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1. The rapid increasing of information on high energy multiparticle production requires an ordering process 
of the data as a first step to understanding and explana­
tion of the involved phenomena. 

Rec~nUy, Koba, Nielsen and Olesen /I/ using as input 
information the data on high energy p p-coll1sions, propos­
ed the following relations 

<n q > =cq' q=l,2,3, ... (1) <n > q 

and 
(1 

<n> -•- - 'I'<.-"-) , (2) a s-+oo <n > 
where C 's are independent of s as s increases. Here "• 
is the toPological cross-se~tion for the process a + b ~ n 
charged+ any neutralatthec.m.energy •1/ 2 , u = ~ "• 
is the total or inelastic cross-section, < n > is the average 
multiplicity and < nq > is the q th order moment of 
the multiplicity distribution. Althougn the original deriva­
tion of relations (1) and (2) is founded on some question­
able assumptions, namely the validity of Feynmam scal­
ing/2/ at x-::. o ( x = 2p ;..;.- and p is the lon­
gitudinal momentum of the corresponding particle) and a 
deli5ate uniform convergence process (see, e.g., Nara­
yan 3 I ) ~e analyses performed by Slattery 14 1 and Olesen '/s showed that (1) and (2) are in. good agreement 
with the data on p- p scattering for laboratory momenta 
between 50 GeV /c and 300 GeV ;c. 
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This early onset of the KNO scaling is an Intriguing 
question and for atte~pts to explain this phenomena we 
quote the papers 16 - 9 • Subsequent analysis showed that 
KNO . scaling Is consistent, with the . present available 
data on hi~h energy rr- N collisions / 1 o land ji p col­
lisions /ll' , respectively. The functiun 'I' ( <: > ) .seems 

to be universal. For a recent review of the status of 
KNO scaling (theory) see, e.g., Olesen /1 2 /, 

The purpose of this paper Is to present a model-inde­
pendent qualitative di~cusslon on KNO scaling. In this 
respect, we shall utilise some results in the theory of 
moments and complex variable theory to obtain qualita­
tive indications on the onset of KNO scaling and the beha­
viour of the function 'I' ( < ~ > l . 

2. Out' starting point is the generating function 
~ a 

Q(z,y) ~ k z 0~ (3) 
n=O a 

where • is a complex parameter, 1 • 1 < 1 , and r " • en • 
Is the rapidity variable. As defined Q ( z , y) is an entire 
function of the vartable z , but let us remember that 
unitarity requires that an ~ 0 for n;, N ~ ,;--;- , i.e., 
Q(z, y) is in fact a .polynomial in z • We shall come 
back to this question in what follows. For subsequent 
purpose it is useful to write Eq. (3) as follows 

~ (fn l" Q ( z , y ) ~ exp ~ x ~ ( 4a) 
q~1 q q. 

~ ( z - l l" 
~ exp ~ f ---

q ~ 1 q q! 
(4b) 

where x q 's are the cummulants / 14
/ and fq 's 

are the well-known Integrated correlation functions. The 
x 's are defined as 

q 

x1~f1~<n> 

X 
2 
~ <( n - < n >) 2 > 

4 

I 

I 
I 

X 
3 

= <( n - <n >) 3 > 
(5) 

x,~<(n-<n>l 4 >- 3x~. etc. 

Using the identity 

[ exp(fn z) - l]" 

(K) 

}; (fnz)q (sf•>' (6) 
q=K q J q 

where (S)q are the 
kind /IS/ one obtaines 

Stirling number of the second 

q 
X ~ ~ f (S)(K) 

q K=JK q• 
(7) 

From the relation (7) one observes that x 's and 
r q 'shave the same asymptotic behaviour. q 
. Now we shall consider the following inequalityl16 / 

I X I .$ qq <I n - < n >I 'I > , q ~ I , 2, 3, ... (8) . q 

from which one obtains 

lx I< qq <lnq -<n>ql> 
q -

O.qq(<nq>+<n>q) 

<qq<n>q(C: +1), q~1,2,3, ... - q 

where C q ~ ~2.-
<n > q 

lx • I 

q ~ I, 2, 3, .... Therefore, 

c q > 
- qq ·: n >Ci 

- 1, q = 1,2,3, .•. (9) 

If lxq I~ lbql <n >'1, 
lations then 

i.e., there are long-range corre-

C q ~ canst., q = l, 2, 3, •.• (10) 
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More appropriately It is to consider that 

\xq\;::: \bq \<n>q +\b(:) \<n> q-l + ••• +\~q-1)\<n>, (ll) 

i.e., there is a mixture of long-range and short-range 
correlations. In such a case 

1 Cq> const+O(--), q=l,2,3, ... 
- .<n> 

(12) 

At this moment some comments are to be made: 
i) One observes that KNO scaling (Eq. 1) interpreted as 
an extremal realization of the inequality (10) holds irres­
pective of the validity of Feynman scaling at x ~ 0 • 
In essence, Eq. (1) may be considered as a consequence 
of certain properties of moments and correlations. 
ii) Strict KNO scaling is in contradiction with a polyno­
mial generating function. This may be easily seen using 

Q(z,y)=i<nq>(enz)q (13) 
q=l q. 

and Eq. (1). A similar /ofclusion has been previously 
derived by Chodos et al. 17 

• 
With these results at hand we shall proceed now to 

study the behaviour of the function 'I' ( ..!..-) . · 
. . <n > 

3. Firstly, let us consider the Wroblewski relati­
on /18/• 

<n > -u-- =. const., (14) 

where 
D = <(n- <n>) 2 > 1/2 

One may easily show that (14) implies 

• For a J:ecent discussion on Wroblewski relation see, 
e.g., Cohen 20 /. 
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a;, a n (15) --< , x=--, a>O, 
u - ( x _ 1)2 <n > 

i.e., tile probability distribution displays a maximum for 
,. ::; 1 • Let us consider now strict KNO scaling (Eq. I). 
Using 

a 
<nq > a I Dq -•- , q 

n a 

one obiains 
(/• c 

1' 2, 3' ••• 

-·- .< _.9_' q = 1, 2, 3, ... u· - xq 
(16) 

We are faced with the following (interpolation) problem. 
c 

Findafunction P. (x) suchthat P (x).;S . ..:.i.,.Fl,2,3,. .. , 
n xq 

x " ( 0 , ~) and I C q l j is monotonously increasiQg with 
q • The answer to this problem is the following/20 I 

There is a function p (X) = i o<.a) ( X) e -a x2 where 
n=O 

a> 0 is an appropriately constant andQ(al(x)arearbitrary 
n 

polynomials in x such that 

\P
0
(x)- P(x) I$<· 

Here < is an arbitrary small positive constant. The func­
tion ·P ( xl may be also approximated by P( xl =I(}~\ x) e - f3 ~ 
{3 > 0. . 

but the anaiyttcity and convergence properties are better 
when one considers P ( x ). The normalization condition re­
stricts to a certain extent the arbitrariness of the poly­
nomials o<:1(x) (ij<~(x)). 

One observes that the answer to this problem can ~v7 
a justification for the function considered by Sla}tery 4 

and more generally .for Polya-type distributions 21 • 
4. Now we shall consider the "inverse problem", 

i.e.,' what results shall we obtain if we start with the 
Eq. (2). Firstly, let us observe that Eq. (2) may be also 
writtem as 
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p n = f d X 1jl (X) 0 ( n _: X < n >) , X = __!!_ , (17) 
0 <n> 

i.e., P. may be considered as a Radon-like-trans-
form /22-24/ of 'I' ( x) • 

Now, in order for (17) to be well-defined we shall 
consider that 'I' ( x) belongs to S (the space of rapidly 
decreasing C ~ -functions). The unitarlty supports such 
an assumption for 'l'(x) .If 'l'(x) <e.'S, following Gel'fand 
et al,/23/ we form 

I q(<n>) = f~'l'(x) (x<n>)q dx=<n>q Cq, q=l ,2,3, ... (18) 
0 

I q ( <n>) Is clearly a polynomial in <n > of degree :::. q 
On the other band, 

~ 

Iq(<n>)=f Pnnqdn=<nq>, q=1,2,3, ... (19) 
0 

From the above observation and the relation (17) one may 
conclude that In order for P n to be the Radon transform 
of a function 'I' ( x) <e- · S it Is necessary that P <:- •S 

~ n 
and f P n n q d n · be a polynomial in < n > of aegree 
::; q , 

0 for all q (Obviously, if 'I' ( x) bas compact sup­
po.rt, it follows from (17) that P has compact support, 
too). n 

Now let us see what are the concequences of the rela­
tions (18) and (19). Eq. (19) implies 

<nq>.= cq <n>q+cq_
1
<n>q-l + ... +C

1
<n>+C

0
, (19') 

where 
fore 

C q 's are constants independent of s • There-

- - I - -C <n>q =C <n>q + C 
1 

<n>q- + ... +C
1

<n>+C
0

, 
q q q-

i.e., 

- 1 
Cq=Cq+,O(--), q=l,2,3,... (20) 

<n> 

Hence Eq. (2) implies In the first approximation Eq. (1). 
To conclude the paper we shall briefly discuss the 
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problem of early onset of KNO scaling. ln this respect we 
shall write the probability distribution in terms of the 
generating function 

. " . p = _l_ f .- .. , Q(t) dt. (21) 
n 2" -rr 

Now a well-known result in the theory of moments/16/ 
asserts that if 

<nq> <DQ, q= 1, 2, 3, ••• (22) 

then one bas 

Q(t) :;, exp I .lli.L
1 

q X + 0(1 tl' + 1 ) , (23) 
qQI q q . 

Obviously the probability distributiolf must be sufficiently 
smooth and vanishes sufficiently fast as n ~ ~ , so that 
the inequality (22) is satisfied and the formal manipula­
tion· (21) is permissible. To meet these requirements we 
shall again assume that P • <:- •S • From the relations (21) 
and (22) one can write 

p ~ _1_ J (0-int + I (it)q ) dt, 
n 2rr _" q=l q! Xq 

(24) 

Therefore 

rr< D > r 
'l'(x, s) '!. - 1- f exp (-ixt + l: 

2" -rr<n> q=l 

(it )q 

ql 
~) dt.(25) 

<n>q 

A similar relation bas been previously derived by Wein­
garten /8 I in terms of density correlations of the had­
ronic gas. However, be utilised rather an ambigous 
assumption of · fluctuations of the density of (charged) 
particles in order to truncate the series in (25). 

Now if we consider 'I' ( x, s l be a smooth function 
(more precisely 'I' <:- S x ) and · 
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fim 'i' (x, s) ~ 'l'(x) (26) 
·~~ 

then taking into account the above-derived results one 
can write 

1 A ( . )q X 
'l'(x,s; =-

2 
f exp(-ixt+ ~-1

1
1- __ q_) dt, (27) 

"-A q <n>q 
where A is an appropriately defined constant which 
depends on the domain considered for the variable x • 
The relation (27) suggests an interpretation of the early 
onset of KNO · scaling, without considering Feynman 
scaling and fluctuations of particle density. The results 
of the paper are summarized in F:_ig. 1. 

C~s are energy 
independent 

Lone ranee correlations + 
properties of moments 

Saddle 

point method 

Necessary condition for 
the existence of the Radon P n ~ < 1 } 
transform n 

A ... 
x'i' (-"-) ------------+ < n > 

The solution of the interpo­
lation problem 

Fig. 1 

The author is indebted to Dr. A.B.Govorkov who 
patiently helped him to improve the quality of the manu­
script. Discussions with Drs. Cezar Gheorghe and 
D.B.Ion are gretefully acknowledged. 
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Appendix 

Here a discussion will be presented on the possible 
coooections between KNO scaling and a scaling relation 
proP,Osed by Bander/25 I. Utilising the fluid-analog mo­
del /26 I Bander proposed the following scaling relation 

_a_ en a 
a <n > n 

where p ( -.-0 -) is <n> 
p(z) ~ fim 

y~oo 

- p(-"-l. 
<n>-tooo < n > 
the "presure" function 

fnO(z,y) 
y 

(Al) 

defined as 

(A2) 

Although Bander concluded that KNO scaling and his 
scaling relation are inconsistent as they are derived from 
different assumptions, we shall show that KNO scaling 
always implies the Bander relation. We start with the 
relation 

2. - _1_ 'I' (-"-l 
o <n> .. oo <n> <n > 

and we shall assume that <n > is a continuous variable. 
Therefore• 

. ....1-&un 
a<n> 

i.e., 

~ - _._x_ 
<n> 

afn'l'(x) 1 
ax - ~' X 

_n_ 
<n> 

p(x) ~ _1_ (- a en 'l'(x) 
<n> aenx 

- 1 ) ~ - 1- 'i' (X) • (A3) 
<n> 

We· obtained the following result. If the multiplicity 
distribution behaves like < 1 > 'i' ( x)when < n > ~ .. , then 
the pressure function beha vl!s like d-;; 'i' 1 ( x l in the 
same limit. One can show that the P'density" function 

( . a P 
p z) ~ ar;;-. displays a similar behaviour, i.e., 

-------------------------• Here we have assumed that we can neglect, in the 
first appro:ldmation, the <n> dependence of a . 

II 



p(z,s) ~ I 'I' 
<n>-t<Xl <n> 2 (x) (A4) 

where '1' 2 ( x) is defined in terms of '1' 1 ( x) • 

Now let us consider a short-range correlation model, 
e.g., the Poisson distribution. In such a case one may 
easily observe that the Bander relation is not an asympto­
tic one, i.e., 

ljl (X, S) = 
<n>n+le-<n> 

(A5) 
n! 

Using the relation (A3) one derives• 

p(x)=(x-1). (A6) 

The same result is obtained if one utlllses the Bander 
relation (Eq. (Al)). The same conclusion may be derived 
for any other short-range correlation model. One may con­
clude that the Bander relation is equivalent to KNO scaling 
for the pressure function. (in the case of short-range 
correlations). 

Let us go further and consider a long-range correla­
tion model, e.g., the geometrical model. In this case 

a 
n <n > ~~-- -x n 

where 

a 
n 

a 

a 
e , x = ~-~ 

<n> -+<X> 

< n > n 

(<n>+i)"+l-

From relation (A3) one obtains 

p(x) "- - 1-(x-1). 
<n > 

<n > 
(A7) 

(AS) 

(A9) 

On the other hand, using the corresponding generating 
function 

*More precisely, 
p(x) = (x-1) O(x-1) (A6 ') 
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~ a 1 
Q ( z • y) = l: z n -•- = '7"-:--::-=-::-,-;-, 

n=O a l+<n>(l-z) 

and relation (A2) one has 

p(z,y) =- .1.&,[1 + <n> (1- z)]. 
y 

The convergence of Q ( z, y l requires 

1 --+l>z>O. <n > -

(AlO) 

(All) 

(A12) 

ThereforeintheUmit <n> ~ ~ , p(x)"- .,..J....(x-1). 
It is interesting to note that the same reSil'l( may be 
obtained using formally the Bander relation. In conclu­
sion one may argue that there is no inconsistentcy 
between KNO scaling and the scaling relation proposed 
by Bander. However, the former relation is more general 
and always implies .the later one. 

An interesting question would be the following. Starting 
with the Bander relation what can we say about the KNO 
scaling? One may observe that this question is connected 
with the behavlour of the number density. 
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