begin{align*}
& \mathcal{Q}^{(}(\mathrm{s}, \mathrm{t}, \mathrm{u})=-\frac{\mathrm{m}_{\pi}^{2}}{\mathrm{~F}_{\pi}^{2}}+4 \mathrm{~g}^{2}\left[\frac{4 \mathrm{~m}_{\mathrm{q}}^{2}}{\mathrm{~m}_{\epsilon}^{2}\left(\mathrm{~m}_{\epsilon}^{2}-\mathrm{s}\right)}+\frac{1-\left(\frac{\mathrm{m}_{\mathrm{q}}}{4 \pi \mathrm{~F}_{\pi}}\right)^{2}}{\left(2 \pi \mathrm{~F}_{\pi}\right)^{2}}\right] \mathrm{s}+ \tag{7}\\
& +\mathrm{g}_{\rho}^{2}\left\{\frac{\mathrm{~s}-\mathrm{u}}{\mathrm{~m}_{\rho}^{2}-\mathrm{t}}\left(1+\frac{\mathrm{t}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}+\frac{\mathrm{s}-\mathrm{t}}{\mathrm{~m}_{\rho}^{2}-\mathrm{u}}\left(1+\frac{\mathrm{u}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}\right\}
\end{align*}
$$

- *The "improved" Weinberg formula is automatically obtained from (5), if we neglect the ρ-meson contributions and the $q^{2}-$ terms in the quark loops (i.e. the combinations $\frac{q^{2}-m_{i}^{2}}{a F_{\pi}^{2}}$ in (5))

$$
\mathbb{Q}(\mathrm{s}, \mathrm{t}, \mathrm{u})=-4 \mathrm{~g}^{2}\left(1+\frac{4 \mathrm{~m}_{\mathrm{q}}^{2}}{\mathrm{~s}-\mathrm{m}_{\epsilon}^{2}}\right)=\frac{\mathrm{s}-\mathrm{m}_{\pi}^{2}}{\mathrm{~F}_{\pi}^{2}} .
$$

It is easy to see that the first term in the square bracket of (7) is very close to the Weinberg coefficient for $s \sim 1 / F \underset{\pi}{2}$. The second term is the result of the inclusion of the box diagram q^{2}-terms. It changes the coefficient of s, and as a result, the a_{0}^{0}-scattering length. On the other hand, the choice of the form factors in the form (1) and (2)leads to a very small influence of ρ-meson diagrams on the s-wave scattering lengths, which are in good agreement with the physical requirements.

Before the calculation of the scattering lengths, we should discuss the Weinberg relation

$$
\begin{equation*}
2 \mathrm{a}_{0}^{0}-5 \mathrm{a}_{0}^{2}=\frac{3 \mathrm{~m}_{\pi}}{4 \pi \mathrm{~F}_{\pi}^{2}} \tag{8}
\end{equation*}
$$

In our case we obtain a similar relation

$$
2 \mathrm{a}_{0}^{0}-5 \mathrm{a}_{0}^{2}=\frac{12 \mathrm{~g}^{2} \mathrm{~m}_{\mathrm{q}}^{2} \mathrm{~m}_{\pi}}{\pi \mathrm{m}_{\epsilon}^{2}\left(\mathrm{~m}_{\epsilon}^{2}-4 \mathrm{~m}_{\pi}^{2}\right)}+\frac{3 \mathrm{~g}^{2} \mathrm{~m}_{\pi}}{\pi\left(2 \pi \mathrm{~F}_{\pi}\right)^{2}}\left(1-\frac{\mathrm{m}_{\mathrm{q}}^{2}}{\left(4 \pi \mathrm{~F}_{\pi}\right)^{2}}\right)+\frac{9 \mathrm{~g}_{\rho}^{2} \mathrm{~m}_{\pi}}{4 \pi \mathrm{~m}_{\rho}^{2}}\left(1-\frac{\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}
$$

It is easy to see that here the first term corresponds to the right-hand side of (8)*. The second term gives a 50% correction to the first one. It is connected with the q^{2}-terms of the box diagrams. The third term appears as a result of the ρ-meson diagrams and its vaiue is smaii in comparison wiil vilita ienus.

Let us now calculate the $\pi \pi$-scattering lengths. For the amlitude (7) in different channels we have

$$
\begin{align*}
& Q^{0}=-5 \frac{\mathrm{~m}_{\pi}^{2}}{\mathrm{~F}_{\pi}^{2}}+8 \mathrm{~g}^{2}\left[\frac{\mathrm{~s}+2 \mathrm{~m}_{\pi}^{2}}{\left(2 \pi \mathrm{~F}_{\pi}^{2}\right)^{2}}\left(1-\frac{\mathrm{m}_{\mathrm{q}}^{2}}{\left(4 \pi \mathrm{~F}_{\pi}\right)^{2}}\right)+\right. \\
& \left.+2 \frac{\mathrm{~m}_{\mathrm{q}}^{2}}{\mathrm{~m}_{\epsilon}^{2}}\left(\frac{3 \mathrm{~s}}{\mathrm{~m}_{\epsilon}^{2}-\mathrm{s}}+\frac{\mathrm{t}}{\mathrm{~m}_{\epsilon}^{2}-\mathrm{t}}+\frac{\mathrm{u}}{\mathrm{~m}_{\epsilon}^{2}-\mathrm{u}}\right)\right]+ \\
& +2 \mathrm{~g}_{\rho}^{2}\left[\frac{\mathrm{~s}-\mathrm{u}}{\mathrm{~m}_{\rho}^{2}-\mathrm{t}}\left(1+\frac{\mathrm{t}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}+\frac{\mathrm{s}-\mathrm{t}}{\mathrm{~m}_{\rho}^{2}-\mathrm{u}}\left(1+\frac{\mathrm{u}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}\right] \tag{10a}
\end{align*}
$$

$$
\begin{align*}
& \mathbb{Q}^{1}=4 \mathrm{~g}^{2}\left[\frac{\mathrm{t}-\mathrm{u}}{\left(2 \pi \mathrm{~F}_{\pi}\right)^{2}}\left(\mathrm{l}-\frac{\mathrm{m}_{\mathrm{q}}^{2}}{\left(4 \pi \mathrm{~F}_{\pi}\right)^{2}}\right)+4 \frac{\mathrm{~m}_{\mathrm{q}}^{2}}{\mathrm{~m}_{\epsilon}^{2}}\left(\frac{\mathrm{t}}{\mathrm{~m}_{\epsilon}^{2}-\mathrm{t}}-\frac{\mathrm{u}}{\mathrm{~m}_{\epsilon}^{2}-\mathrm{u}}\right)\right]+ \\
& +\mathrm{g}_{\rho}^{2}\left[2 \frac{\mathrm{t}-\mathrm{u}}{\mathrm{~m}_{\rho}^{2}-\mathrm{s}}\left(1+\frac{\mathrm{s}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}+\frac{\mathrm{t}-\mathrm{s}}{\mathrm{~m}_{\rho}^{2}-\mathrm{u}}\left(1+\frac{\mathrm{u}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}+\frac{\mathrm{s}-\mathrm{u}}{\mathrm{~m}_{\rho}^{2}-\mathrm{t}}\left(1+\frac{\mathrm{t}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}\right], \\
& \mathbb{Q}^{2}=-2 \frac{\mathrm{~m}_{\pi}^{2}}{\mathrm{~F}_{\pi}^{2}}+4 \mathrm{~g}^{2}\left[\frac{4 \mathrm{~m}_{\pi}^{2} \mathrm{~s}}{\left(2 \pi \mathrm{~F}_{\pi}\right)^{2}}\left(1-\frac{\mathrm{m}_{\mathrm{q}}^{2}}{\left(4 \pi \mathrm{~F}_{\pi}\right)^{2}}\right)+4 \frac{\mathrm{~m}_{\mathrm{q}}^{2}}{\mathrm{~m}_{\epsilon}^{2}}\left(\frac{\mathrm{t}}{\mathrm{~m}_{\epsilon}^{2}-\mathrm{t}}+\frac{\mathrm{u}}{\mathrm{~m}_{\epsilon}^{2}-\mathrm{u}}\right)\right]+ \\
& +\mathrm{g}_{\rho}^{2}\left[\frac{\mathrm{~s}-\mathrm{t}}{\mathrm{u}-\mathrm{m}_{\rho}^{2}}\left(1+\frac{\mathrm{u}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}+\frac{\mathrm{s}-\mathrm{u}}{\mathrm{t}-\mathrm{m}_{\rho}^{2}}\left(1+\frac{\mathrm{t}-\mathrm{m}_{\rho}^{2}}{8 \pi^{2} \mathrm{~F}_{\pi}^{2}}\right)^{2}\right] . \tag{10c}
\end{align*}
$$

These amplitudes lead to the values of $\pi \pi$-scattering lengths

$$
\begin{array}{ll}
\mathrm{a}_{0}^{0}=0,37 \mathrm{~m}_{\pi}^{-1}, \quad \mathrm{a}_{0}^{2}=-0,046 \mathrm{~m}_{\pi}^{-1}, & \mathrm{a}_{1}^{1}=0,046 \mathrm{~m}_{\pi}^{-3} \tag{11}\\
\mathrm{a}_{2}^{0}=19 \cdot 10^{-4} \mathrm{~m}_{\pi}^{-5}, \mathrm{a}_{2}^{2}=13 \cdot 10^{-4} \mathrm{~m}_{\pi}^{-6}, & \mathrm{a}_{3}^{1}=1 \cdot 10^{-4} \mathrm{~m}_{\pi}^{-7} .
\end{array}
$$

Here we use the values for g, m_{q}, and m_{ϵ} which have been obtained in ${ }^{/ 3 / *}$.

At present time the following experimental data for these

$$
\begin{align*}
& \mathrm{a}_{0}^{0}=(0,31 \pm 0,11) \mathrm{m}_{\pi}^{-1}, \quad \mathrm{a}_{0}^{2}=(-0,028+0,012) \mathrm{m}_{\pi}^{-1}, \tag{12}\\
& \mathrm{a}_{1}^{1}=(0,038+0,002) \mathrm{m}_{\pi}^{-3}, \\
& \mathrm{a}_{2}^{0}=(17 \pm 3) \cdot 10^{-4} \mathrm{~m}_{\pi}^{-5}, \quad \mathrm{a}_{2}^{2}=(1,3+3) \cdot 10^{-4} \mathrm{~m}_{\pi}^{-5} \\
& \mathrm{a}_{3}^{1}=(0,6+0,2) \cdot 10^{-4} \mathrm{~m}_{\pi}^{-7} .
\end{align*}
$$

The greatest disagreement with the experimental data has been observed for the a_{2}^{2} scattering length, but this length has been measured with a large error, and we believe that more accurate experiments will change considerably this value.

Our estimations show that the values for a_{2}^{0} and a_{2}^{2} are close to each other, because the $t-$ and u-dependent parts of \mathbb{Q}^{0} and Q^{2}, which give the main contributions to the amplitude $d-$
*If we take $m_{\epsilon} \approx 700 \mathrm{MeV}^{10,11 /}$, we get too low values for the scattering lengths $a_{0}^{0}=0,12 \mathrm{~m}_{\pi}^{-1}, a^{2}{\underset{0}{0}}_{2}^{c}=-0,046 \mathrm{~m}_{\pi}^{-1}, a^{1}{ }^{1}=$ $=0,028 \mathrm{~m}_{\pi}^{-3}, \mathrm{a}_{2}^{0}=6 \cdot 10^{-4} \mathrm{~m}_{\pi}^{-5}, \mathrm{a}_{2}^{2}=5 \cdot 10^{0_{8}} \mathrm{~m}_{\pi}^{-5}, \mathrm{a}_{3}^{1}=2 \cdot 10^{-5} \mathrm{~m}_{\pi}^{1-7}$.
wave, are almost equal. (They differ only by small ρ meson pole diagrams).

The values of the a_{0}^{0} and a_{1}^{1} scattering lengths differ from previous theoretical estimations by Weinberg, since we have taken into account the q^{2}-terms of box quark diagrams. The a_{0}^{2} length corresponds to Weinberg's result, because we fixed the parameter c according to the requirement of the coincidence between the constant part of our scattering amplitude and the "improved" Weinberg formula'g/.

The authors are grateful to A.N. Ivanov for very fruitful discussions.

REFERENCES

1. Eguchi T. Phys.Rev., 1976, D14, p. 2755.
2. Kikkawa K. Progr. Theor. Phys., 1976, 56, p. 947.
3. Volkov M.K., Ebert D. Yad.Fiz., 1982, 36, p. 1265.
4. Kreopalov D.V., Volkov M.K. JINR, E2-83-19, Dubna, 1983.
5. Ivanov A.N. Yad. Fiz., 1981, 33, p. 1679.
6. Ebert D., Volkov M.K. Berlin-Zeuthen Preprint, PHE 82-8, 1982.
7. Kreopalov D.V., Volkov M.K. JINR, P2-82-476, Dubna, 1982.
8. Kreopalov D.V., Volkov M.K. JINR, E4-82-355, Dubna, 1982.
 1976.
9. Nagels M.N. et al. Nuc1.Phys., 1979, B147, p. 189.
10. Daum C. et al. Nucl. Phys., 1981, B187, p. 1.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US 8, including the packing and registered postage

D-12965 The Proceedings of the International School on the Problems of Charged Particle Accelerator for Young Scientists. Minsk, 1979. 8.00
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical Physics. Dubna, 1979.
D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980.
Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.
D4-80-572 N.N.Kolesnikov et al. "The Energies and Half-Lives for the a - and β-Decays of Transfermium Elements"
D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
UIU,il-ói-ód Fioceedinys of́ ine Intennaidunai rieeliny un Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980
D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.
D17-81-758 Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.
D2-82-568 Proceedings of the Meeting on Investigations in the Field of Relativistic Nuclear Physics. Dubna, 1982
D9-82-664 Proceedings of the Symposium on the Problems of Collective Methods of Acceleration. Dubna, 1982
D3,4-82-704 Proceedings of the IV International School on Neutron Physics. Dubna, 1982

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nurlear snertrnsenny and radinghemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Волков М.К., Осипов А.А.
E2-83-177
Дпины пп-рассеяния
В модели составных мезонов, основанной на рассмотрении четырехкварковых взаимодействий, получены оценки длин рассеяния $\mathrm{a}_{0}^{0}, \mathrm{a}_{0}^{2}, \mathrm{a}_{1}^{1}, \mathrm{a}_{2}^{0}, \mathrm{a}_{2}^{2}$ и a_{3}^{1} - В расчетах использованы формфакторы распадов $\rho \rightarrow 2 \pi, \epsilon_{\epsilon \rightarrow 2 \pi}$ и учтена q^{2} зависимость четырехугольных кварковых диаграмм.

Работа выполнена в Лаборатории ядерных проблем оияи.

Препринт Объединенного института ядерных исследований. Дубна 1983
Volkov M.K., Osipov A.A.
E2-83-177
$\pi \pi$-Scattering Lengths
The $a_{0}^{0}, a_{0}^{2}, a_{1}^{1}, a_{2}^{0}, a_{2}^{2}$, and a_{3}^{1} scattering lengths are calculated in the framework of the composite meson model which is based on four-quark interactions. The decay form factors of $\rho \rightarrow 2 \pi$ and $\epsilon \rightarrow 2 \pi$ are used. The q^{2}-terms of the quark box diagrams are taken into account.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

[^0]: * Calculations $73,6,7,8 /$ have shown that the estimated values of the constants in ${ }^{/ 3 /}$ are in good agreement with the experimental data.

[^1]: *The first term in (4) corresponds to the σ-model (see, for example, $/ 3 /$).

