


The Poincaré group P of specizl-relutivistic space-time trans-
formations plays undoubtedly & central role in the high-energy phy-
sics. In particular, its unitary irreducible representations may be
used for classification of the (stable) elementary particles accor-
ding to their mess and spin t). A relativistically-covariant descrip-
tion is needed for unstable particles too. For practical purposes, it
is frequently sufficient to describe them as classical point partie-
les which decay exponentially in their proper time. Maybe this is
the reason, why some quantum aspects of the problem are not yet fully
rnderstood.

One is naturally tempted to gereralize the ides of stable-par-
ticle classification and associste suitable non-unitary irreducible
representations of J with the unstable particles. Such representa-
tions were actually constructed and used by many authors/B'B/. Typi-
cally the homogeneous Lorentz transformations are represented by
unitary operators, while the space-time translations are non-unitary
and characterized by some complex four-momentum vector ’t}. The gene-
ralization from steble to unstable particles should not be taken too
literally, otherwise one is faced to interpretstive difficulties as
growing norms for negative times. It seems ressonable to associate
the direct physical meaning with the operators representing the sub-

&) Classification of the unitary irreducible representations of ja
started from the paper by E.P.Wigner /1/. For their description
and application to classification of elementary particles see,
e.g., Ref.2, §17.2 .

a%x) Beside the mentioned irreducible representations, some non-unita-
ry indecomposable representetions (i.e., reducible but not com-
pletely reducible) were proposed for description of unstable par-
ticles : see Refs.9,10 , and Ref.2,§ 17.4 . However, these
attempts aimed meinly to yield decay laws related to higher-order
poles which have been r ver observed.




set Ja c P which consists of the homogeneous Lorentz group and
translations to the forwerd light cone ; it is called nomelimes the
Poinceré semigroup/g/. Other authors tried to overpass the difficul-
ty by modifying basic postulstes of the quantum theory/?"(v.

In fect, there is no a priori resson why non-unitary representa-
tions of ¥ should be essociated with unstable particles Explained
in a standard way, the principle of relativistic invariance mesns
that the state Hilbert space of any isolated quantum system is carri-
er space of some unitary (strongly continuous) representation of 7 ,
under which dynamicel veriables of the system transform in a specific
way. In particular, some important observables are identified direct-
ly with generators of the corresponding representation of Ljp , the
Lie slgebra of 7 : the totul damiltonian HZ=P, with the generator
of time translations, comporents Pj of the momentum with the gene-
rators of space translations, etc.

Hence one should start with & larger isolated system which con-
tains the unstable particle under consideration as well as its decay
products, and to choose on its state Eilbert epace # a suiteble
unitary representation U : P—#(%) . This representation is presu-
mably reducible but it should be characterized by a sharp value of
spin ; examples of such representations are known/11'12 . Faving de-
termined U , one may return to the subspace .%;’uc.? which belongs
to the unstable particle alone, and study the operastor-velued func-
tion V : P->4(d#,) defined by

ViA,a) = PTuU(A:B) (1)
for 211 elements (A,a)e P . The following gquestions arise naturally :

(1) do the operators V(A,8) fulfil the composition law of P , at
leest for some gubgroup or subset of elements ?

(4i) if so, what can be said sbout the relationes between such a re-
presentation and the corresponding restriction of the above-men-
tioned non-unitary representuations ?

The only serious attempt to find an answer, and to reconcile thereby
the two approaches, was undertaken by Willtuma/lj/ 3 but he failed on
the well-known difficulty with below-unbounded energy spectrum. Our
aim in the present paper is to clarify the mutter.

The booste should not be represented unitarily

To begin with, let us recall few bagic facts about the Hilbert-
~-space kinematics of decay proceases/13'1e/. fAssume that the Hilbert
spaces &&’ & referring to the unstable particle and a larger isola-
ted system, respectively, and a strongly continuous unitary represen-
tation U of P on & sare given. Let Ut dencte the operators
which represent the one-parameter subgroup of time translstions,

Ut= exp(-iHt) . A natural requirement implied by the non-stability is

UhGHd, o+ t>0 (2)

or more explicitly, there is no t>0 for which ah is invariant
under Ut .

The reduced propagator is defined by V, = pr, U =E U, I &L -
where Eu is the projection referring to &ﬁ . It is easy to see
(cf. Refs.16~19) that the function t r*vt is positive definite and
continuous (weakly or strongly, it amounts to the same here), and
fulfils VO= Iu . On the other hand, it appears that these proper-—
ties of Vt are sufficient to ensure existence of solution tec the
inverse decay problem, i.e., to reconstruct 2 tripple {.,‘t,Ut,Eu}
such that V.= pruUt for all t , and moreover, that this solution
is essentlally unique under 8 naturel minimality condition/14/.
Technically, these results are achieved by means of the unitary-dila-
tions theory 5

Experience suggests that the operators Vt might fulfil the
semigroup condition, vtva= Vt+8 for all t,s 0 . Unfortunately, in
such a case the Hamiltonian H referring to the solution of the in-
verse decay problem contuains the whole resl axis in its spectrum .

Nonetheless, the semigroup reduced propagators represent a very use-
ful approximation. The unphysical character of the energy spectrum
makes no herm, since it has no observable consequences 7 y it may
be removed when preparation of the unstable particle is completed

by an energy-filtering procedure/ei’ae/. In fact, the inevitable de-
viatione from the semigroup behaviour are likely to be unobservable
even if they are amplified by repeated non-decay measurements per-
formed on the particle and an srtificial energy filtering/za/.

) The semigroup condition iz equivalent to absence of the regenera-
tion. The conclusion about the spectrum remains valid even if the
regeneration ceases after a finite time -cf. Ref.16 . A necessary
and sufficient condition for energy semiboundedness was given in
Ref.18 . The problem has been discussed meny times ; for a more
complete bibliography see Ref.20 .



Let us finally mention definition of the decay law. For an unsta-
ble particle which is described initielly by & density matrix P
Ran § c &, , the non-decay probebility equale Po(t) =Tr(quvt) . In
particular, if the initisl stste is pure and described by a unit vec-
tor ¥ séru , its decay law is

e
Bt) = vyl = B Uyl (3e)
Situstion is especially simple in the csse of a one-dimensional 3&
(epanned by y-) when

RO = W 1® L w(e) = ) (3b)
the semigroup condition imposed on {Vt } now requires the decay law
(3b) to be exponential.

Now we shall return to the Poincaré group. Its space-time trans-
formations are given by

o= Ry 4)
x, = Aﬂ Xt e
where A Dbelongs to S0(3,1) and a is & four-vector. For simpli-
city, we shall consider the connected component of J only avoiding
discussion of the space @nd time inversions. The composition law of
the transformations (4) implies

U(A,8)U(A",a") = UAA ,a+ha ") (5)

for all (A,a) , (A,a)e P . Unitarity of U together with the de-
finition (1) yield the relation

ViA,a)* = YA~ ,-A""a) (6)

for all (A,a)€P . Suppoee thet V fulfils the group law analogous
to (5), then V(A,2)*V(A,a) = V(A,a)V(A,8)* = I, so V(A,8) is uni-
tary. However, this is equivalent to the fact that U(A,a2) commutes
with Eu 3 particularly for the time translestions, it would mean
that the condition (2) was violated. Thus the operators V(A,a) can-
not fulfil the group composition law for all (A,e)elf , i.e., V
cannot be a (non-unitasry) representation of P .

This conclusion is not yet disastrous. Motivated by the above
sketched description of the time evolution, we are ready to accept

the following possibility : there is a non-unitary representation v

4

of # , presumably some of the ones mentioned in the introduction,
such that V(A,a)=V(A,a) within some ressonable subset of P , say
Jﬁ - Unfortunately, even this point of view cannot be retained. The
reeson is that it does not respect the RBuclideesn invariance (the
first and maybe the most important among the laws on which physics

is built - E.Wigner dixit)., It is guite natursl to essume that two
observers, whose reference framee are obtained one from the other by
space translations and rotations, will determine exactly the same de-
cay law and other characteristics for a given unetable particle,
Hence, in particular, the operators V(I,a) with a-= (0,8) should

be unitery, and this is not true for the representations we have in
mind.

Furthermore, the translational invariance implies that the ope-
rators V(A,0) referring to the pure Lorentz transformations (boosts )

must not be unitary. In order to see it, notice thet the relation (5)
yields the identity

U(I,Aa)UMA ™' ,0)0¢1,-a)U(A,0) = U(I,Ae-A""a) . (N

Let A =Af be a boost with a velocity 3 end a=(0,8) , where a
is parallel to F - In euch a case, one has

Aa-A""a = (-213is1mnlf1,8) , §=egnf.a . (8)

We have pointed out that V(Ae) is unitary for some (A,a) 41ff the
corresponding U(A,a) commutes with Eu . Thus if the boosts were
represented unitarily, the same would be the rhs of (7). Since j,
lﬁn,l;] may be chosen arbitrarily, the relation (8) shows that E,
must commute with the operators representing time translations. of
course, this contradicts to (2), so the conclusion is proved n).
Notice finally that up to now no requirement specific for unsta-
ble particles was used. The above considerations apply therefore by
the same right to free unstable nuclei and other decaying objects
for which a relativistically-covariant description is appropriate.

The representations U related to unstable perticles

Since the unstable particles may be charscterized by spin quen-

tum numbers, the most natural choice for U is & direct integral
over mass of the unitary irreducible representations U(m'8'+)

%) ﬂ £ormal Lie-algebraic version of this argument was given in
ef. 17T .



(cf. Ref.2,§17.2). Notice that the same U was used in Refe.11,12 ,
but it was not eccompanied there by an Euclidean-invarient choice of

a; . The carrier space of such 8 representation is given by

2s+1
,/z)ec 5 (9)

# = 123((ng0) x B ,dn @
where m, is a threshold mess. It is useful sometimes to separate
fully the kinematical variables from mass. To this end, one has to
employ the four-velocity k=p/m , i.e., to introduce the Hilbert
space

= 12((ng,0)) 0 1287, %k 2k ) 067, (10)

where ko = (l+i2)1/2 ; the two spaces are isomorphic by means of
the relation

ﬁj(m.l‘r) = myj(m.mi') (1)

valid for all j=-85,-8+1,...,8 , me[mo,m) end Xe®’ &
The representation U acte on the space (9) according to the
following prescription

> -ip.
(U(A,@)y) (m,) = e © "

S5(m,83A) V’(m!_P'A) » (12)
where a.p =1apﬂ , further 3A is the three-vector part of A—‘p ’
and the matrix S expresses by means of representations of the little
group SU(2) . For the space-time transletion onm x=(t,X) , we have
§=1 so

3
F d 9w /2
(@, U(I,x)) = dm _Pj exp-1i(t(m“+p°) &
¥ Y jéa if '/; 2(m2+p2)1 o i

0 R
(13)

- x.p)}p @By (mB)
In particular, for the pure time translations and ¥ =¥ we have

&g @ a3 2.+2.1/2 .12
(%,0,8) = d —it( ) (m,2)]° .
YUk jéa ‘{0 m‘{‘,' 2(m2+32) /2 exp{-1t(n"+p 1y

(14a)

Changing the veriables (m,§) to (4,P) with & =Py =(m2+ﬁ2)1/2,
we may rewrite the last expression in the form

0  _gat, 8 a? 2 +2,1/2 2112
(y,U,9) = ds e f—Pﬁ'l ((1"-p%) p) i
T lg¥ i, {Jg;s v, 2(2-32)1/2 ¥ S
(14b)
where V, = F R RS (-1\2-413)1/2} s

Effective one-dimensionslity of )'su_

Now the crucial point lies in the choice of the subspace &;
which would be ascribed to the unstable p&erticle s2lone. If this space
was one-dimensional (spanned by some Y e & ), then (14) would yield
according to (3b) the non-decay amplitude. However, we have argued
above thet ah should be invariant particularly with respect to the
space translatione. This is impossible for a2 one-dimensionsl Ja ’
because the momentum operators Pj have purely continuous spectra so
¥ cannot by their eigenvector. Nevertheless, we are going to formu-
late an argument which shows that in most cases the relations (14)
may be accepted as expressions of the non-decay amplitude in a reaso-
nable spproximation.

We shall consider first the scalsr pasrticles, s=0 . Qur most
important hypothesis is that there is a state of the unstable partic-
le described by a wave function which factorizes

p(=,8) = £(m)g(B) . (15)

Next we addopt various eimplifying assumptions. First of all, we set

supp £ = (N-9,M+7) C [mo,oo) 7 (16a)
00 M+7
i !f{m)lEdm=L{ g ?am= 1 , (16b)
) -1

where 7 is supposed to be & positive number much less than M .
Further we assume

supp g = B, ={B : |Pl<e] (16c)

so the support of g 1s centered at p=0 . For small enough & ,
this is practically equivalent to the assumption that the particle
dwells in its rest system., According to (12), the space translations
give ¥a 3 ?5(m.ﬁ) = eip' w(m,E) when acting on ¥ = yg . Since
(7 should belong 1:<:|2 a'fu for all de Rj , and the exponentimls form
a complete set in L(B,) , we may set
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o= {y 1 ypmP = 1m)e@) , ec1?3) ¥ . (an

As @ set, this J§, coincides with C(f)@L%(B.) , where €(f) is
the complex linear span of f . The scalar product is, however, diffe-
rent : the norm of 7 is according to (9),(16) given by

M+7 az
2 2 =112
= d f(m ) . (18a
iyl ﬁf_? m [f(m)| Bf _P”2+§2)1 5 [&(B)] )

)
Let It.[12 denote the norm in Lz(Be) :

let3 = Bf[stﬁ)l‘?d% . (18b)
£

We may use it to estimate the norm (18a) from both the sides, or vice
versa, to derive the inequalities

206721312 < ye1? < 2[e)2+62]V 3y 2 . (19)

It shows particularly that a sequence {'I‘n}‘:&u is Ceuchy iff the
same is true for the corresponding sequence {gnj c I.E(BE) ; hence
%, defined by (17) ie a (closed) subspace in & The inegquality
(33a) below shows that E<< M and the same restriction was imposed
on % , eo the function g corresponding to & unit vector pe J’u
fulfils Ngl ~ (2m) V2,

Let us inspect now action of the time-trenslation operators on
a unit % from the chosen subspace (17). According to (12), they
multiply ‘p(m,'ﬁ) by exp{-it(2+$2)1/2j . This expression does not
factorize, but for & small enough one may try to approximate it by
e"'n“ « Since g<<M '). we may restrict ourselves to the first two
terms of the expansion

—imt 22
exp{-1t(n232)/2} = " {1 -1 %;t— + 034 } . (20)

The evolution operator is correspondingly written as Ut =U£0)+U£”
with neglection of the remainder. In order to estimate influence of
the second term, we take an arbitrery unit vector PEJYH ’ p(m.ﬁ) =

= f(m)h(P) , end express

M+7 3 22
(1), - -imt z J A% ( B t)— 5
(p,T ) = dm e | £(m) -i=—]h( (
p t ‘P H{T m)| B£ 2(m2'52)1 > 2 Plg 3]
{21)

&) According to (33a), we have £2<< MM , and therefore in most

cases (t/l)2<< 10-11,

— —

The relations (16),(19) and (21) yield the following inequalities

2 2 /2
- ) +e)] 2
(g g —1— —Et Lo e ;
lcp,ug "yl < 20 2("_2)1 lel,< 7 2y . (22)
Hence we may estimate the norm
]]Eul}i”‘*][ = sup {](p,ué”y,)l tped, L lph=1} . (23)

Since both £,% ware supposed to be much less than M , we find (23)
to be ,‘S_Eat/zm ; the approximetion mentioned mbove is therefore pos-
gible under the condition

2

£°1

—_— 1 (24

TR )
In that case, norm of the difference between Bu“ﬂ}' = Vty, and
EuUfco)v is very small, end we are sllowed to write Vﬂ, zEuUiO)yz 5

In the next step, we shall verify thet the last expression is
close to (p,BiO}'p)'y. . To this end, we take en arbitrary unit vector
ped, P(m,f:) = f(m)h(p) , which is perpendicular to Y . This ortho-
gonality together with (16b) makes it possible to estimate (h,g)2
from the identity

i+y

1 2 1 1 =, 3

L(n,g), = J anlem)l f(— = '———‘—7') h(B)g(B) é’p . (25

2K 2 -1 B, 28 2(1112_.52)1 2
Since E,'g are much less than M , we have the following estimate

2
1 1 1 (Z £ )
— 5_ s m—— (26)
|2n 2(misp2) /2| % M\U T o2

(up to higher order terms). Combining it with the H8lder inequality,
we obtain

l(h,e),| £ (1 + Lz-) Inh, ek (27)
raval e~ ' 2-2 2 2

Now we are able to estimate the scalar prodoct ((p,Uimy,) :

+

i -imt
1, u{O%)) < |35 u{-,d" ltm)? e (hye),

(28)
1

L l |n(3 $la’
= pl lgB)a’p .
2(n2sg2) /2 oM

M+
+ f’dm |f(m)|2 f
M- (m“+

1 B
Applying (26) and (27) to the second and the first term on the rhas of
(28), respectively, and using the H8lder inequality egain, we get




2 I+7
(0) 2 (2 £ 2
(¥,0 M-S ——(- + —) Iniligl, |[£(m)|< dm
[P0y M\M* 2 2 e,‘[?

However, P and ? are assumed to be unit vectors so Ihl2 c;ﬂgu2cs

as(zn)'/z . Finally, the normalization condition (16b) yields

2
lp, 0l £ 23+ fg . (29)

Since ¢ is an arbitrary unit vector from a{u orthogonal to 'yx b
we see that Uto'y stays nearly parallel to @ . Hence we may write

o0 _ 3 »y 12
- - t 2 a @ .
(Vo) (m,B) & p(m,B) J du e i I£ ¢l S e
Y pim,p n{) B, 2(m2+32)172 o

Moreover, the inequality (26) allows to replace the denominator in
the last integral by 2M ; the corresponding error is again at moet
comparable with the rhe of (27) . Thus we have also

T B xpad S Tl (300)
0

Concluding the sbove discussion, we may say that if the three-
~momentum spread of v is sufficiently narrow, the decay goes effec-
tively as if xh would be one-dimensionel. In that case, the non-
-decay amplitude is given by (14), end it may be approximated by the
integrals appearing in (30). Of course, the approximation needs also
7<< B but it can be achieved as we shall see in & while.

The presented argument generalizes easily for particles with a
non-zero spin. One has only to use the rotational invariance of éﬁa
too, then the following choice is natural

4, =Ly po,® = e , ge12(,) @ c>*! | (31)

Mimicking the sbove reasoning, we arrive again at the approximation
(30b) .

Hence we must ask under which circumstances the conditions (24)
and 7<<M are valid. In any realistic description of unstable par-
ticles, the function |f£(.)]? should have a sharp peak of more or
less Breit-Wigner shape. Its position may be identified with the
mass M of the particle. On the other hand, the mean life is defi-
ned by

=]

v =1 PBt)ar (32)
o ¥
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its inverse [ characterizes width of the peak. For all real unstab-
le particles, M 4is much larger then I : the ratio M/ varies
from 1.06 x10° for 20 to 1.31x102! for neutrons (with excepti-
on of 10, 7 and 20 , 1te lower bound is ioltj. Hence we can choo-
e 72 80 the inequalities f'<<?¢: M hold. The firgt of them ensu-
res thet truncation of the mess distribution |[£(.)] to the inter-
val (H-?.M17) will cause a2 negligible change in the decay lawt'tt).
0f course, the condition (24) cannot hold for all values of ¢ ,
but it secms reasonsble to demsnd its validity in the region where
the decay law is sctually measured, i.e., up to few T . Thus the
three-momentum spread pAp = £ must obey (ap)2<< Mr or

Ap << o um /2 (33a)

when we return to the conventiongl system of units. In order to appre-
ciate this restriction, let us rewrite it by the uncertainty relation
to the form

sq>> He (Mm~1/2 | (33b)

Thus we come to the following result : the conclusion about the
effectively one-dimensional &h is applicable provided the unstable
particle is not spatislly localized too sharply to violate (33b).
This condition is, however, fulfilled almost always in actual experi-
mental arrangements as the below listed values show 24/ :

%) Cf., e.g., Refs.20,23 . Simple estimstes similar to those per-
formed there show that for &ll practical purposes it is enough

to choose % 4\‘;102!’ . Thus we may essume 7/M < 1072 in most
cases (see the footnote on p.B). In fasct, truncation of the mass
distribution might change T substantially, because the modified

decay law has & power-like decrease, eventually as §—1 5. Tor
large values of t ., However, from the practitioneer s point of
view the infinity masy be replaced in the integral (32) by the

range, where the decay law is actuslly measured, say 101""'1 s
so the tail effect is suppressed. Notice that wvalidity of the
condition (24) may be discussed under a similar restriction on t.

#x) We restrict our attention to real unstable (metestable) particles.
Our assumptions mey not be fulfilled for scattering resonances.
However, time evolution of & rescrance as 8 separate object can-
not be studied experimentally (us noticed by many authors, parti-
cularly in Ref.11) @nd even associating some &h with 1t is a
speculative matter.
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particle Kc(lr)ﬂ'/z particle Kc(HP)-1/2 particle Hc(MF)’1/2
[cm] [em] [cm]
& 1.aixi07t 2*  1.05x107° n 0.763
T 1.2x10°8 2% 6.03x10°10 A 3.74 <1077
7 1.3x10""! ¥ 353 %1077
K 3.85x107° 22 saxie??
Ky 3.26x1077 2 2.1 %1077
K, 7.85x107° 2% s.6x10"7
¥ 1.7x10°8 & g
°  1.2x1078 &~ 1.70 x10~7
F 8.0 x1078 At 5.3 x 1072

Notice finally that tke above considerations apply to the "“co-
ordinate" part of the wave function only. If the part of the decay
problem related to internal degrees of freedom cennot be decomposed
fully, we have dim 3%.> 1 even in the sense of the discussed appro-
ximation. So for neutral kaons, e.g., the space 3& is effectively
two-dimensional provided the conditions (33) ere velid.

Decay of a moving particle

We are obliged to show that the proposed description by means
of the representation (12) and its restriction to = subspace of the
type (31) will yield a correct result for sn unstable particle which
is not at rest. Let a reference frame S belong to the observer,
end suppose the rest system of the perticle to move with a velocity

respectively to S , as it 1s sketched on the figure. Of course,
%e mey not only sandwich the propagator between U(Asz,0) 5 simi-
larly as & simple-minded look on the factor which multiplies the ti-
me variable in Lorentz transformation does not yield the time dila-
tation. From the viewpoint of the reference freame S , we are inte-
rested in the space time shift on x =(t,§t) + If the condition
(33a) is vslid, i.e., if we are sllowed to characterize the particle
by a single vector ¥ €gf which refers to its rest system, then the
observer will ascribe to it the vector U(A;,()J"y, . The correspon-
ding non-decay amplitude equals

12

- - 34)
V(4 A) = (U(Ag,0) WL UL OUAR, 0T ) (

Using the relatione (5) &nd (13), we may rewrite (3%4) as follows

v(t; ) = (P U(TAgx)Y) =

8 oc d3 ) o ik
= jg:a gﬁ dm J; ;?;§:g§3773 exp{-lp.ﬁzx} |@3(m,p)[ .
= (] R

i Azx = (t(1 ﬁ2)1/2 0) so
However, the Lorentz transformation gives Fx = (t(1~- 5

vtif) = vis-fHVEE) . (35)

This provides us the relation

B = g (36)
Rsp) = B0-g 55

which is valid as far as the gpproximation identifying the decay law

with the square of (34) may be used. The relaution (36) is, of course,
the desired result. It is tested by numerous experiments ; and it was
even used for a direct proof of the relativistic time dilatation from
cosmic-ray muons thirty years ago (cf.Ref.25, section IV.4.3).
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http:cf.Ref.25

Concluesions

Let us compare the above discussed description of unstable par-
ticles with the one based on non-unitary representations of .? . We
have already mentioned the Williems construction 13/ of minimal uni-
tary dilation for the non-unitary representation proposed by Zwanzi-
ger/3/. He obtained the Hilbert space (10) with m0=<-oo and a uni=-
tary representation T of P on éf which coincides with (12) when
transformed by means of (11). The principal difference concerns the
choice of gf ! the Zwanziger 's representetion is recovered by pro-
jection of U +to the subspace

- wnrer’®’,a’k/2k) @ ¢! (37)

where f(m)=(22/P)'1/2(m—m+%!')-' :

Williams himself regarded the below unbounded mass spectrum as
the main defeet, but it can be rectified by a mess-filtering procedure
without any observable consequences/21-23/f essentially the same ar-
gument we have used through the condition (16a). Except of that, in
a theory pretending for completeness the function f should be ob-
tained as a solution to the dynemical problem, with the Breit-Wigner
shape of |f(.)|2 resulting from the pole approximetion to this so-
lution. However, it seems thst we will not have such a theory soon.
In spite of & substantial progress echieved in the perturbation theo-
ry of embedded eigenvelues during the last decade ’), one can hardly
proceed beyond the Fermi golden rule since even finding of the "un-
perturbed" eigenvalues represents & difficult problem for the theory
of strong interactionms.

A difference between the two approaches is now obvious. In both
of them, it is only the mass distribution which is essential for ex-
pressior of the decay law, while effect of the momentum (velocity)
dependence of the weve function ie suppressed. In the approach trea-
ted here, this conclusion is obtained by reslizing that the momentum
distribution is actuzlly very narrow L . On the contrary, with the
cheice (37) the mentioned independence is echieved because it makes
all velocity distributions possible. Both the approachee

&) Cf., e.g., R»fs.26,27 , end s more complete bibliograrhy in
Ref.26, notes to section XII.6 .

fk) This faet was already noted, particularly in Ref.11 . However,
the main problem is to use this observation to prove thet the
decay law defined naturally by (3a) may be approximated by the
much more simple expressions which follow from (3b) and (30b).
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yield the eame decay law, elmply beceuse they hsve been conatructed
gso. However, the first one has the sdvantage of producing the trans-
lationally-invariant description.

One might say, that in & subspace ah of the type (37) a lot of
space is left unemployed. The present qualitative considerations show
that one really needs only

F = sore 12(n,,%k/2k ) 0 €251, (38)

where & >£/M . The subspace ayb" cC& isomorphiczto (38) through (11)
is "intermediate” in & sense between (31) and aru referring to (37).
For &ﬁ , one cen derive & conclusion about the effective one-dimen-
sionality with more ease. On the other hand, (38) is rot longer trans-
lationally-invariant, though the violation is manifested on large die-
tances only t‘).

Finally, let us mention thet frequently the possibility of neg-
lecting P-spread of the weve function is even better then the condi-
tion (33b) together with the table show. We heve in mind the situati-
ons when the unstable particle suffers repeated non-decasy measure-
menta/20,23/' e.g., by monitoring its track. Since the decey staris
anew after each measurement (which has given the positive result),
we need not require (24) to hold for times comparable with P’1 but
merely with the mean time between the neighbouring measurements which
is usually few orders of magnitude shorter. As &n example, consider
the decay of charged keons treated in Ref.23 : there the mean time
between measurements is ~1074P~1 | Instesd of (33b), we obtain
then the condition a:;)alo“acm , but actually the kaons are locali-
zed within the range of bubble dismeter, i.e., about 10%cm . Simi-
lar conclusions may be obtained for the other unstable particles and
track-monitoring devices too. On the other hand, the conclusions about
the effective one-dimensionality of Jﬂl can be used to justify the
basic reduction postulate of the repeated-measurements theories.

#) Of course, the condition (33b) does not really require the momen-
tum (velocity) distribution to be supported by some ball. In order
to take possible tails of these distributions into account (pre-
serving at the same time translational invariance of J%) y 8 ma-

thematicully more sophisticated trestment is needed ; we hope to
discuss it elsewhere.

#4) Assume again the condition (16a) to be fulfilled. Then it is easy
to see that the non-invariance becomes essential for ﬁ_1(9/M)aAp

21, i.c., axz(NA)ag . Thus if ¥/ 2107 and 84q=10""cn , we
get az 100 km .
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