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1. During recent years, it has been found that many integ—
rable two-dimensional equations admit a supersymmetrization’!"8/
From the group-theoretic standpoint, it means that one goes
to the zero-curvature representation on some superalgebra con-
taining the algebra of an analogous representation of the ori-
ginal bosonic equation as an even subalgebra 5:6/.1n doing so,
the systems with simple as well as extended supersymmetries can
be obtained. For instance, the N=1 supersymmetric enlargements
exist for the sine—Gordon’!"?/ and Liouville’3 equations. The
unique examples of integrable systems having N=2 supersymmetry
were till now supersymmetric Kihler nonlinear o -models/1:4:5,7/
and t}i}?’supersymetrically extended complex sine-Gordon equa-
tion "'

In this paper we describe one more integrable system with
N=2 supersymmetry, the U(l)-supersymmetric Liouville equation.
We construct for it the zero-curvature representation (on super-—
algebra osp (212)-), the corresponding linear set and the general
solution. The group structure of the obtained equation is ana-
lyzed and the relation to the N=1 supersymmetric Liouville equa-
tion is explained. We show that a close correspondence exists
between the N=0,N=1 , N=2Liouville equations and the.contact
(81787.1‘) algebras K (1) , KQ1|1) , K(1}2) from Kac"s classificati-
on’"/.

2. We make use of a general approach which is based on non-
linear realizations of infinite dimensional (super) symmetries
and provides a uniform description of the Liouville equation and
its various supersymmetric extensions. To explain the basic ideas
of our construction, let us begin with the simplest case of the
ordinary (N =0) Liouville equation:

u,_ = m? exp(-2u) - (1
(Here u,_=d,0_u, x¥ - 30 +x! are lighb-cqne coordinates of the
two-dimensional Minkowski space,[m?] =L~ ). It is known that
eq. (1) can be viewed as the zero-curvature condition for some
differential 1-form Q < sf(2,R) properly defined in terms of
the field u(x) and its derivatives u_, u_’/1% our main observa-
tion is that the needed parametrization of @ is attained auto-
matically when 8{(2,R) is embedded into a more extensive infi-
nite dimensional algebra §. The latter is given by the direct
sum of two contact algebrag K“(1) (i.e.,_the algebras of formal
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. n
vector fields on a line) with the generators L4 *:

Ly, L) =@-mLy", m=-1,0,,..) (2)

( § actually coincides with the algebra of the two-dimensional
conformal group). The subalgebra sf(2,R) we are interested in
is generated by the following linear combinations of L'f_:

-1 -
R4 +w'tig ot iade i) -0 3)

Let us consider a nonlinear realization of the group G with
the algebra § in the coset space G/H , H being the O(1,1) sub-
group generated by U defined in (3). We identify this 0(,1)
with the Lorentz group of the two-dimensional Minkowski space
(L'l are the corresponding translation generators) and paramet-
rize the coset G/H as follows

ixt L"tI izlt(x.) Li i 22i (x) L21 in “‘?l- + l?__)
g=G/H=e e e S i 4)

where u(x) , zf x), z;(x),... constitute an infinite set of parame-
ters-fields., The group G acts on g from the left.

The geometry of the coset space G/H is described bg the Car-
tan forms introduced by the standard decomposition/ 11,12/

gldg=10=i@, + 9;). (5)

Here, Qp 1is defined to lie in the algebra sf(2,R) (3) and Q, °
in the orthogonal complement. The whole form Q, by its defini-
tion, obeys the Maurer-Cartan equation on the algebra §

a0 =100 _ (6)

(Here, symbol d stands for the exterior differentiation). At
this stage, eq.(6) has no any dynamical content, it is purely

kinematic. The dynamics arises as a result of covariant reducti- _

on of G/H to the coset SL(2,R)/H. This reduction is effected by
putting ‘to zero the G/SL(2,R)-form Q) *: §

Q, =0. @)

-

*We basically follow the terminology of Kac’®’. The standard
Virasoro algebra is the central extension of K(1) continued to
.all negative dimensions,

#This condition is a particular case of constraints of the
inverse Higgs phenomenon’/3/,

2

This matrix equation actually embodies an infinite set of dif~
ferential equations one of which is just the Liouville equation
(1) while the others express the parameters - fields zi (),
z$ (¥),... in terms of the single dilaton u(x) and its derivatives.
Respectively, the form  reduces to the form 9%“6 sf(2, R).
Explicitly:

B ﬂ%ed =e"dx*R, + e dx R_+ (wdx” - udx)U. (8)

This form meets the zero-curvature condition on the algebra sf(2,R)
which arises in a natural way as a consequence of the original
Maurer-Cartan equation (6) and the reduction constraint (7).

One directly checks that requiring the curvature of the l-form
(8) to vanish yields the equation (1).

The described mechanism of implementing the zero-curvature
representation is advantageous in that the needed structure of
the basic 1-form is completely fixed within its framework by the
choice of the extended algebra §,,the stability subgroup H,
and the subalgebra go.for which the above representation is
constructed. In the present case we have taken H to be the two-
dimensional Lorentz group in order to have an orthonormal coset
with the minimal set of essential parameters-fields (consisting
of the single dilaton u(x) ). With any wider H, the number of
essential parameters increases. Note a striking similarity with
chiral fields: our approach suggests that the Liouville equation
theory can be interpreted as a kind of the nonlinear o model for
the conformal group in two dimensions ( x*and u(x) are direct
analogs of Goldstone fields of conventional nonlinear o models).

3. Applyi g this scheme to direct sum of two contact superal-
gebras K*(1]1Y */*and choosing §, to be the superalgebra osp(1]2) .
(which is a minimal spinorial extension of s{(2,R) ) we immediate-
ly recover the N=1 supersymmetric Liouville equation of refs./3
The N =2 gupersymmetric Liouville equation emerges when § is
taken to be the U(l)-supersymmetric extension of (2), that is the
superalgebra K*(1|2) e K~ (1|2)/15:9/ with the following structure re-
lations:

-

*The Neveu-Schwartz superalgebra/ 14/ s a central extension
of K(1|1) continued to negative dimensions.
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Note that the superalgebra (9) contains two local U(1)-algebras
with the generators T?, TP,

In constructing the N=2 Liouville equation, we shall pro-
ceed in analogy with the purely bosonic N=0 case. The zero-
curvature representation subalgebra Qo is now the superalgebra

osp(2]|2) generated by the set {R+. *Q+, Q.. 5_ Q_,T1}, where
0,=0¥:mc¥ 0 -0*-mef, T=10 4+ T (10)
and R,_, R_ , U are defined by eqs. (3). The orthonormal coset

space with the minimal number of essential parameters corres-
ponds to the choice of H with the algebra H=0(Q, 1) e0(2)={U,T}.
It contains, besides the superspace coordinates x*, 0t | ¢

associated with the translation generators L: s "G G::" also
two essential paramatets-superfzelds u(x,6,§) and qS(X.G #) cor-
responding to the generators L + 19, T° T%,An element of the
coset can be parametrized in t:he followlng way

il @ttt Fuagr, w1 gl -19
g=G/H=e e e e @ e . 1)

Isolating the osp(2|2) —component in the whole Cartan form g'l dg
and nullyfying the remainder, we express, just as in the case of
the N=0 Liouville equati.on, all higher parameters-superfields
in (11) through a pair of essential superfields u and ¢ Wh1ch
satisfy now the following equations:

-

5) V=0, .‘D"v=0, (]2)

-vt

T59v = - 2ime 13)

with v=u+ipand

k4 - "‘j: k4
LS e L Ll R L R 14)
Ix* 99t ax*  aF* {
'5he constraints (12) are the Grassmann analyticity conditi-
ons ‘They reduce the complex N=2 superfield v to a complex
N=1 superfield:
v(x*,2,0%,0%,07,0) = V(£ €7, 04.07), (15)
Eag'ciiet, 2w 11070, . ' (16)

The equation (13) is the desirable U(l)-supersymmetric exten-
sion of the Liouville equation. To analyze it in more detail,
let us pass to components:

veu(€h, €D +18(£%, )+, €LED+ 07V €€+ T0BENEDOT)
An auxiliary field ®(x) is eliminated in terms of u(x) and ¢ (x):
®(x) = 2imexp(-u(x) + i (x)) (18)

while the phys:.cal fields u, ¢ , ¥, , y_ obey the following sys-
tem of equations:

' Ay_. Cu+igh)
ay, Sa-ig)
Pt L (19)
: 32 2 .
ax+l;x— = mze- : ('Fq.'/’_ + ‘/’4.‘;_
2
3 ¢ d ot il
L_-—-—ax*ax" -2 Y -4 9.

It is clear from (19) that eq. (13) represents in fact the U(1)-
supersymmetric extension of the system

B o=mi0R . b W, (20)

The necessity of the field ¢(x) and, accordingly, an additional
equation in the bosonic sector follow yet from the standard con-
dition that the number of bosonic and fermionic degrees of free-
dom be the same on-shell. The equation (13) can be obtained from
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the superfield action of the form (with the constraints (12)
solved): 7

oy +
S =fa’xa0*d8~*F*D v - 2ime™ )+ hec. (21)

The supergroup G associated with the superalgebra (9) acts
on the coset (11) from the left and induces for superspace co-
ordinates X° , §* , 9 * and the coordinate-superfields v , v*
the following transformations:

x*=trxt, 0+ %, 09,

86" 18t 8", (22)

dv = .i$+$+f+(‘+’ -é+) + is-m-r.(x—o a—)v
where

th*, %= HGah +ing@hH] - 18 @, T = H* (23)
and fz(xt) s xot(xt) . h(i)‘(x-*‘) are, respectively, the parameters of
the conformal, local supersymmetry and local U(l)-transforma-
tions (hf,(x") enter into (22) only through their derivatives).

The invariance of the action (21) under (22) is checked immedia-
tely.

Now, let us construct a linear set for equations (12), (13).
Only the spinor components of the reduced Cartan form

-} ¢! dg= afed ¢ osp(2)2)

are independent; the vector components are expressed in terms
of spinor ones due to the anticommutation relations

O i d ‘
0.9 4 13%, (24)

So, the minimal linear set should be of the form:
9v-av,
{§+v =a'v. o
Here, V is a column of three complex N =2 superfields belonging
to the fundamental representation (1/2)/%/of OSp(22) and 0=, D+

are the coefficients of differentials d6~, dg* in QR®d Explicit-
ly, @  and (% are -

6
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v
0. «é»ﬂ)"v(u -T)+eZ Q_,
i iyt (26)
2" --49'vU-T)+e Ya.

The generators U-T, Q_ , 5_ fom; the closed subalgebra in osp(2|2):

; Q
(Q,.81--2n@-1), ilU-T, ( £)1=0. @n

Choosing for them the simplest representation by matrices 3x3
with zero supertrace, we write the spéctral problem as:

o vt
9% 0 o LAl RUR
- % - -SSR o ia+
PV=] qm e‘r—iz-fL‘v 0 jv;: Tv-= 0 o 0 v,
vt & aF
nm"e"!"—%—ﬁ) v 0 : 0 --%-E v 0
! (28)

7 being a complex spectral parame;;er introduced by the combined
action of the Lorentz and U(l) transformations on the coset ele-
ment (11) from the right. The equation (13) is easily recognized
as one of the integrability conditions of the linear set (28).
The analyticity conditions (12) are also contained in (28) ;they
follow from requiring (28) to be consistent with the relations
=9~ F*T* - 0. The linear problem in the component notation can
be obtained from (28) with the use of eqs. (24).

To close this Section, we mention that the reduction to the
N=1 supersymmetric Liouville equation is performed by setting
¢(x)=0 ,J, =y, everywhere. Accordingly, one should regard 6%,
0~ to be real and properly restrict the supergroup (22) (it
will be reduced to K*(1]1) @ KT1|1) ~transformations).

4., We construct here the general solution of eq.(13). The
strategy we keep to is as follows. Since the reduced 1-form
ioRed_g-lag 1ies in the superalgebra osp(2]2) and its curvature
vanishes, it is representable as
Red

0"l g ag,, (29)

g being an element of the supergroup OSp(2|2). We parametrize gg
in the following way: s

7



‘.- ol 18R (€70, +¢"0p Ko+ ¢ QULIyUAT ’ (30)
whgret_a_f B. ¢ &7 sY » A are arbitrary functions of
{x*,6%6%, and then express V throklg's: these functions by the
c.:ondition (29). The structure of Q"¢ in terms of v and vt
is strictly fixed that results in certain relations between
the above functions; besides, their coordinate dependence is

restricted in a definite way. The general solution, in its fi-
nal form, reads

&' = DD BN+ inTB¢ Ty 2impr-¢t - m?g%-x=F**), (31)
where '
[a=a(x+, 0+. é-+). : $

/-‘3=(I!12a-cu)'1  w=w(x",07, 69,

1C+ - et 4157, 0%y, (22)
€7 -l ¢NHB™ = k= = km(xm 4+ 1576, o)
and the folldéwing constraints hold:
Dtas iz+$+ to,
{ﬁ)'m +ik 9 k= 0, <

Ul_mettunately, we did not suceed in finding a superfield solu-
tion of eqs. (33). Nevertheless, they can easily be solved in

components. Parametrizing the superfunctions a s 6T L ® . xT e

a(xt, 0%, 6%)=ay + gHjtetiA — g+, +eid 0*0*c,,
© @&, 07, F) =g+ 077 e B — g=ei® 4 G9-p,, (34)

+ + oA o o e
¢ =Co+9pe’ .x=xo+aae"B

we get
Co = ~in*el,
co = _£T (P"2 ﬁ""""). ‘ . (35)

A ek, 4, 0e 3 on . an day 4 IF . Ot
- e (ZRayK oL (Zoy2 OT 4 -y Oqty, 7 Oay 4 I . Iyt
dxt 2('ax+) (ax*’ﬂ " ax*‘)+7(8x"‘ylax"ﬂ+ﬁ+ax"‘]

8

and similar relations between the components of superfields o
and k~.Thus, the general component solution of eq.(13) is com—
posed of four real scalar functions ap(x*) s AY) , wo(x™), B(x~)
and four spinor functions *(x%), F+*x%), =) , §~(x-).

Once the reduction to the N=1 case is made, the constraints
(33) can be solved in terms of superfields and the general solu-
tion (31) takes the compact form:

+ $+a - 5)_w
- T
e . —= (36)
99

(m’a - T#g)
a-w +m ~a.” .

with a=ax*, 0", v =w(x",07). We have verified that the components
of the superfield (36) coincide, up to several redefinitions,
with the general c%n?fment solution of the N=1 Liouville equa-
tion found in ref. .

5. In conclusion, we would like to emphasize once more that
searching for N> 1 supersymmetric extensions of nonlinear equa-
tions is rather a delicate task because a system of bosonic
equations should be supersymmetrized, as it is illustrated by
present work. For instance, the O(n)-supersymmetric extension
of the Liouville equation is expected to contain, in its boso-
nic sector, equally with the dilaton u(x),also 1/2n(n -1)scalar
fields parametrizing the coset O(n)x O(m)/ O(n). Thus, the Liou-
ville equation will be combined with the equations of the non-
linear o model for the principal chiral field on the group O(n).
An advantage of the scheme applied here should be seen in mini-
mality of its initial principles. As a matter of fact, they are
reduced to the choice of the (super) algebra G and the zero-
curvature representation subalgebra §o. The results presented
here show that this set of postulates is capable enough to con-
struct new integrable equations and to find their general solu-
tions. It is tempting to suggest that inspecting in this way all
infinite-dimensional (super) algebras, one will obtain a kind
of the group theoretic classification of integrable systems. This
will be the subject of our further study.

A few words on possible physical applications of the equation
(13) are in order. By analogy with the ordinary Liouville equa-
tion, one may think that its N=1 and N=2 counterparts corres-
pond to the choice of a certain ansatz for fields of some super-
symmetric four-dimensional Yang-Mills theories which generalizes
the cylindrically-symmetric ansatz of ordinary Yang-Mills/lsﬂBe—
sides, it is natural to expect that the equation (13) is rele-
vant to the descripti9?6?f the U(l)~-superstring in the geometri-
cal approach of refs. .
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UBanos E.A., Kpusomoc C.0, E2-83-104
U(1l)-cynepcHMMETpHYHOE pacmMpeHHe ypaBHeHHA JMyBWLIA

Nioctpoero N =2 -cynepcuMMeTpHYHOE pacMHpeHHEe YpaBHEHHA
Jlwysunns. [ns Hero HaliieHn npefcTaBlleHHWe HYJIeBOH KPHBHSHbH /Ha
cynepanre6pe 0sp(212) / u coormercTBylomas nuHettHas sapmaua,

a takxe ofmee pemeHHe. O6cyxpaercsa pegykuua kK N=1 cayuaw.
YcraHoBsiena BHyTpeHHsAs cBASh N=0 , N=1 #u N =2-ypaBuenuit

Juyeuna ¢ GecKoHeUHOMEepHHMHM KOHTakTHeMM /cynep/ anreGpamm
K@) ,K@ll) wu K(12) us cmucka Kana.

»
Pabora BmmonHeHa B JlaBopaTopuH TeopeTHueckolt dusuxu OHAHU.

NpenpuxT 06beAMHEHHOro MHCTUTYTa AQepHMX Mccnegomanwii, fly6na 1983
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U(1)-Supersymmetric Extension of the Liouville Equation

The N=2 supersymmetric extension of the Liouville equa-
tion is presented. We construct for it the zero-curvature re-
presentation (on superalgebra 0SP(2|2) ) together with an asso-
ciated linear set, find its general solution and discuss the
reduction to the N=1 case. An intrinsic connection of the
N=0 ,N=1,and N=2 Liouville equations with the infinite
dimensional contact (super) algebras K(1) , K(1]1) and K(1]2)
from Kac”"s list is established.

The igveatigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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