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1. Introduction

The conformal invariant two-point function for the
fields with arbitrary spin and scale dimensions are given
in papers =4/ Tq analyse the positivity condition it is
convenient to decompose the two-point function with respect
to the relativistic spin /3-7/, To achieve this goal the
formalism of homogeneous functions (polynomials) of the
complex spinor /"7  or isotopic vector is used ‘% .
Independently of its compactness the formalism of the
homogeneous polynomials has some difficulty: there is
no convenient scalar product -? . This difficulty a alao
remains when one goes to the Euclldean space-time AL
In this case we have the same difficulties as in the case
when we have a sum over the repeated tensor indices.
The transition between the formalism of homogeneous
polynomials and the formalism of polynomials on sphere
(not only unit)in the Euclidean space is given in paper '/,

In the present paper, to avoid these difficuities, the
tensor indices are replaced by the continuous variables
on the unit sphere in the four-dimensional Euclidean
spin space. In this space the scalar product is given as
an integral of the Gegenbauere and Legandre polynomials.
In the paper we restrict ourselves to the consideration
of only the fundamental tensors. The scale dimensions
may he arbitrary. .

-In chapter Il the general form of the relativistic
invariant Euclidean two-point function is given as a de-
composition according to the relativistic spin (the second
Casimir operator of the corresponding Poincare group).



In chapter III the general form of the scale invariant
two-point function for tensor fields with rank n is given.
This function depends on n +1 arbitrary constants.

The conformal invariant two-point function for the
fundamental tensor fields is found in chapter IV. This
function depends only on one normalized constant. .

Canonical basis vectors of the unitary representation
of SC{4) and a secalar product with respect to which
they are normalized are given in Appendix A. In Appen-
dices B and C the projection operators on the subspaces
with definite spin are given and their orthonormality and
completeness conditions are checked.

II. Decomposition of the Relativistic Invariant
Euclidean Two-Point Function with Respect
to Spin

Let us consider the Euclidean two-point function
F(xy,2y ,n;,d;;%9,29,n5,d,) for tensor fields with rank
and scale dimensions n,d; and ny,d, respectively, i.e.,
the two-point function of fields which transform according
to irreducible representation x; =(nd,)and X g={(n,,dy) of
the conformal group. Conformal invariance implies that

F(Axl,:\zl,xl;AX2,A22,X2)=F(KI,ZI X x2=22)X2)’
(2.1)

where A& S0(5,1).

It is well known, if n, 40 (a =1,2) , the function
(2.1) describes the propagation of particles with spin
s«=0,1,..,min(n; ,ny). In this case it is necessary to
decompose the two-point function not only with respect
to the total mass but also with respectto the spin variable
(i.e., with respect to the second Casimir operator of the
Poincare group). /7/. To achieve this, it is convenient
to go to the momentum space. The translational invariance
allows us to write down:

4 —iplxp=xs} .
F(xl—--xz;zlr,xl 129%p) = [ d pe F(p;zl,xl,zzxz).(z_g)
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From conformal invariance condition {2.1), we have
the corresponding condition for the kernel of the Fourier
transformation (2.2)

F( AP;AZI ’Xl’Azst2)=F(p;zl :xl:z2:X2 )l (2'3)

where A< SQ{5,1).

The relativistic invariance requires that the kernel of
the two-point function be the function of only the relati-
vistic invariants, which can be formed by the 4-vectors
P »2z andz,, ie., wehave:

~ =[x 2 2 2
F(p;zl,xl,zz,x2)=f-' ! 2](p,pzl,pzzzlz2),(zl=zz=1). (2.4)

The kernel (2.4) is not an arbitrary function of the
»’spin variables®’ zy and z9 . The two-peint function 2.1
and its kernel (2.4) are transformed, as one direct pro-
duct of two irreducible tensors according to the Lorentz
group SO(). It is well known, that in terms of tensor
indices irreducibility is equivalent to the symmetry and
fraceless properties with respect to this indices. In our
case when the tensor indices are replaced by the conti-
nuous variables z; and zgy , the irreducibility conditions
are given with the following equations:

(ﬂ) (8) a a "'{xl )Xz]
(3 Zag Egg -0 (a1 F (piz,.2,)=0, (2.5)
(a=1)2) y (0)3‘41,...,4),
where 3, are generators of the S0(4) - they are

given in App, A, 1/2 2.8 2,8 Iis the Casimir operator of
the SQ(4) The second Casimir operator for tensor
r_ePreSﬁntations is known to be equal to zero. The kernel
F *XiX2 (piz,,z,) may be written down as

- [X WX ] > Qs ;ﬁ o--an
‘F 12 H ’ = “l ! L E! e
(sz z,)=F %p)zaI z“nlz 8 zﬁnz'

(2.6)

where the tensor F tallp l(p) is symmetric and traceless




with respect to the indices |« { and {3l separately. The
formula (2.6) gives the transition rule between the conven-
tional tensor formalism and our formalism of function
oh unit sphere.

As we said before, the two-point function (2. l)descrlbes
the propagation of part:cles with spins =0,1,..., min (n ,nz)
In the case, when min(n,,n,)#0 itis necessary to de-
compose the two-point functlon with respect to the spin,
i.e., we have:

F[XI’X2] mln(n n2) [k ’\Zl

(piz; ,25) = p

s=0

~ Ix;% ] . _
Here, the kerneis F_ (p;zl,z.z) are eigenfunctions

of the spin operator and, consequently, they satisfy the
following equations:

(piz 2, ). (2.1

[Xr X, 1

(s ” —s(s+DIF, (p,z z) 0, s=0,..

(a=1 2)
where Si]) are relativistic spin operators

2 1 (ﬂ) ‘(il) 1 . (u) ('1)
S =7 Zptpm 5 Y TP (2.9)

S min{nn,)l (2.8)

Any terms of the decomposition (2.7) are necessary
to satisfy the equations (2.5) and (2.8). As the first step,
let us consider the equations (2.8). As far as we are
looking for Lorentz-invariant solutions of eqs. (2.8} it is

convenient to go to the rest frame (p=0), in which
_ (W9 ta)_(a) 02 22 7
=0)= z 2 22 Lo 2
S( (p=0= M i azﬂg+zi . ——( d? =3 pe AR
(2.10)

If we substitute (2.10) in eqs. (2.8) we have:

2 =Dyl
2 d 120,
f(1-w ).5%.2_ - 2w v s(sD)IF (piz,.2,)=0,  (2.11)
where
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Pz, z,~pz, pz,
\/(Pz""lez)(P2 ~pzy )

cosd aw= (2.12)

e., 0(p=0) is

In the rest frame cosﬂ(i;=0)—

the angle between the space parts of the 4-vectors 7[
and z,.
The solutions of egs.

(2.11), which are regular in
w2 zlare as follows:

=[x xg ! ixel

F_ (piz),z,)) =h (p2,pz, ,pz, P (W), (2.13)

where P, (w) are the Legandre polynomials and
[X]'le ' . .

hg (p2,pz|,pzg are arbitrary functions. The depen-

dence of these functions on pz, , pz, is found from
egs. (2.5).

If we substitute (2.13) in eqs. (2.5), we have

. 3 82 d s{s+1) (@19
l(l—ua)au.‘;--iu8 ™ +a (n 12)——~1——E—ly
X FE(I’le(p;zl,zz) =0,
where
6 =2 al1,2), (2.15)

{a}
)

\
in the rest frame u(, (p=0)=z}" .
The general solution of eq. (2.14), regular for u( y = b

- is
- Iy

EXI’YZ]

F, (ps zl,zz)—a (P, ()t (P (), (2.16)

{xy + X
where o, bR (pz) are arbitrary functions of p2 ,




2.8/2 s+l 2% s (a—s¥
C(u) =S in—s!
) s (0) {n+s+ 1}

and C,'(u) are Gegenbauere polynomials.

From' (2.17) and (2.16) we have the general form of
the Euclidean relativistic invariant kernel of the two-point
function for tensor fields

t% (u)=(1-u (2.17)

=[x, min{ag g Iy ) s s
Fol2 (piz ,2,) = RIS (p e, e, (uy)x
x P_(w).

(2.18)

III. Dilatational Invariant Two-_Point Kernel

We shall have the dilatational invariant kernel, if the
kernel (2.18) is invariant according to scale transforma-
tions. In infinitesimal form, we have

~Ix, ix, ]
DF™1 "2 (p;z) ,2,) =0, (3.1)

where D is the generator of the dilatations. In our case
this generator has the form/3/

; g
D::—.l(dl,dz—“i—pa —JF(:_) (32)
From (2.18) , (3.2) and (3.1), we have
-[X]’X2]

- 2 4
Ldl+d2—4‘—2p ?pé-*]F
Ix 1, 1
This equation acis only on the functions USX[XZ (1:t2 Y,
because the variables u; ,uy,and v ,whicharegiven with
(2.12) and (2.15), are scale invariant. The solution of

eq. {3.3) may be written as: dy+d,

(p2u ,uy,w=0 .  (3.3)

-2
: (3.4)

OS[XI Xy} (p?) = as{xl’xz ! (p?)
[xl.x2]
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where o are arbitrary constants.

From (2.18) and (3.4) we can write down the general
form of the dilatational invariant kernel of the two-point
function:

d, +d
~ D¢y 2X,] “““(‘2"‘2) [xy x gl 2"12_'2"2 ‘
F (pizhzy)= 25 e Y NORE

xt:2(u2)Ps (w). (3.5)

It may be proved that the kernel (3.5) is invariant
not only according to infinitesimal scale transformations,

but also according to any finite scale transformations, i.e.,

~Ix »x, ] 2-ditdr Ly
F l&(p“lp;pzl,pzzkp 2 f! (p;zl.zz). (3.6)

where o> 0. From (3.5) it follows that this requirement
is satisfied.

IV. Conformal Invariant Two-Point Kernel

We shall have the conformal invariant two-pointkernel,
if we require invariance of (3.5), according to the special
conformal transformations. In infinitesimal form wehave
=[x, .x,]
KF U2 (piz 120120, (anl,.d), (4.1)

a
where the generators K, of special conformal transfor-
mations, act}'n}g on the kernel of the two-point function,
are given as > :

- i - - d___ -
o l:l()PaY;?z) < 6(13”)36 2‘([1'0;«:6(?1)*‘12 4)+(4'2)
: 2
+Zg+2,plvg —2il(d =d,) 8a8+2aﬁ-§a‘8]§%ﬁ-i,
where y =x +X, .
It is shown /12.13/  that we have a non-vanishing
conformal invariant two-point function, if




X, =Xy le, n =n, and d =d,(4.3)

If we go to the variables p2,u, ,u, and % in
eq. (4.1} we have

KaF (P¥Z|=22)=HyaD prpr.:zA +Z]aB +ziC i F(p;zt ’Z‘Z) =0, (4.4)

where D is the generator of dilatations (3.2)and operators
A ,B and C are:

2 2
P 1) SRS S P D
p qul au,, ap oy,
2
(rug )2 vy, A
I o ") (4.5)
2
29 uy, 2a + (=t 3 : )
Ip~duy l-ugyy  l-ug,
[(1-w?) -2 _ 298 _3p2 8° }
X —W — o f, W rr—— - pw +
w2 aW apzaw
vi-u 2
2Uypevg, &) 3 ,
2 du,  dw
\/l—u(z) (N
2 2
+2[u(l) \/l—u(l) -u(z) w ] 9 i,
Vl-u;) 9u gy I¥
2
B = 2 {-v1-uj —p2\/l-—u$ I +
Ve 1-ud) 1 Ip?du,
(4.6)
, 2 3 8
" [(1-wd) Zg ~ 2w o1+
\/l—uz aw d
]

Ex

W) — .

—p( B2, .ol

V'l-—uzz \/l—uzl 6[.‘26“"
2 2
——W\/l—ul2 d -\ll—uz—a——i,
ou, dw 2 Ju_adw
2
==B(u, »u,). 4.7

Equations (4.4) are equivalent to the following system
(p »z, and z, are nonvanishing):

~ [y,

AF "1'72 (piz,.z,)=0, (4.8a)
~[xy xg]

BF {(p; 2,z 2):0, {(4.8b)
~fx.x .l

CF V"2 (piz,,z,)=0. (4.8¢)

It is convenient to replace eq. (4.8a) by the equation

|
p K F 2

; (P;Zl.22)=(p2A+pz]B-p7.2C)x

(4.9)

= Ix x, ]
» F (p,;zl,z2)=0.

If in the latter equation we insert (4.5), (4.6) and 4.7
we have

2 2

ta-et) 2o i3y 2 -2y 2 3y, 9,
aui? ul 61.15 8u2
2 (4.10)
. g
g M(1-w?) —2w D Hx
1-u? 1-y2 ow aw
I 2

xF{Xl'le (piz ,z,)=0.




From (2.14) and (4.3) it follows that (4.10) is satisfied
identically.

Let us now insert (3. 5) into eqs. (4.8b) and (4.8c¢c). If
we use the following identities

]
d s-]
\/I-x2 _d.:(.'.'__gl=yl(n,s)t:+] (x)+,u2(n,s)tn (x),
(4.11)
__,’f__.._c: (x)zvl(n,s)tffl (x)+u2(n,s)t:"I (x),
VI=x2
where
(n+s +2){o—-s)(s +1) 5
M (n,S)a 2S+]_ :#2(nys)="“2-g—:'r~—,
I 2)( ) 1 (4.12)
n+8+2)(n—s _
V (ﬂs)"‘ 28+1 ] Vz(nas)"m;

from eq. (3.8h) we have

n n s-1 s
3, 'dll(dl—l)[#l(n,s)ts”l Cup b pglun ) Gu e (u) B (W)
=0 ° " ’ ’ )

+s{s+1) [ul (n,s)tf+l () +p n,8)t :_! (u)ht i(u:,)l"‘s (w)+

+(d=2) Iy (n,8) € (u )y (n,9) 07 DT e 2w )

int[ *‘2‘2 52"31 ' (4.13)
<[P+ T (2e=dkBP_, L, (W

+d=2) €2 oy (0,95 (ughapfn, )¢S (u] x

inf( 1 15—2—)

x kE (2s— 4k-—1)P9_2k_{W) +

12

+p (0, 8)t :+ ](ul) ;pz(n,s)t:-l(ul)]t :(uz)[ sP_(w)+

a=2 5—3]
it o=, 5
vE QsakaR, 2(w)3+

+t:(ul)[,ul(n,s)t (u)+ p (n s)t (u M x
wtzgt, 251

X k_2=0 (2s—-4k-1) Pﬂ_2 . _’l(w) 1=0

where the sum over k is taken up to one of the two
numbers [a,Sl which is integer.

From (4.8¢c) we can write down, a second algebraic
equation which is completely equivalent to eq. (4.13) due
to consistency condition (4.3).

Ifd=n+2, i.e., we deal with canonical dimensions,
from (4.13) lt follows that in the decomposition (3.5) the
term with max. spin value s =n alone is present. This is
the case of conserved tensor currents.

In the general case, when d+ n +2, in the decomposi-
tion of the conformal invariant kernel all spin values
s=0,...,n0 are present. In this case from eq. (2.12) we
have the following relations:

a[n.d] o (n+s +2)(n—s)(d +8~1)(2s4+1) [n,d]

. (4.18)
syl (25 +1)(d—s~3)
These relations are satisfied if we have:
n 2 Sy 1)1 dss—
[ ] = l)sNd (25 +1)(n+84+1)! T (d+s=1)I"({d—s— 2). 4.15)
(n—s)!
where N is one normalized constant depending only

on the rank and scale dimension of tensor fields.
From (3.5) and (4.15) we can write the general form
of the conformal invariant kernel of a two-point function

q[xl(p,z z )=-N (2) gﬁin' Hs(ul’UZ’w)’ (4.16)

13




where H'; are the spin projection operators, which
are

s+l

5/2 s/2
17 (0 W)=k (1—u2) (1-u2)" ™

here
(n+1)(2s+1)(s!)? (n-s)!
K= -
2T 22— (nys + 1)) (4.18)
are normalized coefficients.
From (2.17), (4.15), (4.16) and (4.17) we have:

A 2n .
fo =" 2L des=1I"(d-s-2)
s T

(4.19)

The positivity and locality conditionsloff the Euclidean
two-point function are analyzed in paper - ®/.
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Appendix A

The generators of the group S0(4), in terms of
continuous variables ¢ can be written down:

S =il S g Oy
}"a,()’—l({ll a{__ﬁ f/‘f 05“) (A.1)

To construct the basis functions of the irreducible
unitary representatuons of SO(4), it is convenient to go
to the spherical coordinates in 4-dimensional space:

€, =p sinx sin 6 sing,

fz = psiny sin 0 cos¢ ,

(5)C 2 ()P (W)(4.17)

{-'3=p sin y ¢&8,
(A.2)
=pCo8 Y ,
¢ TP X
where p> 0 | 0<¢ <2« and 0<6, x <, (A.2)
gives the general case of spherical coordinates in Eucli-

dean 4-dimensional space. In the case, when £ are on
the unit sphere, we have p= 1 i.e.,

z __ga _ fa (A.3)
e

a

The generators (A.2), in terms of variables y ,¢
and ¢ can be written down

-igh
M,=e+ -id_ . L d
A YT
d. (A.4)
M3=—l-b?-5-—
g 6 d gy &

_ ot _ el cos 8 cos b 1gx 9 _)
Neme Qo0 s =y 56 Tens 39
N_l(mse_a___smé) _‘2_,

dy cgy do
where Ml,“jl"ikf Y , My=M 2iM, ,Nj=24j and

Ny =N |N2 . .
" The Casimir operators of group SO(4) and its sub-
group SQ(3) are:

1 L = (1 -9 _3ces 2 + — M,
72 T =M+N (ICOSX)a( X

cos ) deosy l—cos y

(A.5)
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2
1 hed 2 - 2
—i- ZGB Eaﬁ=M +N2=(1—COS x)—._.ﬁa_._z - 3cos 3
d(cosy) cos x
1 2 (A.6)
+ M-,
1—co;§;

> 5 9 62 5 ) 2
M= (1- cos 6)—————2-2cost9 - J

d( cos 6) dcos 6§ 1-cos®f Jp>

The basic vectors of the tensor representations of the
group SO(4) are given as the eigenfunctions of the follow-
%;xg three commuting operators M2+ N2 , M2 and

3 ie

(Mg =g (x,0,6) -0,

[ﬁ2—3(5+1)]fsn§ (x.0,$6)=0, @D

M*N*=n(n42) 1], (x,0,6)-0,

The solutions of the system (A.7), may be writtendown

n n ) : s+ 1 é’ — i (ll)
(7, (0,8)=AL, sin’xC ., (cosx)P_ (cos)e <

(A.8)

n - m .
where A - are normalized constants, C . are Gegen-

bauere polynomlals P, are spherical functions.

For the funct1ons ft¢) , we have the following scalar
product

Zn T 4
(f,8) =27 [H(£)g(&)8(¢2~nd ¢ . (A.9)
In the spherical coordinates (A.9) may be written down

[

2n-1 )
fsm y d cosx f cdcosd quS f(x 0,0)80¢,0,0) .

(A.10)

(f:g) =

?f

The orthonormalized conditions for the functions (A.8)
are

(f;‘;’f:’{')afsnn'sss' BCC' : (A.11)
From (A.8), (A.9) and (A.11), we have:

n s! [ (n+1)(2s+1)(n—s)(s=! ]'/z

A L=
s{ pn-s (n+s +1)! (s+ N

(A.12)

The coefficient in the scalar product (A.9) is taken
to have a direct correspondence with the tensor compo-
nent. For instance:

1

foo( X:equ )=COsx =Z4 s

fllo (x,0,¢ )=siny PI" (cosf)=siny cosbt=z

Appendix B

The projection cperators (4.17) may be decomposed

(n) 3

m, (ul,uz,w)?z_su';é(p;zl)Zgg (piz,). (B.1)
where
u (psz)=f  (Lyz). (B.2)

Here L are boost transformations, i.e., transformati-
ons which transform the momentum 4-vectorp from rest
frame to any arbitrary frame, i.e,,
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P, = ('Lp )i B,, , [()) =(0,p4 ). (B.3)

To prove (B.1) we take into account the relativistic
invariance of (4.17). If we go to the rest frame for the
momentum p from (4.17) we have:

P Lo . s+1
IIR(P=0,ZI,22)mxssqul Sin ngcn_s (cosxl)x

xC L (eosy )P (w)= (B.4)

-

-k Sin® . @& s+ 1 L sl
=& _Sin®y | sin chn__s (cosxl)C"_S(CosXz)[PH(Cosﬂl)Rq(c()sﬁzh
+ 2 ; (s-0)!

_sh(<¢>l'_¢z)]
h=1 (5+ZC)! =

+ -¢
« (COSOI)PS (C0502)€

S 10 ()
" «¢ (Z)) ﬁ4(22 |
where
w(p=0) =cos 0 cos 0, +8in 0 Sin0,cos{d | —b,). (B.5)

Here we take into account the summing formula for the
Legandre polynomials.

Appendix C

Here we shall prove the projection propertiés of the
operators (4.17), i.e.:

»

MonL, =58 .5 .0, (C.1)

nn 8§
’é n

= C.
szﬂns L ( 2)

where | is the unit operator in the representation space,
i.e.,

(1£)(z)=f(2), (C.3)

From (B.1), (A.10) and (C.2), we have:

2n-1
2

al

9 9/2 s’/2

(ﬂ:ﬂ:f)(ul Jug, W )= K: K;, (l—ul) '(l—ua x

s4s”

s+ 1 “+1 ! s+l

8 2
x Chg (“I)Cn’_s'(u3)_‘f(l—u§) Cn__s(uz)x

s+

C.4
an._s, (uz)du2x (C.4)

2n ]

i +h " —h
X {d c05820jd¢\2 § Ps(cos Bl)Ps(c0592)+2h§lP (cosﬁl) Ps(cosﬁg

8 L’
xcos { (9, -¢I)H Ps, (cusﬁz)i,(c0393)+2 Z“lPS,(cos&Z)x

>
x P;h (cosa3)cos.£ (B -462)3 =

2(n-s)
5 .5 n 2 {(n+s +1)!

ss” X5 2
nn {(n+1)2s+1)(s 1) %(n—s)!

n r
Hs(u] 1“3:“' )y

where

W '=cosB ‘= ccsﬁl cosfl, +8ind sin63c05(¢>| ~ba) .

Equation (C.4) gives the constants «3 (4.18). '
The completeness condition (C.2) may be proved if we
put (4.17) in (C.2):

nyl o 2 28 (s! )2 fn—s)!

(2s+1)x
228 s=0 (n+s+ 1)!

W)=

n
sfo Ils(ul,uz,

19




s/2 8/2 g s
(=) (1=ud) 2 (w) ™ (uyP, (w)-

1! 21/2 1/2 (€.%)
=‘;_;-';-"C“{UIU2+(1- "'ul) (1-[!22) w1=
n+l 1
= ST —-Cn(zlzz).

Here we take into account the summing formula for the
Gegenbauere polynomials’ 15/,
A
C  (costy cos¢ + sin ¢ singp cos6)= -[EM'I)
' [r (a2

x

o (C.6)
L3 2 TGk

k=0 r(2awns k)

kK Ak A+k Al
x { 2A+2k -1 ) sin ¢ sin ¢ C_ (cosy)C, (Cosqﬁ)ck (cos 0),

for

f\=1—C/i(x)=P—k(x).

. The right-hand side of {C.5) gives the unit operator,
i.e,,

n+1 1

PR C"(zlzz)- (C."D)

This may be proved if we take into account (C.6).
From (4.17), fora=1 , we have:

I Zy2y )=

1 afl 1. 2
M, =uju,=I, (p)zazB ,
1 2 /2 l‘f2 o ¥
H] =(1-—-u1)l (l—ug) w :ﬂlﬁ(p)zézé,
where

a a B B .« a,B
nef . -P__;Lp T s Pp;’

20

are the well known projection operators for 4-vector
fields.
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