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INTRODUCTION AND SUMMARY OF RESULTS

i. In the first part of this paper "/ we have constructed a class of
infinite-dimensional repreeentltiona of the Lie superalgebra osp(1,4)
on the vector space FV:= c®°(M)@ Cl, where M is some open subset of
R3\{0} The generators xjk (:l k,1=-2,-1,1,2, ;jak ) are represen-
ted in terms of three pairs ot operators p, ,q, on c® given by

(p,\o)(i)-,,-—(?) (@) (D) := x, y(I),

five operators A4,H,V, € End €% and one numerical parameter s @

-~
% p.2 = 105, i-t-z = 1919y, xt-z = P9 ’2-2 = QP 3

~
2o mitaf v ad), Xy maqpy eyt

iz--1 = q;(pp~ 39 - q5“1352 o “‘5‘93“"
X (B 'i‘Pf + Pg) + 1QS2‘|T’
%, = ~ip, (ot 593114403 (§,p*+ip-6H ~q,q20 T ~ 1q3'0 W)
21 P1{Pa* 293 )¥1qy (Jopy+ip38H =493 293 ’
£,5 = -ip3-igg2(52- 1f+213,0 H-1q a3 @ V+(1-qfq3)@T - JoW),

A A s~ i
X 2 - quok, !." E(Q,‘A—iQ3'B), !1- -1‘(91.1-1]:3’54- %Q3 e 2),

A - - - 1 =
T, = -16(py0 Avig;'jp0B- %"1‘32“3‘05‘ %;' 0 D),
vith Jyt= q.p3 -pyq3» €:= exp(i®/4), W= Wet-4, Vi=(V_+ V_)/2,
Vie 5 caV g2 ), T FO8-2EV V), Are A,
Bi= Ag-b_, Zi= %z 3 e 'z":-Ze( {8+ 300 4 ).
The mepping (L : Xy ‘a' b !1 defined in this way has the

following bapic features:

(2) {L. is a homomorphiem of osp(1,4) intc Ena c¥ if the operators
‘t' ,74. satiefy

{agihgd= 8“‘, (m,a]= e, [Vg,8.]= 0, [n,vt']- 2V, ,
[v..V]= anzv-e), [v,,(V,,4_]) =seay,,
and if a projection Ec¢EndCY extiets such tnat

(L2 [&,8] = [x,vt] =0, EA = ‘_.’0 2T Iy -E.
Remark: By using E we can express F as direct eum of ?o 1= (W)ong”

and F)i= c®(0)@EC" ; with the help of thie decomposition

(’v)
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the space End # . becomes graded in the standard way: even
elements map each of fg, 7-':‘ into itself, whereas the odd
ones mapg-‘g into ?l and vice versa. The conditions (7 2)
obviously guarantee that all the ?33 are even and ?1 odd.

(b) The second-order Casimir operator equals sel; the other indepen-
dent Casimir element of osp(i,4) is represented by a multiple of uni-
ty, if the set # := fA,,H,V,} is irreducible.

(c) Let us define involution on polynomials in p‘,q‘,q:‘ by the

usual extension of q::- qy p::= “Py ’. By combining it with her-

mitian conjugation on End € we get involution on the subalgebra of
N

End 3" containing all the xit and ?1' Then all the lfjk satisfy
%= -fjk. ir

(#3) =eR,B*=m F=.v V.7,

2. All the mappings that fulfil (#1 -} 3) conetitute a class L or
Schurean representations of osp(1,4) whose even part is formally
skew-symmetric. The adverb "formally" reflects the fact that we have
not definef eny scalar product on F » and, consequently, the relation
of Iigk to xjk differs from what is usual in the representation
theory. Insteads the following holds

A

xjkY' Q T Si‘dgk(P " divq o
Here ¥Y=Yyeof, , d =Z¢f5e 8ar Yurfa € c™(m), f‘,gpst', the binary
operation “¢" maps ?'x?n into C™(M) and is defined via the scalar
product in €Y by We§ :-Z%-ﬁ(f‘ +& )+ Finally = (y +12+%3) depends
linearly on ﬂ,?ﬁ and their derivatives.

If we want a givenﬂ.ét to be "a‘ctually" skew-symmetric, we ha-
ve to introduce a scalar Rrodngt on a sufriciﬁntly large subutﬁ QC?N
invarient w.r.t. a1l the X, ¥) such that (X, ¢,8) = - (¥,3, ¢
for any ¥ ,$ ¢ g. . This problem is dealt with in our next paper.

3. BEach representation in € is fully specified by e and the set ¥
satisfying (1 -H3). Thus the problem of giving the complete de-
scription of € can be formulated as follIows:

(1) For each N=1,2,,, find H(yCR such that Reirn iff there existe
at least one irreducible set # c End C¥ satisfying the conditions
(#1 -A3) for some projection E GEndC'.

Each such set will be denoted ¥, 2 {As,H,Va}, and called "solution"
(for the given ¢¢,E ).

b Notice that the definition is consistent with the commutation rela-
tions which are fulfilled by p,,q, si.e. [p‘,qgjs &ph&",k‘ .
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(ii) For each %e 3(u find all the non-equivalent solutions.
The problem is completely solved by the following

Theorem: (a) If N is odd, thenX = #, i.e., no solution existes.

(b) If N=4M, M=1,2,.., then Ky = (2M(M-1)-4,+%) and for each cm’l(l
there is just one solution.

(c) If N=4M-2, then K= [ 9¢,,+00), K= [0, % + 3 ), ¥=2,3,..,
X = 2M(M-1 )= -g » There is just one solution for £ =2, and just

two non-equivalent solutions for all other values acd(u.

(d) Let n=1,2,..,%¢ 3(2n and {At’n’vt}‘cnnd Czu be a solutigg with
the comapondix(wg)projcetion E. Then a regular RDGEndC exists

-1 -1 (D)
such that Hp= RZ'# E= R, B where
= D # RD' RD : o o ME=2m

o
75 J(n,0:= {112(1—-3&: e one2me1}E1 02000 ¢ (1a)
The set ﬁ?}{AiDZH(Dzvimgand the E(mhan the following properties:

(i) There are four projestione F* onto subspaces 'U“Cd',zn orthogonal
to each other, dim?” = ng , 4
nyi= B§ +1), nyi= BB, ny= L, ng=Ed Y (v

such that I F%= IZn and R(m = r‘+ 1‘2. Further the set

,?(D)w {H‘D),ng,l(m}, I(m:ﬁ(m+x-4, is reduced by F“,o\s!,..,h
(ii) If ng> 0, then the restriction ?‘(m:= P Dpy*se irredu-
cible and W(D)PV‘B (W, +ot-4) , where 172
n . n Ve 5 (42+420-n°) eoe NZ2,4,.,
W= o= pgtn {n-a : %30 “'4"(‘“1”{n+\9 ees m=1,3,.,

Further an orthonormal basia €.C g exists such that the matrices of
operators H(‘D):s H(D)f"ﬁ“, (Vim)‘ := V;D)PV‘ w.r.t. €y satisfy

(D) (D) “ " \“1 (n,,W, +x-4) ihe nE2sy L
{[Hu ]»[(V* &]} {ﬂz("w,i'("(d)‘(“/a)) g

the sets }l, being given. in /. o(2.9).
(111) AlD= (D& gD (g(D)y& (D), _(y(D)y& (D) (D)2

(iv) Let A%F be the operator from '”'p toV that ie obtained
by restricting iy oty !""A‘(_D)!‘P to 'U'P o Then A"'P .Aﬂ2,§+2'
0, «,p=1,2, and for the remainig eight pairs a,§ the matrices of
A%t w.r.t. the bases of (ii) have the following elements :

*)the definition of E:R+Z2{0,%1,,.] reads E(x):=supfn|n¢ Znext.



‘n =8 km 0 “n 1+1-k\"?1?1- ’
= 5 V2D ) o W "
‘ﬂ = 53¢ Viggrz-20rey , o = "slﬂ—k A%
o =8 Vg2, o = -8, PG

18k€n,, 1€1<ny, Tyi= 20-14(8 /2.

The rest of the paper is devoted to proving this theorem., The
notation introduced in A is used mostly without explainig it anew,
New formulee, lemmas, etc.,are numbered by eingle arabic numerals
while decimal numbering indicates reference to

PRELIMINARIES

4. For each pair of unit vectors f,ge¢ Q" 1let U (f,g) be the opera-
tor on €™ (that is supposed to be equipped w1th the usual scalar
product <.,.>») whose action on any heC™ is given by

UXf,g) h :=<n,gdr . (2a)
This operator is a partial isometry /2/ whose initial and final sub-
spaces are the one-dimensional spaces spammed by the veetors g and
£, respectively. From (2a) follow

vk(2,8) = U (8,0), Up(£,8)0,(£;8") = <2&) U (£,8°), (2b)

which further imply that Un(i’,s) is an orthonormal projection, iff
=g,

Let {ffnl..,r‘(‘" be the standard orthonormal baeis in CZ,
£{:= (1,0,..,0), £§™:= (0,1,0,..,0) etc. The following special no-
thtioh WIIT he Reads ‘

Agxkl)! u (tgn) f(n)) “.8 f(2) 5‘153 /\(2) . "9-1 ’2

(3)
€ = €5,6 28,888 -8,z 8 +§, = I,.

5. Consider d‘_zn = (‘_“QCZ the ordered orthonorna.l basis
g,( ) e {113 Pir 2,0 P01, L, @7, £ Q*fz} in C%® and express any
T €End (._Zn via its matrix elements w.r.t. 3‘n)

2 :
g 4%1 a:i:'-t t?: éﬁ'e“?s"zf‘?“e““p : @

+_THenccforth the upper index m will be mostly omitted,

Besides the basis 3‘”’ and the corresponding decomposition (4) we

shall consider another basis .‘B( )that differs from .B(“) in the or-
dering of vectors f.o;li‘,t + The elements of % n) are ordered accord-
ing to increasi valuea of ri:=j+-2, O%r&n. If r is given, then«x

ranges from a\7):= mex(1,r+2-n)s 1+Sr_n to aif):= min(2,r+1)= 2- § .

More convement is workmf with @:= umﬂ- % , whose range is
16 pcur) = altl. = 2-§-§_ . Thus we have

3(11) "'{ e.’r-O,l 1oy, 1‘(“ 6""} o
Pra ™ Trafoap-1®Pices (58)

the inverse relation being

f0f = q’j"""‘z’:"""sju;z . (5b)

Let Pr be the projection onto the subspac’e spanned by the vectors
Y o 1545&(r), i,e,, dimP = dim P, =1, dim P =2, 1¢r¢n-1. By using
(2a) and introducing

P =0, (¢ ) (6a)
rs 2n > tgy 7?
one obtains we T
&(r) n 5
Pr'z,:‘, Prr;«». mp = Ion v PpPy = Op gPpe
These relations determine a "block structure" in End c2n, for any
T ¢ End C2® one has :
T= Z_'_ e !rs" PrTPs. (7a)

The blocks can be expressed via matrix elements in Eq.(4):

r'eg)% 3t=be ,3r- P

8 a=1 v=i f*‘r"&‘" sotdg -1 “rajuv ° L
This formula ensues from (2b) and
P =% @&
rojd” re8 tu-1,048, 1% 3.5 ,3-0-6,, (6b)

AU P2 eop2i3aeby g3 b-Sg o 0 )

the latter relations being a consequence of (5a,b).

NECESSARY CONDITIONS

In this section we derive some nccessary conditions that must satisfy

the set X, and any solution &CEndC Rc-’(n. First we will consider
the tollovﬁ:g auxiliary problems:

[4
(i) for n=1,2,,. find }nc R such that ﬂ.e}n iff there exists at
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least one irreducible set n.;{'ﬁ,?,, }ac End €7 satisfying

[?l,c!]t 2qvy, = = (8a)
.53 = 8% (2+ §), (8b)
éstmc R M, ; (8¢)

Each such'ntwill be called "small solution"”.
(ii) for each ece}n find all non-equivalent small solutions,
6. Lemma: (a) If n=2m, m=1,2,.., then
4= Hr=\fm-21+41)24m%-5 | 1=1,2,..,n } (98)
and there is just one small solution for each ze}n.

(b) If n=2m-1, m=1,2,,,, then
Fo= Joi=lz, t0) N 2m(m-1)422(21)-4 | 1=1,2,..,0-13 ") (9b)
and there is just one small solution for 'x=a§n, and just two small

solutions for % e}n\ ixn}.

(¢) Each small solution is equivalent to n; Ei?la,g: }’ s Where
#= #(n,%) is defined by Eq.(1a) and

An h B i

= Z, i &) % (10a)
n-1 = :

K o) > ~8, ~

Vo= %E_‘ Cx ®k+1,k? v.:= 1:‘;_2 €yl Cp.t o (10b)

the ¢, k=1,2,..,n=1 being non-zero complex numbers given by

(k- ga) eok even
eyi= J?l-k, O sarg ctc‘&, dkzsf ¢

. (\Oc)
%(k2+((to-x)2)-a-5 ook 0dd

Proof: Let m-&,{ﬁ,;*}a be a small solution, l$ be the minimal eigen-
value of f (peR according to (8c)) end let g€ s g# 0, satisfy
hg,=(38,. By introducing

8" ¢+5k—1 k=2,3,..,0 (%)
amd using (8a), we get
By = (pr2(x-1))g,, hv_g, = (-2)7_g, - (#%)

”~
Thue the vectors g,  are either eigenvectors of h or equal zero.

A
i 6(3), denotes the set of all eigenvalues of h, i.e., the spectrum.
xg= 2m(m-1)- -2-, o4 (if n is even) or n-4 (if n is o0dd) — cf.
the Theorem,

Now P is the minimal eigenvalue of h and hence
’v\_g‘ =0, (+)
Suppose g‘,..,gp are non-zero and t%l Ay8y = Q. Then (&%) implies

£1k oy 8 = O and from these two equalities one easily concludes

k=
that Q?:- {51”"8;;3 is a linearly independent set, Thus there is
some §, 1<p<n, such that g, ye 98y &re non-zero and

LR ?,g' = 0, (&k)
Consider the subspace s'l]).in' Clearly, 3 and ¢+ map s?.in into itself
and by using (+) and (8b) one finds for k=1,2,..,p

Vet G gy Gn %‘“"‘"g“""[‘@“d)’-ﬂ-9}- S

This means that ggin is an invariant subspace of My and irreducibi-
lity of 7y then implies P = n.

Hence 81018, is a basis i:: (I:n and the above equations com-
pletely determine the operators ,ﬁ,v’: except for relating (3 tox and n.
In order to find this relation apply both sides of Eq.(8b) to 8yt

n=1 2
dn—1sn = % [( (3'0’2!!-2)2" 2“-9] gn, 10.4- jzzo('d)j[‘e*zj’ 0%9]’0.

After performing the summation one haes (3 =1-n and é-t-m—ﬂ' for n even
and odd, respectively, which, with the help of the notation introdu-
ced in (4-ii) of the Theorem, gives

R= 1= Poe R .

Similarly, the expression (++) for 4, yields Eq.(10c).

Suppose ckto for some k, 1 £k<n-1, By (++) one has ?i_‘kﬂ-o
which, together with (%) — (&&k), shows that {gkﬂ,..,gn%is an inva-
riant subspace of %y . A8 Ny is irreducible, we conclude cg‘O, 1.0,
also 4 # O for k=1,2,..,n-1, After substituting &q=n or n-¥(accord-
ing to the parity of n) in the formulae (10c) for 4, and realiszing
that FeR( as fposR), we get oeeg;l.

"c have thus proven quc g'n; for proving the opposite inclusion
we onp need to show that the aset ; givc,n by (10) is irreducib-
le and fulfils the conditions (8) for any XeJ, . Verificatiom of the
first of (8) is straightforwsrd; for getting the second one first de-
rives from (10c) the equalities

R
Further, if xej,:, then 4.7 0, k=1,2,..,n-1 and Y6 R, This implies
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on: the one hand (8c) and, on the other hand, irreducibility of 113:
suppose g c €, C# {0} is an invariant subspace of 73, let g be a
non-zero element of S., g Nfiteot r;xfn' and let J:=mex { j)1<j4nm,

=1
r:;l‘ 2} then rlt(l“‘r R cj)"(c:)‘!"g, i.e, r,tg. Similarly, one gets
fk'(j[;llci)-'wi)k.'f‘ﬁ S‘ 2k=2,3,..,n. Thus 'n-,: has mo non-trivial
invariant subspaces and the equality gn' g!: is heredby proven,

One further sees that for n=2m~1, X2 , the sets ﬂ'*+), ﬂ"(_).
F(2):= ﬂzu-zn) are non-equivalent: they differ, e.g.,in the epectrum
or h®,

For proving (c¢) introduce LY :=t, yyp 10 %, 80 that o ,..,.tnﬂ 0,
Then a regular operator £ €End C™ is defined by ?gkzu %, f, and its
inverse satisfies ?’1fk = El/‘k (see sect.4 for the definition of
- £,22{%). From (#)-(%kk),(+),(++) one then fimds mp=?"'ng %. W
7. By using this lemma one gets the following partial answer to
the problems formulated in sect,3.

Proposition: (a) If N is odd, then ‘1’& 2.
(b) If N=2n,n=1,2,.., then 7(NC};‘ (see Eqs.(9)) and any solution

x!-.- {“,é,vt}a is equivalent to 3(;; {A;,H',V;}", where 72 ¥(x,)
is given by Eq.(1a),

B°:=_-1i(ﬁ"6'°- fnodz), (11a)
aa=feet qmsy, (11b)
v3i= 2020t - (9%, . (11e)

and the set {S‘,G: },CEnd C" is defined by Eqs.(10). The correspond-
. 8 8 8 .8
ing W2 E'EQA.,_W:,_A.,_ + u_?u lareada
V- 23{19:105 - 1%@e, + I, . (ma)
(¢c) If n is even, then for each xd(zn there is just one solution,

whereas for n=2m-1, m=1,2,,., there are at most two non-equiva-
lent solutions if xé 7(2n\ {x_3and just one solution if X=2_ .

Proof: By using {A,,A4}= "“_"m.n easily proves (a) and existence of

a regular R such that A‘S RAqR °, where

A,‘Lza e et. (+
let H'= 5 ﬁ.‘pﬂ g‘p and v;. s.z_; 'v:;@e‘p be the decompositions (4)

for H':= n"n and Y := i"&x respectively. The second and third of
. 5 AR - g Aq AN
(#1) and (+) then imply h,, 21"0s Qz,: 11 0 N12= 92470, ¥1%v,5,

Cad ~ 1 1 A= AN
4= 1, By denoting ﬁ:-Zh"-r RRALE | 9;1, Q= -2-?‘2’ 'y‘,’.:s Vi1 s

we get L
H'= %‘ﬁo«%- 1,04, (++)
Ver 29,!.5 + 9‘19 Sor (%)
The fourth of (#L1) now yields
(8,7 = 2a% , [B,53]= 48, - (x4)

With the help of (+) and (%) we further obtain

zig.[v{,‘;d. -2 ,.t’#tg S5 A;Lv,i = 91e et
and substituting into the last of (#1) gives ?13 -n@i . Hence
the first of (k) implies the second one and further one has from (k)
Vp = 29,08 -afied. (+++)
Let us now exprus‘l":- F'ir = %QQ(V_' A’ 42A° _H’) in terms of
'l; and 'v‘ 3 sl b

V= 2Eqfq0 - fleg, + Iy - (st
Then the fifth of (1) implies
LA LR TR R (%)

- We thus see that for any xeX, the set n:-{ﬁﬁtk fulfils the
conditions (8a,b). We will show that # is irreducible and fulfils
(8c) as well. Suppose ?# has an invariant subspace and let QeEnd Cn
be the corresponding projection. Them, by using (+)-(+++), one finds
that 806’0(_2“ is an invariant subspace of M, .Hence irreducibility
of #, implies irreducibility of m . Finally, (++) gives

{3z n]loed®YceE) =gm.
Now, by (#.3) one has & (H) <R, i,e.,any Aed(R) must be real.
Thus for any weX, the set {3,9:} is a small solution. By the
lemma one then has megr’l and also existence of & regular ?Ghdmn,
such that m= 2" 'g5 £ , is guaranteed. Now R_:= T @I,*R is regu-
A #n,e) s 2
lar and, by setting 1(;:- Rsn*R;’, one gets from (+)-(++++) the
Eqgs.(11), From (10a) and (3) one further finds
B® 2,00~ (k+a ~2-o/2) 1,0, k=1,2,..,0,¥=1,2,
and so the aspectrum of H® reads
&(8°) = §r- /2 ] r=0,1,ee,m }.
*IIn fact, if AL, B,V are given by (+)-(++) and if (%) holds,
then [V;,V:]- 4H'(2E’%- ¥’-2-4) is equivalent to (&kk). This can

be easily voriﬂgd by u:ing the :I.:!\cntity
[Oq. ,Q_J. [{' ,Q_!} ,'-‘] .

9



If n=2m-1, %>R, assumes two values P(¥):= 2V 2(n -%_) and, as
él;oﬂ n-#, one sees that & (Hycy) # G(H':,(.)), i.e., the sets N3,
N ore non-equivalent. n

8. Up to now we were concerned mostly with implications of (#1) and
irreducibility, whereas of (# 3) only the requirement «(H)CR has
been used, In the rest of this section we are going to show that (3)
implies much stronger conditions on a<2n than those given in the Pro-
position; in fact, it will be shown that “Zn cannot be larger than
the sets mentioned in (b) and (c¢) of the Theorem.

Analyzing conditions (#3) is complicated by the fact that the
star relations implied by them for operators a’,‘v?‘,v: involve the
operators R‘,Rt whose interrelation is not known. On the other hand,
working with H‘ﬁ’,v.?. is convenient as these operators are explici-
tely determined by Eqa:(lo,ll). We must therefore start with those
properties implied by (¥A3) that are invariant w.r.t. equivalence

" transformations.

As H and W are hermitian and commute (see the proof of Lemma
IV.1), there exists a basis in CZn such that the matrices of H® and
W8 are diagonal 4nd real. For finding it let us decompose H® and W°
according to Eq.(7a), With the help of (6b,e¢),(7b) one has

B = S‘,.,,(r.go/z)rr .

q:r' * sr-r"r v Yor= fofor

v,:= (2r- po)(Prr;”- 1“‘;22',)-i—2¢:x_(Prr;12«!’1.1.;2‘), 1¢rén-1.
Since Tr W_ = O for i€ren-1, the eigenvalues of 'r are M., .!ore-
over, i € i as each eigenvalue of 'x- is also an eigenvalue of W’;
thie follows from (+) which further shows that W  is diagonalizable
(because W® is). In other words, there exists a regular _Q.rei}ndcz
such that

'n:- (2n- C‘O)Pn' (+)

(D) -1
'r "'Q'r 'r'ur 'e‘r(Prr;H S rr;22)' LIS
By taking into account that the c, oceurring in the formula for W,
ig non-zero (see Lemma 6), one easily concludes that

& #0, 1€ren-l, (12b)
The secular equation for V. reads
42 = (2r-ug)®- 4l ; (%)
by using (10c) one finds
o= Gy 3-1,2,..,g(§), &25_'-&, j=1 ,2,,..,2(%'-) (12c)
10

e

with (cf.(#-ii) of the Theorem)

S - o 441020-52 ees n even (12a)
&o=ing & {M eee 1 0dd
Remark: These formulae hold for r=n as well - this can be checked,
if one substitutes for &, into u = n-p ( see (+) and notice that
Pn is one-dimensional), However, the condition (12b) applies only if
n22; if n=1, then 8or & DAY egual zero.

For £inding 'Q-r one makes use of the decomposition (cf.(Tb))
-Qr= wjé Po...s 80nd Pewrites (12a) as 'rn'rs‘ﬂr'z(-m' This equation
determines the @8-th column (aofp ' “2(3 ).(3-\ »2, uniquely up to one
multiplicative constant that will be fixed by requiring lwfp\z +
!02']2 = \..Qr can be written down in a compact form with the
help of auxiliary guantities

i 1 b A i
Pri= 3t er’h)" = 3l gy fp)ioer i = Ffltg)tT =8P
$p1= Uef+dD)7V2, moia(ie 2+ p 712, 14rgnat. (130)
Notice that all these quantities are real and non-zero. This is due
to cr;‘ 0, @4_ &R and the equality
Pr Sx = -3, (13)
which follows from (%). One then has

Q= L S rPrri11 S Frry21) * Ul Pr’rr;12+°rprr;zzz

0-1a &Pt Pfrmsiz |, Srfepgatt €xfrmie
g Créirér *rérte

Let us summarize the results concerning the diagonalization.
9. Lemma: (a) For m=1,2,.. one has .’!(mc 9;‘0(:2-5,4'“),
%ot
R yme2C Jomer Lmlme1)a}=(0,, ,+00)N f2m(me1)421(1-1)-4]1826m+1}.
(v) If n=2,3,. ,26%‘, then ¥® has four non-zero eigenvalues &oror
&1+-4; (see (12d). For n=1 the eigenvalues of ¥° are dosly and
they may assume all real values. lLet Dy ,0y,04,0, be the multiplici~

ties of Sor=Hor{yr-¢4 » Tespectively; then Eq.(1b) holds (32-n4ao
if n=1),

14)

(¢) Consider (2¢Ena €2 whose block structure (7a) reads
. sr-.nrv Ty0=1,2500,0-1, Qy=aPy, O =a P ,

7 ?
This equality follows from 8ot &= 2n, n=1,2,.. (see (12¢,4)).
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where wo, n are arbitrary non-szero complex numbers and the opera-
tors .ﬂ Glh\d(l‘. are given by Eq.(14). By introducing

an ', e P,

‘one has

n

(D). yta zo (r-go/2)P, , (15a)
rﬂ

?(D)-&o(r'.rz) + @& (13.74), (15b)

where P* are orthogonal projections that are defined via one-dimensi-
onal projections P*'¢ ;= p s ol as folIo'a

ri.,;_"gr-z 1 ’2"1-_-‘1,!!,2 ,3:. ’21'-»!,1 ,,4‘.2: 21'-1,2.
™ (15¢)
Due to the properties of Pr o one has

r'ef=§ z a1
o 2n °
’P (D)

Finally, the block structure of reads:

W) =5 W, “(D), = 5 g"’, 0€r&n-2, (154)
( -1 -)

Vo' 1= oyl Pao;112 v§ 1= 20,4005 521’02;11 '

(+ =1

Vi) ""n-t"n-zl%“’n d02Prm-2g11

(=) 1

¥ 2" =29 1°n-2 J;-z’n-zn;n g
+) .. -t -1 :

Vi e e rSr1 { 3:’:02’:4&;11*!:“»2’»42:;22" 1€rén-3

i
VR @ S il W mz;n*“m‘k’bzr rre2;22)

Proof: (a) follows from (12b,d) and &€ R, (b) and (15b,e) from
(12a). The formulee (154) have been obtained by using (11e¢),¢10b),
(6c),(14) and some properties of p,8 which follow directly from .
(13a,b). All the remaining assertions have just been proven above, .

10. The operators B(P) §(®) v{P) are related to the starting H,¥,vy
via the regular transformatiom Rn:

H= BDH(D)R;', etc. BRp:= R;‘ﬂ. ,+) (16a)
By introducing the positive reguler i

Si= EjR (16b)
and realizing that ED)W(®) gre nermitian, we find that the conditi-
ions (&3) are equivalent to

L 31- o, [¥®)s]=o, vu” 8 = -gviD), (16e)

! l. has been introduced in the preof of Propositiom 7,

n'3’4,ooo
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By analyzing these relations we arrive at the following final form of
necessary conditions,

Proposition: (a) for m=1,2,,. one has
.'Ig.cfl(;‘:- (2m(m-1)-4,+%0),
1
Ko € Wge=[ry 40, KopoC Ky o [0, 2000 D).

{b) To any salution #,,_cnnddlz s n=l 2,..,7&6% there exist four
positive numbers s.‘ and a regular operator xn that obeys

“;Fp =.F' (16d)

and transforms ﬂ to “(D) {A(D) H(D) (D)L according to (16a)
Eere H( ) and the aux:.l:lary operator W(D’;ZQA‘D)(V(D)A(D)-bzA(D)E(D))

are hermitian and the fimal form of 1((])) ia given by Eqs.(15a~-¢c) and

{D 3
v, )’Z- "r-ﬂ r+ "’fr‘ﬁz r+2egll " 429 Prazy 227 V( D). ""im,
i ! (15e)

‘:n)’ oy s ADEaBG gy eee me,
A J—‘“fuq‘rfm rr-1; n"i rOr1Prr-1512 * {150
+ -y ), AP ™ 0
Prfra1Prrat $217 ﬂr‘r-l rr-132279 ’ ?

where p ,4, are given by Eqs.(13) and satisfy fr>° é p? 0y 1 £rén-1;
in additiom,we set

d0'=fni=0s fo! t"o* ’sé"'n ’ (13¢)
Proof: By Proposition 7 and Lemma 9 there is a regular RD such that

x(m-s RD !RD X=H, v V... are expressed via the partial isometries
P v aceording to Eqs.(15a-d). Then the first two of conditionms
(16c) determime the block structure (7a) of S

D:
S= & S, vso" toPo, sn" n? s : ezsl"l‘r""“". 1€ren=-1,(+)

As S is regular and positive, one has

tostnrtppityp > 05
1

+}

In (15e,f) occur the operators on 221Pp2. 2o and P10 zz,Pw <129
Pnn—l 2210 Panet ;22 for which the definition lsa) does not make’ sense.
In fact, these oporatora can be defimed arbitrarily, as they are al-
ways multiplied by sero quantities or p .. We have introduced them

for bringing formulae for VS_D) ,AQ”into the above compact form. 2
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Now (15d) end the third of (16¢c) give
+ 4

(i ¥s, o= 8,78, r=0,1,.. ne20 )
In particular, for r=0 we get ¥, "d:"o!;‘ ty = -2t°e‘@0w'5‘}2 « Since
tz‘,to and }2 are positive, it must hold Ci#p<0. Now for n=2m one
has my=n and (10c) then implies 2 %+9 >(1-2m)°, which is a¢ 4lm' For
n=3,5,.. (notice that (&) does not make sense for n=1) one gets

($+1)(n=-N >0 & -1<P¥<n .
Similarly, by setting r=n-2 in (%) and using (12d), the relation
-n<#<1 is obtained for n=3,5,.. . Altogether one has h|<1, i.e.,
0&%- R(m‘ )2 & %, whichlis ece?(én, and thus (a) is proven,

The inclusions ’sn':%én imply Re ¢, =0, Im ¢, >0, 1 £k<n-1 and

@ry» 0, O2rén, n22, This can easily be verified with the Help of
Eqs.(10c),(12d). Then the relations (13) give

fr >0, dr’ 0, OLr&n, .
fr' r‘r)-vz' 'Yr’(("r?r)-'/z' ":""“f’r‘r)]/3 tersn-t, (130)

_ By substituting into (15d) and fixing the hitherto arbitrary agy ay,

wys= 3i, @ =1,

n
the relations (15e) are obtained. Similarly, one gets from (14)

nr- d i((Prrﬂ 1+1P1'r;22) J&(Pl‘r;|2.ip ;21 ) ,n;l SQ:' 1éren-l.

(14°)
Further Eqs.(11b),(6¢) yield

n
8 8 8, %
Ae = Progni® SProoggriar AR(AY)

and then (15f) immediately follows from the definition (16a). Finally,
substituting (15e) and (+) into (%) gives to=tay tn=tn_2",
toe2,1" Yot tﬂ2.2= t.ay r=1,2,..,0-3, Now Eq.(16d) follows from
(15¢} end (+), if one puts 8y:%tgy 8y1%ty,, 83%ty, 8,17t 5, |

SUFFICIENT CONDITIONS

11, Proposition: For each %sz'u the set ﬁ&)!)l,a)f “‘(’D)’ A_S_.D) .H(m» .

(D) .
': }'specn’:led by Eqs.(15a,e,f),(1a),(124),(13a,c)
is a solution, the correspomding projection being “14- (see (15¢));

moreover, one has
(aiPh% 5 ™,

If n=2p-1,m=1,2,..'and weR’ “fa_}, then #{P) 2D wh. . GETa)
nt*m (+)* " K-) %n’s

are non-equivalent solutions.
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Proof: One verifies directly with the help of the multiplication ru-
le (2b) that 'K(‘P) satisfies ( 2) for E=;F’+ Fz. Lut“gn.

i.0.2%>(n-1)°-9 if n is even, |#)|<1 if n is odd. By (12d) one has
or 41€ R end, if n22, then (10c),(13a,b) yield

4,>9, ¢ >0, ,&r>°" 1€ré&n-1,
Consider (LeEnd €*°,Q 3 PAP:=§ O, wherell:= -1p,,Q := P,
and L), 1€r<n-1, is defined by (14’). Using the above properties
of ‘l,?,é one sees that () is unitary. If the procedure that brought
us from Eqs.(11) to (15a,b,e,f) is reversed, we get

02007 Lie® ) wedNna .
Moreover, due to unitarity of.ﬂ, the star properties of X(D) imply

(%)%= 5%, W*=¥°, (vHt=v8 . (%)
Now H®,W®,V{ are expressed via 8,93 which are defined by (10a,b,e);
as K C 7/ (see (9a,b)), the set {%°,9}4 15 irreducible and ful-
fils the relations (8a,b), By using them,one verifies directly that
9(3:=£A§,H8,V§f* satisfies (# 1). For proving irreducibility of ?(3
we make use of the star properties (&) which imply that the linear
envelope of 1(3 is a symmetric set: (“3):1:1  af («;)lin’ Then “‘3 is
irreducible if its commutant (ﬂs)' conteins only multiples of unity,
Let cc(ﬂs)‘; by using the decomposition (4) C = ?‘FOZ‘# %
a,ﬂGEnd QC", one finds that [C,A3]= O implies 8 ,= €,,=0, €,,=€,,=
€, i.e. C = f@d,. From [C,B®]= 0 ana [c,v2]= O one then gets .
(2,8%]= o, 9,'7\:?= 0. Since {}®,93} is irreducible, we have ¢C= 1,
i.e. C=YI, , YéC. Thue #3 is a solution and, as L is unitary,
ng”-ﬂ:‘ﬂ%n_ﬂ_ is a solution as well.

If n=2m-1, m=1,2,,., then Tr gD, nd; now J(+) # H(-) for
nf ®, and hence the solutions “((DJH - K(\{?-) cannot be equivalent.-

.

reucrIoN oF $K (R):= {52 ,viD) WP},

12, Up to now we jave proven the first three statements ((a)-(c)) of
the Theorem. The last statement (d) concerns essentially reduction
£ ) D)
of the set 9( (9). The star proyertiea of ﬂ.& imply that (?m))lin
ie a symmetric set and hence ?(D () is fully reducible. It further
| satisfies the conditions (2.7) of sect.II.4 (see (X{) and lLemma IV.1).
Aceording to Proposition IT.4 PP (§) equals direct sum of the irre-
ducible sets Yr(n(c&),’r(())g:lven by Eqs.(2.8,2.9), the corresponding
subspaces 'Uw& a1V n(«x), #(n(d),'ﬂd)) ¢ EndC™ veing orthogonal
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to each other, In particular, there exist iem such that

~(D)PV‘ = W, Latr*

It is convenient to introduce a basis in d:z“ in such a way that the
matrix of 7 )w.r.t. it equals direct sum of unit matrices {. In(-t)3
multiplied by Wy . By using (15b,¢) one sees that the structure of
such a basis should be
o
fx2la=1,.08, k=1, 000},

the dimensions being n(k)=n, (see (1b)). The vectors x': can be ob-
tained,e.g.) by reordering the bagis (5a) as followse

‘-: 2-: 3': : 4
Eei=Voroo 10 Rit= ¥ox,20 = Port, i By*= Yooy 20 CIT)

The corresponding partial isometries (2a) will be denoted F:lp, i.e.

a8 | 3
P = U K0 BD) - .
Then the projections (15b) become
ok
: = e
and the mlti?icauan rule (2b) yields
r"‘"r =§“8 g ‘ (18)
that occur in Eqge.(15e,f) one has

: & 2,042
PZr.Zn;p .’er_,,ﬁ S _1» PZI’-‘,Z.*‘;Q‘V lﬁ: 3 e

=

For the partialv isometries P rejav

13. The searched decomposition of :P(D)(\ﬁ) can now be simply obtainmed
if one rewrites Eqs.(15a,e) in terms of Fl:f |

4D ;
A Z(zx—a‘.&/zu:t" » 4y:=2, 4,:%0, dys=a =1l , (19a)

A=1 k:]
D ot -
v‘ ).é :L:, “urTierk “l,k""’Zk-lNPZk—z‘zk'

© = 1ozl Pareafarr Q3= loollPoy 1201 (19%)
W=l c2d ( Porcs 19211

With the help of (18). one then finds:
n,
P(Dpb = Segly By z: (Zk-d --Ar,/z)x'mt :
L At L W vi) v‘*)x- i'-' g

d'(n)r(s- :”'“F - '1:= 2:‘(‘&0, 738'-?‘:8("‘.
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for r=t one has ¥'= w. and

Thus the set ?(D) (¥) is reduced by all the subspaces '0"! ¢¢2n. In
addition, the matrices [H‘] [v )] of operators H‘,Va) w.r.t. the
basis {r’k \k"\,..,n“} in U are obtained: the element in the k-th
row and l-th column equals the coefficient at F;;

Let us eho' that all the sets .?(D)-- .P(D)(ﬂ)r?' are irreducible.
Notice that ( ?,‘ )1£n is eymutric and so the usual argument concern-
ing the commutant { * ¥ applies. Since [H‘] is a diagonal matrix
and its diagonal elements are different from each other, one has for
any CeEndV%C e(HD))’

ng
ool
C= z Tan )
further the relation [V( ),0]8 0 yields T f == (all the &}, are

positive)., Hence C = !“!I na

Each of the sets ?(D) is thus equivalent to some .?;,‘(n.‘,r;) -4

Tq

{h 'Yy ,wr‘In‘} and we need to determime r, and ¥, for given ny ,
= 'i’ +%-4 and Tr h '®mTr H, ., To this purpose the followimg proper-
tiea of 3’ (n,¥{") derived in sect.II.4 will be used: Tr g"= Oebr =1,

oo
752128 Y, (%
for r=2 one has Y= nl‘ Tr h* and
octlct ¥ 22 2;5- 0=w . (a%)

We shall consider separately the cases of even and odd n.

(i) n=2m , m=1,2,... : By substituting m,=n, ™= \j 4x+20-n° , we find
Tr Hy = n (n +1)-n (m+d,) = 0, &=1,2,3,4.
2.2
Thuu Ty =1, T‘= 2m+ -4, )’"2- -2m+x-4, 7'3’[‘1 m-4=dx+5-nz+l) ~10,

)“ = -P,Wtdx-b 2--1 )24» m -10 and one easily verifies that KGKI
i.e *>2m(m-1)~4,implies (%) for all o and m., Hence

PID = 29 (n ¥, 421", 16454, TCENAP reguler.
In view of the star properties of .‘P(D) and ¥ ome finds that T‘T be~-
longs to the commutant of ¥ . Now ¥ is irreducible and thus one can
suppose T unitary. Coneider the matrix [.H‘], only diagonal elements

are non-zero and as they strictly increase with k, one has

[’] -[h] Thie further inplies that the unitary matrix T must be
diagonal. Them the elements [V* ] k,rv ]3 may differ at most in a
phase factor, 1%j,k% £n,. Now qu.?wb) and (2,8b) show that all the-

*) This need not hold if ny =1,

17
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se elements are non-negative and so we conclude
E ~
§08J, VS) = W, (ng S+t -4), 154,

(ii) n=2m-1, m=1,2,.. : In this case Q!o'n-o ,<A1=n+\95 which yields

LSRR A T AT LN AT - +)

Further one easily verifies that the second of (&%) holds for 15«<4,
m=1,2,.. « If m22, thenl&&?‘ 2@® W< implies 7.0 e (-1,0),
)"2’7" €(0,1) and hence ry=2, 1£«%4, For m=1 only &=1,3 have to be
considered (n2=n"0). Now f;,r may equal zero since ¢ assumes all
real values, However, in case that ﬂ=0~, the corresponding wW_ = -8
and in view of the equality 5P1(l ,0)= ':P?_U,-G) (cf.(2.8),(2.9)),; we
conclude

PO Po(n, ), 120es, m=1,2,..0,
¥ being given by(+). By the seme argument as in the case (i) we

then find +
flnal, [vEDT =Matn,, $ab=-1E W2y, 12424,

14, Finelly, the matrix representation of Aﬁm given in (d-iv) of
the Theorem is obtained, if one rewrites Eq.(15f) in terms of dele

-

AiD)s -iF{y, n=1
+(=1 )“%ﬂ\lwﬂ_"ra_“ , 1%2,3,.,,
with ali=bii=d, =2k, alisbl ,:=p, = u -2k,
sfieblin€y (= 3y -fp)42k-1iTy, aiebyiepy =4~ .
By applying (18) one then finds for A%:=i\E ra(D)sf

A% . A%t2,0+2 o, "F.‘ ,2,

and gets the explicit expressions for the remaining eight pairs o\(!.
Hereby the Theorem is completely proven.

APPENDIX

The matrices of operators H(m "(D) ,VS,D),A_S,D)G End €22 w.r.t.
the basis (17) will be given for n=1,2,3,4 explicitely as functions
of u= {Il,awzo-n2 (if n=2,4) or Js2{2x+10-n2 (n=1,3). The remaining
operators in ?(SD) are given by Vin)-(-vim)‘, AED),“iD))t. Notice
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thait) in the decomposition of J‘D) there are four non-trivi‘al terms
P4 ') iee.yterms for which ng21, iff n23; for n=1,2 there are only
two and three non-trivial terms, respectively.

(i) For n=! one has n1=n3-f, n2-n4=0,'8= £\ 2x+9 . There is just one
salution iff R = -9/2 and just two non-equivalent solutions iff

(on1_ (=172 o ~(on_ [1-% © o °9% .o
+) (5]« ( 0 ($+1)/2) (¥ N=lo 148)s S )I'(-i o)t v,’ko.
Remark: We have just obtained this result in our preliminary stuw ¥ H

for identifying it with (+) one has to replace ¥ by 2¢ and multiply
the matrices (+) on the left and right by (61-16‘2)/{'5' n?

(ii) For n=2 one has n,=2, n,=0, n3=n4-l 5 01-243&4- o There is just one
solution iff a>-4.

on. ot o8 6 (508 9 on_ |&6 060
0 =(D - 000
(=] - 0000 , (¥ 1= 00 0]’ ["+]‘ ‘g’ooo
e
fal &|-1o oo]"
-10 00

In the remaining cases n=3,4 rectangular n, by n’ blocks X“(5 ’
d,e =1,2,3,4 are given instead of [X] . Let us recall that

20 ed Lk, e diVEG 0
Pl ‘:+z,v+2 =0, apsa.

(iii) For n=3 one has n1-n3'2, n2=n4=1, J= 2\ 22+ o There is Just ome
solution iff ®= -1/2 and just two non-equivalent solutioms iff
e (- $,0).

($-3)/2 0 I+ (9-1)/2 0o o =1
™ "( o wm/z)v n, =5 By = () ms)/a)' g il 3,

W, =a-n(39) V=93, §, =aeb(L9), §, = -Ged),
v} =2(GH0D(§ ), ¥4 = ¥4 = 0, i = 2GHTH (S ),

i 20 ) it fEER (9), 5 E 0 o,

%

9-¢ i
24 |l__ﬂ_‘- p 3, i -(0(3—#)(14) o 32 " 2 [0
A= { » A A7 =i s
+ 9- 4% 7 "rﬁf o (GFHOD ' A% (1)

M FH ooy, a0,
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(iv) Per m=4 ome has 11-3, natl. By=n =2, hsa « There is Jult ene
solution iff >0,

i ’[-§§§) B=0, BmH = (70

e 3] e g D)

" it {z §l Ve 0 Vi) 9 o) Ve @ 9
n:..g{«%'ai 36‘1 } ;14. k[ﬁg—{zf:ﬂ} 5 A 3. -k(fF;"é' 0),

‘3" k(@.‘-zto), ‘21‘ ‘k( '3 ) 42 g)' ‘ia'k &7?1'2')’

Ai‘. .4203“#2. 8), Atza R(F?-;i), k= ;‘-%__—
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