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1. The rapid increasing of information on high energy
multiparticle production requires an ordering process
of the data as a first step to understanding and explana-
tion of the involved phenomena. Ny

Recently, Koba, Nielsen and Olesen using as input
information the data onhigh energy pp-collisions, propos-
ed the following relations

<nq > B
<n>;—' - qv q=1,2,3,... (l)
and
v n
<> —= » ¥ o, ), (2)
g 8+ <n >

where C_'s are independent of s as s increases. Here o,

is the topological cross-section for the processa+ b - n
charged + any neutralatthec.m.energy s!/2, o - 3 o,

is the total or inelastic cross-section, <n> is the average
multiplicity and <p9 > is the qth order moment of
the multiplicity distribution. Althougn the original deriva-
tion of relations (1) and (2) is founded on some question-
able assumptions, namely the validity of Feynmam scal-
ing/2/at x= 0 (x=2p /ys~ and p is the lon-
gitudinal momentum of the corresponding particie) and a
deliﬁate uniform convergence process (see, e.g., Nara-
yan/3/) the analyses performed by Slattery /4/ and
Olesen /5 showed that (1) and (2) are in. good agreement
with the data on p-p scattering for laboratory momenta
between 50 GeV/c and 300 GeV/c,



This early onset of the KNO scaling is an intriguing
question and for atter}lpts to explain this phenomena we
quote the papers Subsequent analysis showed that
KNO scaling is consistent, with the present available
data on high energy n-N collisions/ 1O/and Pp col-
lisions /11/

H

to be universal. For a recent review ?f the status of
KNO scaling (theory) see, e.g., Olesen /

The purpose of this paper is to present a modei-inde-
pendent qualitative discussion on KNO scaling. In this
respect, we shall utilise some results in the theory of
moments and complex variable theory to obtain qualita-
tive indications on the onset of KNO scaling and the beha-
viour of the function ¥(>2<-) .

2. Our starting point is the generating function
o g .
Q(Z,Y) = X zn__l.l_, (3)

n=10 a
where ; is a complex parameter,} z|<1 ,and y =alns
is the rapidity variable. As defined Q(z, Y) is an entire
function of the variable =z , but let us remember that
unitarity requiresthat o -0 foranzN=ys ,l.e,
Q(z,y) is in fact a polynomial in z . We shall come
back to this question in what follows. For subsequent
purpose it is useful to write Eq. (3) as follows

00 q
Qz,y) =exp 3y ozl (4a)
, q=1" 9 g
0 q
=exp = lz - 1) , (4b)
q=1 4 q!
where xq's are the cummulants /147 and fq’s

are the well-known integrated correlation functions. The
X q 's are defined as

Xq= <(n—<n>)3 >
(5)
X4= <(n-<a>) > - 3x§, etc.
Using the identity
[exp(fnz) -11% = 3 .‘ETZ)_E (s, (6)
¢=x 9: a

)

wher (S) x are the Stirling number of the second
kind/15/ one obtaines
_ q '
- (k)
X K{]fx (S)q ] (M
From the relation (7) one observes that
f_  ’'s have the same asymptotic behaviour,

Now we shall consider the following inequality/ 16/

Xq 's and

lqu < g% <|n —<n>|‘l >, 9 =1,2,3, (8)

from which one obtains
qui <£q% <|n9 - <> >
< g <n9> 4+ <pn>9)

<_qq<n>q(cq+ 1), q=1,2,3,..

<nl >
where C, = -~ 4 - 1,2,3,.. .Therefore,
<n >q1
X
_—
Cq2 — -1, q=1,2,3,.. (9
N |
It |x,| = byl <n >4, {i.e., there are long-range ¢
.e., - 0 -
lation’ then ' 8 8 rre
Cq > const., q =1,2,3,.. (10)
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More appropriately it is to consider that

lquf_ |bq |<n>1 +|b(ql) i <n> a=1 +...+|b(q_'”|<n>,

(11)

i.e., there is a mixture of long-range and short-range
correlations In such a case

1 (12)
) ———— = [N
Cq_const+0(_<n>), q=1,2,3,

At this moment some comments are to be made:

i) One observes that KNO scaling (Eq. 1) interpreted as
an extremal realization of the inequality (10) holds irres-
pective of the validity of Feynman scaling at x> 0 .
in essence, Eq. (1) may be considered as a consequence
of certain properties of moments and correlations.
ii) Strict KNO scaling is in contradiction with a polyno-
mial generating function. This may be easily seen using

Qlz,y) = °§1 <HQ>.(L':]_,2_)_ (13)
q=
~and Eq. (1). A similar cc)}lclusion has been previously
derived by Chodos et al.
With these resulis at hand we shall proceed now to
study the behaviour of the function q;(___..)

3. Firstly, let us consider the Wroblewski relati-

<n >

-5 = const., (14)

where

D= <(n—<n>)2 >1/2

One may easily show that (14) implies

*For a recent discussion on Wroblewski relation see,
e.g., Cohen/20 /.
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i.e., the probability distribution displays a maximum for
x> 1, Let us consider now strict KNO scaling (Eq. 1).
Using

a
<p%> = 3 1 -2
B a - o

y 4 = 1: 2, 3, avs

one obtains
O‘h C
<%, q=1,2 3 .. (16)
o x

We are faced with the following (interpolation) problem.
Find a function P, {x) such that Pn(x).s-%‘L,uq.—-l.z 3.
X

"

x €(0,=)and [(C.I} is monotonously increasing with
q - The answer to this problem is the following 720/

There is 3 function p(y) E Qfe)(y) -u? where

n=0
a>0 is an appropriately constant andQ(:)(x)are arbitrary
polynomials in x such that '

|Pn(x) - P(x)] S«

Here ¢ 1is an arbitrary small positive constant. The func-

tgm (l;’ (x) may be also approximated by P(x) =3 0(‘8)( e B X
>0,
but the analyticlty and convergence properties are better
when one considers P(x). The normalization condition re-
stricts to a certain extent the arbitrariness of the poly-
nomials Q2 (x) (¥ .

One observes that the answer to this problem can g/lv?
a justification for the function considered by Sla}tery
and more generally for Polya-type distributions

4. Now we shall consider the “inverse problem”,
i.e., what results shall we obtain if we start with the
Eq. (2). Firstly, let us observe that Eq. (2) may be also
writtem as



P, = f dx ¥(x) 8(n<x<n>), x =B, (17
o <n>
ie.,, K may be considered as a Radon-like-trans-

form 72224/ of ¥(x).

Now, in order for (17) to be well-defined we shall
consider that ‘}'(x) belongs to & (the space of rapidly
decreasing C™ -functions). The unitarity supports such

an assumption for ¥(x) .If ¥(x)<§, following Gel'fang
et al.’23/  we form

[(<n>) = f ¥(x) (x<n>)? dx=<n>qCq,q=1,2,3,...(18)

Iq(<n>) 15 clearly a polynomial in<x> of degree ¢ 4
On the other hand,

[4(<n>) = f Pyn? dn=<a%>, q=1,2,3,.. (19)

From the above observation and the relation (17) one may
conclude that in order for P, to be the Radon transform
of a function ¥(x)& & it is necessary that F & §
andof P, n%dn°  be a polynomial in <n> of degree
<q, for all q (Obviously, if ¥(x) has compact sup-
for)t it follows from (17) that P has compact support,
00

Now let us see what are the concequences of the rela-
tions (18) and (19). Eq. (19) implies

<n9>=C <n>94+C q-1 C C .
n 9>, Cfi n> +Cq_l<n> + e +C1<n>+C0,(19)
where Cq 's are constants independent of 3 ,There-

fore
C <m>? =C <u»9 4+ C <n>971 4 C C
q q g=1 <0 +...+Cl<n>+C0
i.e.,

C, =E+0(-1—) q=1,2,3, (20)

Hence Eq. (2) implies in the first approximation Eq. (1).
To conclude the paper we shall briefly discuss the

problem of early onset of KNO scaling. In this respect we
shall write the probability distribution in terms of the
generating function

P, = s [ e~int Q1) dr, (1)

. 2
-
Now a well-known result in the theory of moments/ 16/

asserts. thatlf
<n> <w,qel, 2, 8 | (22)

then one has |
Q) = exp q%‘ll‘;—;f X, 7+‘0(|_z|'+ Ly, 29)

Obviously the probability distribution must be sufficiently
smooth and vanishes sufficiently fast as n - », so that
the inequality (22) is satisfied and the formal manipula-
tion' (21) is permissible. To meet these requirements we
shall again assume thatP < $ . From the relations (21)
and (22) one can write

=l oo Gin? d
P, iy fn + & o Xq ) dt. (24)
Therefore
<a> . 4G
Wix,e) = A [ expleixes 3 ML Xa g ca5)
T —p<n> q=1 q! <n>1

1

A similar relation has been previously derived by Wein-
garten/8/ in terms of density correlations of the had-
ronic gas. However, he utilised rather an ambigous
assumption of fluctuations of the density of (charged)
particles in order to truncate the series in (25).

Now if we consider ¥(x,s) be a smooth function
(more precisely ¥« &, ) and o



lim ¥ (x,8) = ¥(x) (26)

then taking into account the above-derived results one
can write

A .
IORER [ o (i s Ut Koy @n

q!  <p>i
where A is an appropriately defined constant which
depends on the domain considered for the variable x .
The relation (27) suggests an interpretation of the early
onset of KNO . scaling, without considering Feynman
scaling and fluctuations of particle density, The results
of the paper are summarized in Fig. 1.

Long range correlations 4
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< )

R
) <n >
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Fig. 1
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Appendix

Here a discussion will be presented on the possible
connections between KNO scaling and a scaling relation
propos?d by Bander/25/, Utilising the fluid-analog mo-

del /2 Bander proposed the following scaling relation

9 —s n Al

a<n>g“ 2 <pdawx P(<n>)’ (A1)

where p ( <“>) is the ’’presure’’ function defined as
n

plz) = tim 2 0(z.v) | (A2)

y-+ o Y

Although Bander concluded that KNO scaling and his
scaling relation are inconsistent as they are derived from
different assumptions, we shall show that KNO scaling
always implies the Bander relation. We start with the
relation

a_n + 1 qf n )

a <> a0 <n> <n>

and we shall assume that <n> is a continuous variable.
Therefore®* :

_d_ 0= _ X d ¥y _ 1 < = 0
d<p> B <n> dx <n>’ <n> '
i.e.,

= 1 - 3 fn "p(x) - = 1__ ¥ . (A3
p(x) <n>( dfh x 1 <n> (x) ( )

We obtained the following result. If the multiplicity
distribution behaves like = >‘P(x)when <n> -+, then
the pressure function behaVes like >+s ¥ (x) in the
same limit. One can show that the F’density” function

dp
ofn z

displays a similar behaviour, i.e.,

plz) =

* Here we have assumed that we can neglect, in the
first approximation, the <> dependence of , .,

0



1
plzys) — —=¥(x). (A)
where ¥, (x) is defined in terms of ¥,(x) .

Now let us consider a short-range correlation model,
e.g., the Poisson distribution. In such a case one may
easily observe that the Bander relation isnotan asympto-
tic one, i.e,,

cn s +1 =<n>
¥(x,s) = s : (A5)
n:
Using the relation (A3) one derives*

p{x) = {x-1). (A6)

The same result is obtained if one utilises the Bander
relation (Eq. (Al)). The same conclusion may be derived
for any other short-range correlation model. One may con-
clude that the Bander relation is equivalent to KNO scaling
for the pressure function. (in the case of short-range
correlations).

Let us go further and consider a long-range correla-
tion model, e.g., the geometrical model. In this case

a

N o - n
<n > —_— = -
o <n>::c © » X <n > (A7)
where
f_ll = <l'|>n (Aa)
g (<n> + 1)+

From relation (A3) one obtains

1
<n >

plx) = {(x =1}, (A9)

On the other hand, using the corresponding generating .

function

*More precisely,
p(x)=(x-—1)9(x-—l) (A6")

12

Q(z,y) = 5 20 2% - 1 (A10)
R0t T T Tr <m0
and relation (A2) one has

plz,y) =~*—YLﬂn[1+<n>(1—z)]- (Al11)
The convergence of Q(z,y) requires

1

Ss +l>z20. (Al12)
Therefore in the limit <n> -+ = » plx) 2 2c(x-1) .

It is interesting to note that the same resii may he
obtained using formally the Bander relation. In conclu-
sion one may argue that there is no inconsistentcy
between KNO -scaling and the scaling relation proposed
by Bander. However, the former relation is more general
and always implies the later one.

- An Interesting question would be the following. Starting
with the Bander relation what can we say about the KNO
scaling? One may observe that this question is connected
with the behaviour of the number density.
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