





1. Introduction

_ Most of theoretical interpretations of data on NN and
NN interactions is based on the use of the one-boson-
exchange model. In this model, as the one-boson-exchange
potential (OBEP), describing the nucleon-nucleon forces,
the matrix elements of the relativistic scattering amplitude
in the second order in the coupling constant are taken.
However, this Born approximation in the form given by
quantum field theory based on the four-dimensional co-
variant formalism little resembles the usual form of
quantum-mechanical potentials and reduces to them only
in the nonrelativistic limit /17,

On the other hand, it is known/2/  that transition
from the nonrelativistic theory to relativistic one is
equivalent to the change of the Euclidean geometry of the
three-dimensional space of 3-velocities by the Lobachev-
sky geometry*, Methods of the Lobachevsky geometry
have been employed in papers /45/ to describe the proces-
ses of collisions of relativistic particles. In doing so, it
has been found that application of the Lobachevsky geo-
metry allows one to pick out an ’’absolute’’ part of the
theory, i.e., such a part that does not depend on the geo-
metry of the velocity space and has the same form both
in the nonrelativistic region and in the relativistic one /5/.

A question naturally arises whether it is possible to
comprehend also the matrix elements of relativistic
scattering amplitude from this viewpoint. These elements
can naturally be written in the Lobachevsky space as the
condition for the particle momenta to be on the mass shell**

+The three-dimensional covariant formulation of quan-
tum field theory with the momentum space of the L l}a—
chevsky geometry has been obtained in papers/3/

**We are using the system of units where f = ¢ = 1,
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defines the three-dimensional surface of the hyperboloid
on the upper sheet of which the Lobachevsky geometry is
just realized. In the present paper we would like to show
that by using a method suggested in/6/  for describing
the matrix elements of the scattering amplitude in terms
of the Lobachevsky space, the relativistic OBEP can be
shaped into the direct geometrical generalization ofquan-
tum-mechanical potentials. And here the important role
belongs to a quantity named ’’the half-momentum transfer’’

which is an analog of the ’’half-velocity’’ of a particle,

introduced by Chernikov /5/ .

2. The Scalar Boson (Pseudoscalar) Exchange

Consider first the cases when the interaction proceeds
through the exchange of a scalar or pseudoscalar particle
with mass ;. This process is described by the Feynman
diagram drawn in the figure.
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The scattering amplitude in the second .order in the
coupling constant g is given by the expression
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The current-matrix elements in (2)
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can be transformed to the form local in the Lo_bachgvsky
space. For this aim we pass to bispinors defined in the
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The four-row bispinor transformation matri.ces Sp cor-
respond to boosts A, . These transformations do not
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compose a group: their product is not the pure Lorentz
transformation on the resulting vector but contains also

the rotation describing the spin Tomas precession (the
Wigner rotation)
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Now let us introduce the following notation for 4-vector /7/
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In the nonrelativistic limit the vector A - l:(—) P re-

duces to the ﬁusugl difference of two vectogs in the Eucli-

dean space A, - k - p . Thus, the vector A=k(-) p of the
Lobachevsky space can be treated as the relativistic
generalization of the three-dimensional Euclidean vector
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of momentum transfer Ag= K - p . In the spherical coordi-

nates
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formula (6) turns into that of addition of the hyperbolic
angles in the Lobachevskytrigonometry (see,e.g., ref./7/ )
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In the space of particle velocities which is the Loba-

chevsky space 74,5/ an important role is played by the
concept of particle half-velocity 5/, wWe define an analo-

gous quantity called half-momentum transfer in the follow-
ing way:
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In the nonrelativistic limit e turns into ze > g€, = 5

The 4-vector of momentum transfer squared is expressed
through 3¢ by the formula
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Note that the explicit expression for the bispinor tran‘s—

formation matrix contains just the particle half-velocity
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Therefore, it is easy to show with the help of (5) and
(8), that the matrix elements of currents (3) and (4) are
expressed via the components of vectors of the half-mo-
mentum transfer vector 2@
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Equations (10)-(12) allow one to write the amplitude )
in the form:
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The amplltudes (14) and (15), due to their dependence
of the vectors A=k(-)p gr, as the same, on the vector
of momentum half- transferx are local in the Lobachevsky

space. In extracting an information on two-nucleon inter-

actions from quantum field theory one usually employes
the potential /8/ in the c.m.s. having the form (p, =
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which can be obtained from (2) by passing to the nonrela-
tivistic limit. The denominator in (16) is the Yukawa

potential. Comparing (15) and (16) it is seen that the
relativistic amplitude (15) has the form of a direct geo-
metrical generalization of potential (16) obtained by chang-
ing the Euclidean geometry with the Lobachevsky one.
Consequently, it can be said that after separating the
Wigner rotation, which is due to the relativistic spin
kinematics, out of the Feynman matrix element (2), the
remaining part has the ’absolute’’ geometrical character.

Expression (15) can be written in terms of the relati-

vistic spin-vector W/ (3), introduced in /%/
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In virtue of the condition
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only three components of vector (17) are independent.

The vector WH(p) can be obtained by the pure
Lorentz transformation of it inthe restframe of a particle
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Taking into account relations (19), (20) and definition (16)
of the vector of momentum transfer A inthe Lobachevsky
space, one can easily see that the equality
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is valid.
From (21) and (18) the important equahty
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follows.



If one takes into consideration that the relativistic spin
vector has an extra component ruled out by condition (18),
the transition from the four-dimensional scalar product
to the three-dimensional one by formula (22) is equivalent
to the use of the Foldy-Wouthuysen transformation. Equa-
lity (22) also determines the connection of the obtained
three-dimensional parametrization of currents in the
Lobachevsky space /6/  with the general parametriza-
tion of currents in terms of the 4-vector of relativistic
spin WH(p), proposed by Shirokov and Cheshkov/10-11/

The role of the Wigner rotation entering into expres-
sions (10) and (13) consists in ’’transferring’’ the particle
spin indices from the momentum k ont/) a n}omentum

in the terminology of the authors of /1°~!!/(see also
refs./12-13/ ) Therefore, inthe c.m.s. all the spin indices
01,09 and o), 0 g in (14) and (15) are ’’sitting’’ on
one and the same momentum p , i.e., under the Lorentz
transformations they transform according to the small

- group of this vector. As is shown in , in using expres-

sions (2) as the quasipotential in the quasipotential equa-
tion the Wigner rotation in (13) transfers all these spin
indices in the equation onto one momentum 3 ,6and,as a
result, the interaction is described by quasipotentials
(14) and (15) local in the Lobachevsky space.

3. Vector-Meson Exchange

In this case the interaction Lag_rangian is as follows:
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In the second order in the coupling constant the matrix
element of scattering amplitude corresponding to this
Lagrangian has the form
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is the nucleon vector current.
Consider now the amplitude (24) assuming for the mo-
ment the constant fy; = 0. In formula (25), similarly to

(3) and (4), we perform a transition to bispinors in the
particle rest frame
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current (26) can be represented in the form analogous

to (10):
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where using the explicit form of the matrix Sk(-) p in
(26), we obtain
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Thus, after substituting (28) into (24) we find that the
matrix element of the scattering amplitude for the vector-
meson exchange can also be represented in the form
(13). In doing so, for the amplitude
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in the c.m.s. P1=—;2=5;k1=—k2=k with the help of
(28) we obtain the expression
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Now let us explain the meaning of expressions entering
into (31). The first term corresponds to the interaction
of spinless particles and is the relativistic generalization
of the Yukawa potential. The second term describes the
spin-spin interaction, the third term the spin-orbital one.
The third line contains the terms describing the contri-
bution to orbital motion. The latter term in (31) can be
expanded in the following spin structures
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In the nonrelativistic limit, when the curvature of the
Lobachevsky space tends to zero and the space becomes
the Euclidean one, expression (31) up to the terms of the

order i2— turns into:
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Expression (32), i.e., the last line of (31), vanishes
due to proportionality1/c* in the nonrelativistic limit
of (31) if it is taken up to the terms of an order 1/c 2 .

Next, let us examine the part of nucleon current (25)
which contains the tensor interaction
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After passing in (34) to bispinors in the particle rest
frames we arrive at the expression
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Applying formula (27) makes it possible to get the equality
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is constructed by analogy with oY (23) but instegd
of the y* - matrices the relativistic spin vector W/ (p)
is used. Allowing for (29), (35) and (9) the nucleon current
(25) takes the form
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Here we have denoted by g g() , by analogy with the
Sach’s “’charge’’ form factor ¢ (t) , the following
combination of constants E
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By using eq. (27) and the relation yEy Vs yVytaogh jt

is easy to obtain the equality
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the use of which allows us to represent the operator
(36) in the form
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Applying of (40) to (38) results in the form of the nucleon
current
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analogous to (29): Substituting (41) into (30) we obtain in
the c.m.s. the following expression for (24)
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Cobrdnpar\;ng (43) with (31) we may conclude that mcludu_lg
the term with o #Y into the current only results in

an essential change of the part of the amplitqde which
describes the orbital motion. In other expressions only

the change of the coupling constant g%». gh takes
place and the spin structure of the amplitude remains
unchanged.

The above consideration allows one to state that the
parametrization with the use of the Lobachevsky _space
makes it possible to represent the Born approximation fqr
the relativistic scattering amplitude (i.e., the matrix
element corresponding to a vector-particle exchange) in
the form of a direct geometrical generalization of quantum
mechanical potentials derived by changing the Euclidean
quantities by their analogs in the Lobachevsky space.
Expressions (33) and (31) are similar in form (of course,
without the last term of (31)) and differ only in the geomet-
rical nature of their quantitiesje and je,. Therefore,
our method allows one to obtain some terms of ’absolute’’

geometrical nature from the ’’dynamical part’’ of (24). One
might wonder what is the reason that the half-momentum
transfer )¢ rather than the momentum transfer A =k(-)p
is a more suitable quantity in the relativistic geometrical
generalization. To answer this question we consider an
analogous quantity, the particle half-momentum
mp = 7e7) =(M ch xp/2 ;Mﬁpshxp/z )

In the nonrelativistic limit, the energy of a particle
moving with momentum 7 is

2 2 b’ 2(n)? (44)
Pp=VM +p =M+2—=M+-—~M——;‘n3=p/2.

On the other hand, the exact expression for the relati-
vistic energy in terms of the half-momentum looks like:
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also holds for A ., Thus, it can be said that the half-mo-
mentum (or half-momentum transfer) is connected with the
particle kinetic energy equal to the part of the total
energy without the rest mass W, =p,-M. Itis just the
kinetic energy (and not the total one) which has the non-
relativistic analog, and only this one can be generalized
in a geometrical way. It is seen from (44) and (45) that
this generalization is achieved by introducing the half-

“momentum parameter which makes it  possible

to give the ’’absolute’’ geometrical form /5/ to the

_particle kinetic energy. The half-momentum transfer in

(46) plays the role of the particle half-momentum 7, in
(45). Consequently, just the quantities of kinetic nature
can be generalized geometrically, i.e., they have the
7’absolute’’ character.

In this connection, we note that the explicit form of the
functions p!/2 {V‘I(Ap, k)}decribing the Wigner rotation
is the most simple one just in terms of half-momentum of

17



particle 7, . Thus, the complicated in the form ex-
pression /?
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written in terms of 7 p looks as follows:
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4. Conclusion

To complete the paper, we briefly summarize our
consideration. As las been shown, the transition to
quantities in terms of the Lobachevsky geometry allows
one to represent matrix elements of the relativistic scat-
tering amplitude in the form of direct geometrical gene-
ralization of the quantum-mechanical potentials: in the
’absolute’’ form /5/, This makes it possible to say
that the matrix elements of the relativistic scattering
amplitude in the second order in coupling constant (or
rather their part of the order 1/c 2  inthe nonrelativistic
limit) could be obtained by direct geometrical generaliza-
tion of the corresponding quantum-mechanical potentials.
Therefore the developed here formalism can be used for
a phenomenological description of interactions of elemen-
tary particles and bound state system in the relativistic
energy range in the cases when there are difficulties
connected with application of the methods of relativistic
quantum field theory, but the nonrelativistic quantum-
mechanical potentials, describing qualitatively the fea-
ture, are known.

‘The corresponding relativistic potentials can be obtain-
ed by the following recipe: at the beginning, it is necessary
in the nonrelativistic pitentials taken in the momentum
space, to make transition from the momentum transfer

to the half -momentum transfer ,;ZE - kz_ P and then

to replace the nonrelativistic half-momentum transfer
7 r by its analog in the Lobachevsky space by formula
(8). To obtain the relativistically covariant expression
it is also necessary to multiply the obtained expression
by D!/2 function describing the kinematical Wigner rota-
tion.

Note that unlike the Foldy-Wouthuysen method, the
transition from (24) to the three-dimensional expression
(31) has been achieved in an equivalent way without
expanding in powers ofv /¢ 2 and losing the relativis-
tic terms. In particular, in (31) there entersalso the term
(32) of the same order in 1/M?2 as the remaining
terms of (31) (however, the term (32) is not present in the
nonrelativistic expression (33) due to its proportionality
to 1/c4).

The obtained forms of the relativistic OBEP are
suitable for their use as potentials in the quasipotential
equations, since the momentum space of these equations
is the Lobachevsky space /7/ .

The author thanks V.G.Kadyshevsky, N.A.Chernikov,
V.A.Meshcheryakov, R.M.Mir-Kasimov, K.O.Oganesyan
and L.I.Ponomarev for useful discussions and interest
in the work.
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