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1. Introduction 

The conformal invariant two-point function for the 
fields with arbitrary spin and scale dimensions are given 
in papers 11 -·i/. To analyse the positivity condition it is 
convenient to decompose the two-point function with respect 
to the relativistic spin /5-7/. To achieve this goal the 
formalism of homogeneous functions (polynomials) of the 
complex spinor ;:;,;I or isotopic vector is used · 6 / . 

Independently of its compactness the formalism of the 
homogeneous polynomials has some difficulty: there is 
no convenient scalar product ."II '. This difficultY, also 
remains when one goes to the Euclidean space-time. '·9

•
1 11

'. 

In this case we have the same difficulties as in the case 
when we have a sum over the repeated tensor indices. 
The transition between the formalism of homogeneous 
polynomials and the formalism of polynomials on sphere 
(not only unit) in the Euclidean space is given in paper 'II/. 

In the present paper, to avoid these difficulties, the 
tensor Indices are replaced by the continuous variables 
on the unit sphere in the four- dimensional Euclidean 
spin space. In this space the scalar product is given as 
an integral of the Gegenbauere and Legandre polynomials. 
In the paper we restrict ourselves to the consideration 
of only the fundamental tensors. The scale dimensions 
may be arbitrary. 

·In chapter II the general form of the relativistic 
invariant Euclidean two-point function is given as a de
composition according to the relativistic spin (the second 
Casimir operator of the corresponding Poincare group). 

3 



In chapter llJ the general form of the scale invariant 
two-point function for tensor fields with rank n is given. 
This function depends on n +I arbitrary constants. 

The conformal Invariant two-point function for the 
fundamental tensor fields is found in chapter IV. This 
function depends only on one normalized constant. 

Canonical basis vectors of the unitary representation 
of SO ( 4) and a scalar product with respect to which 
they are normalized are given in Appendix A. In Appen
dices B and C the projection operators on the subspaces 
with definite spin are given and their orthonormality and 
completeness conditions are checked. 

II. Decomposition of the Relativistic Invariant 
Euclidean Two-Point Function with Respect 
to Spin 

Let us consider the Euclidean two-point function 
F(x1,zl ,n1 ,d1 ;x 2,z 2 ,n 2 ,d 2 ) for tensor fields with rank 
and scale dimensions n1 ,d1 and n2 ,d 2 respectively, i.e., 
the two-point function of fields which transform according 
to irreducible representation x1 =( n 1,d1 )and x 2 = ( n 2.d2) of 
the conformal group. Conformal invariance implies that 

F(Ax
1

,Az
1
.x

1
; Ax

2
,Az

2 ,x2 )~ F(x1,z 1 .x 1; x2,z 2 ,x 2l, 

(2.1) 

where A c; SO (5.1). 
It is well known, if n a.: 0 (a =I, 2) , the function 

(2.1) describes the propagation of particles with spin 
s = 0 ,I, ... , min ( n 1 , n 2 ). In this case it is necessary to 
decompose the two-point function not only with respect 
to the total mass but also with respect to the spin variable 
(i.e., with respect to the second Casimir operator of the 
Poincare group). /7/. To achieve this, it Is convenient 
to go to the momentum space. The translational in variance 
allows us to write down: 

4 -ip(xl-x2)-
F(x1- x2 ; z1 ,)(1; z2x2) = f d pe F(p; z 1,x1 ,z 2'X2 l·(2.2) 

4 

From conformal lnvarlance condition (2.1), we have 
the corresponding condition for the kernel of the Fourier 
transformation (2.2) 

F( Ap; Az1 •Xl'Az2 ,x2 )~F(p;z1 ,)(l'Z
2,x2 ); (2.3) 

where A c; SO ( 5 , I) . 
The relativistic tnvarlance requires that the kernel of 

the two-point function be the function of only the relati
vistic Invariants, which can be formed by the 4-vectors 
p , z1 and z 2 , I.e., we have: 
- - [xl·xi 2 2 2 F(p;z 1,)(pZ 2,x 2l=F (p,pz 1 ,pz~z 1z2),(z 1 =z 2=1). (2.4) 

The kernel (2 .4) Is not an arbitrary function of the 
"spin variables" z1 and z 2 • The two-point function (2.1) 
and Its kernel (2.4) are transformed, as one direct pro
duct of two Irreducible tensors according to the Lorentz 
group SO (4 ). It Is well known, that in terms of tensor 
Indices 1rreduclbll1ty Is equivalent to the symmetry and 
traceless properties with respect to this indices. In our 
case when the tensor Indices are replaced by the conti
nuous variables z 1 and z 2 , the lrreduclb11ity conditions 
are given with the following equations: 

1 (a) (a) (a) (a) -[xi •X 2] [ T I a{:3 I af3 - n ( n + 2)] F ( p; z 1 , z 2 ) = 0, (2. 5) 
(a=l,2), (a,f3=1, ... ,4), 

where Iaf3 are generators of the S0(4) - they are 
given In App. A, l/2 I af3 I a{i is the Casimir operator of 
the SO ( 4) . The second Casimir operator for tensor 
r.epres~ntatiops Is known to be equal to zero. The kernel F X1X2 (p;z 1,z

2
) may be written down as 

- [)(1')(2] - al,. . .,a"l ;{31, ... ,(3.2 F (p;z 1,z )~F wlz~ ... z~ z {:3' .. z, , 2 1 n 1 I ,...,n2 

(2.6) 

where thetensor F Ia llf3l(p) Is symmetric and traceless 
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with respect to the indices Ia I and l{ll separately. The 
formula (2.6) gives the transition rule between the conven
tional tensor formalism and our formalism of function 
on unit sphere. 

As we said before, the two-point function (2.1) describes 
the propagation of particles with spins ~ 0, I, ... , min ( n1 ,nj. 

ln the case, when min ( n 1, n 2 ) ~ 0 it is necessary to de
compose the two-point function with respect to the spin, 
i.e., we have: 

-lx 1 .x 2l F ( p; z1 

min(nl'"2)- lx •X- I 
,z 2 )~ ~ F, 12 (p;z 1

,z 2
).(2.7) 

s:=O 

-lx1-x:2 l 
Here, the kernels F, (p;z1 ,z2 ) are eigenfunctions 
of the spin operator and, consequently, they satisfy the 
following equations: 

2 
.-lx1.x2 l 

[S(u) -s(S+l) IF, (p;z
1
,z 2)=0, [ S=0, ... ,min(n

1
,n

2
)\ (2.8) 

(a=l,2), 

where 5 2 
(u) 

2 I s =-
" 2 

are relativistic spin operators 

~(a) ~{a) _ j_ '\' (u) ,. (a) a } 

afl uf1 p2 -")' -f1yP p (2.9) 

Any terms of the decomposition (2. 7) are necessary 
to satisfy the equations (2.5) and (2.8). As the first step, 
let us consider the equations (2.8). As far as we are 
looking for Lorentz-invariant solutions of eqs. (2.8) it is 
convenient to go to the rest frame (p =0), in which 

2 -) 3 2 
S( ) (p=O) = ~ M. 

a j:::::O J 

2 ( 2 -~·' a 
(u) a (u) a) a -z- ------·-~ • 

= 2z. -- +Z zk -;-:'("U}:;-:-Tii}J II a (Jz (aJ (}z (a) 
J az~ J azi ( zk j j 

.I 

(2.10) 

If we substitute (2.10) in eqs. (2.8) we have: 

2 az a - lx1 .x2 l 
[(1-w )--- -2w-a +S(S+l)]F. (p;z 1 ,z 2 )~0, aw2 w s 

(2.11) 

where 

6 

pllzl z 2 -pzl pz2 
COS 8 a W = -==i==~=;;:::=:;;::::

y'(pZ -pzl2)(p2 -pzl ) 
(2.12) 

In the rest frame 

1 2 
Z •Z 

cosO(p~O)~ ~1 ~2'1 
lz II z 

i.e., 0 (p~~O) is 

the angle between the space parts of the 4-vectors z 1 
and z 2 • 

The solutions of eqs. (2.11), which are regular in 
w2 ~lare as follows: 

- lx1 ·x2 l lx1 .x2 l 
2 F

8 
(p;z1 ,z2) =h s (p ,pz 1 ,pz2 )P, (w), (2.13) 

where P, (w) are the Legandre polynomials and 

hlXt•Xz
1

(p2,pz 1 ,pz2 )are arbitrary functions. The depen
dence of these functions on pz 1 , pz 2 is found from 
eqs. (2.5). 

If we substitute (2.13) in eqs. (2.5), we have 

+n.(n +2)- s(s+l) 
• I 2 I x -u 

" 

(2.14) 2 ·c 2 a a l 1-u. )--2 -3ua --
au a rlu • 

lx 1 .x 2l 
x F, (p; z 1 ,z 2) =0, 

where 

pz(a) 
u =--,(a =1,2). 

(a) -.-

. \ p2 -• r.,) 
m the rest frame uru) ( p = 0) = z 1 • 

The general solution of eq. (2.14), regular for 2 - 1 
u(a) -

(2.15) 

is 
- lx1.x21 lx1•x 21 

2 
, , 

F (p;z1 ,z1~a (p)t (u1)tn 
s 2' s "1 2 

lx , x2 1 t-
where u 1 ( p 1 

s 

(2.16) (u~)P8 (w), 

are arbitrary functions of p 2 
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s ( 2 s/2 s+ I 2 s tn u)~(l-u) C n-s(u)~~~ 
(n+s+l)! 

(2.17) 

and C; (u) are Gegenbauere polynomials. 
From (2.17) and (2.16) we have the general form of 

the Euclidean relativistic invariant kernel of the two-point 
function for tensor fields 

-[xl.x2l min(nl,nzl [xl.x2 l s s 
F (p;z

1
,z

2
) ~ ! a (p )tn (u 1)t (u

2
)x 

s:=O 8 I 0 2 

x P (w). 
s 

(2.18) 

III. Dilatational Invariant Two-Point Kernel 

We shall have the dilatational invariant kernel, if the 
kernel (2.18) is invariant according to scale transforma
tions. In infinitesimal form, we have 

-[xi •Xzl DF (p;z 1 ,z 2 )=0, (3.1) 

where D is the generator of the dilatations. In our case 
this generator has the form /S/ 

D=-i(d 1,d 2-4-pa (]~a). (3.2) 

From (2.18), (3.2) and (3.1), we have 
• 2 a - [ Xi'X 2 1 2 ld

1
+d

2
-4-2p --

2 
]F (p ,u1 ,u 2 ,w)~O (3.3) 

ap 
This equation acts only on the functions a [x rX2 

1 
( p2 ) , s because the variables u 1 , u2 and w , which are given with 

(2.12) and (2.15), are scale invariant. The solution of 
eq. (3.3) may be written as: u1 +u

2 ---2 
}xl.x2l (p2)=a[xl'x2l(p2) 2 , (3.4) 

s s 
lx .x l . where a 1 2 are arbitrary constants. s 

8 

From (2.18) and (3.4) we can write down the general 
form of the dilatational invariant kernel of the two-point 
function: 

lx1 .x:zl ~ a
8 

(p2) 2 -2 
_ [xl'x2l min <~1'"2) 
F (p;z

1
,z

2
)= >; 

&:;;::;0 

xt:
2 

(u
2 ) P

8 
(w). 

s 
t (u

1 
)x 

"I 

(3.5) 

It may be proved that the kernel (3.5) is invariant 
not only according to infinitesimal scale transformations, 
but also according to any finite scale transformations, i.e., 
-lxi'X:!l -1 . 2-d,~d2 -lxl·x~. F (p p,pzl'pz2 )=p F (p,z 1,z2 ), (3.6) 

where p> 0, From (3.5) it follows that this requirement 
is satisfied. 

IV. Conformal Invariant Two-Point Kernel 

We shall have the conformal invarianttwo-pointkernel, 
if we require invariance of (3.5), according to the special 
conformal transformations. In infinitesimal form we have 

- lx1.x2l . KaF (p,z 1,z 2):0,(a=l, ... ,4), (4.1) 

where the generators Ka of special conformal transfor
mations, act}n! on the kernel of the two-point function, 
are given as s : 

Ka = il (PaY ,B -raP,B - ll a,B p y) 1,:-ro- 2i[ll cj3 (d 1 +d 2-4) + (4 .2) 
(I) (2) . p (I) (2) ....iL_ +"ia,e+"ia,elY,e -2t[(d 1-d 2 ) lla,e+"iafl-!a,BJ ;;plT I, 

where y =x 1 +x2 . 
It is sliown /12 ,13 I that we have a non-vanishing 

conformal invariant two-point function, if 

9 
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x
1 
~x 2 • i.e., 

If we go to the variables 
eq. (4.1) we have 

n = n 
I 2 

and d 1 ~d 2~4.3) 
2 

p ' u I ,u2 and w in 

K F (p;z 1 ,z 2)~ily 0 +P A +z1 B +Z2c I F(p;z
1 

,z l ~0, 
a a a a a -r (4.4) 

where 0 is the generator of dilatations (3.2) and operators 
A , B and C are: 

10 

2 2 
1 2 a a 2 a 

A ~-I (1-u ) -- - u -- + 2p --
2 (I) 2 (I) 2 

p au(l) au(l) ap au(!) 

2 a 2 a 
-{1-u )-- + u ---

(2) a 2 (2J au 
u (2) (2) 

a 2 1 1 
- 2r2 °(2) 2 + ( --2-- 2 ) X 

apau(2) 1-u(l) 1-u(2) 

a 2 a a 2 
x[(l-w 2)---2w--2p2w 1+ 

aw 2 aw ap2 aw 

2 v1-uro l a + 
+2[~l)w-u(2) 2 au(l) aw 

a2 
..; 1- "(2) 

2 y1-u0 ) 
w l l. 

- u(2) aw au (2) 
+ 2[u(l) -u" 

..; 1 (I) 

--- --- 2 

(4.5) 

2 2 a 2 2 a 
B ~ 1-v 1-u 1 -- -p yl-u 1 -=-----+ 

au I a p 2 au I yp2 ( 1-u;) 

u I 2 a 
2 a 2 l + [ (1-w ) :-2 - w aw 

aw 

(4.6) 

-p2( ...!!1_ u I 
-~+--

yl-u2 yl 2 2 -u 1 

-wyl-u2 a2 
I 

aulaw 

C~-B(u 1 ~u 2 ). 

w) j 
a r} aw 

---- 2 
2 a 1, 

yl-u2 au aw 
2 

(4.7) 

Equations (4.4) are equivalent to the following system 
(p , z 1 and z2 are non vanishing): 

-[x 1.x 21 
AF (p;z

1
,z

2
)=0, (4.8a) 

_[x1 .x 2 1 
BF (p; z1 ,z 2) =0, (4.8b) 
-[x

1
.x

2
1 

CF (p;z 1 ,z 2 )~0. (4.8c) 

It is convenient to replace eq. (4.8a) by the equation 

-[ x
1
.x

2
l 

2 pa KaF (p;z
1 

,z
2

) ~(p A, pz
1
B.pz 2C) x 

(4.9) 

- [x ,.x2 1 
xF (p,;z

1
,z

2
)"-0. 

If in the latter equation we insert (4.5), (4.6) and (4.7) 
we have 

2 2 
\( 2 ) a a 2 a a 1-u 1 --

2 
-3u 1 - -( 1-u2 ) --

2 
+ 3u 2- + 

au, au, au2 au2 

2 
1 1 2 a a 

+(--- )f(l-w )--- 2w --llx 
1-u2 1-u2 a 2 aw 

I 2 w 

(4.10) 

F [x,.x21 (p·z z )=0. 
X ' J.' 2 

II 
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From (2.14) and (4.3) it follows that (4.10) is satisfied 
identically. 

Let us now insert (3.5) into eqs. (4.8b) and (4.8c). If 
we use the following Identities 

s 
--2- dt 

0 (x) s+ 1 s-1 
yl-x dx =1' 1(n,s)t 

0 
(x) +l'i-n,s)t

0 
(x), 

(4.11) 

X s 
-t (x)- ( ) s+l 1 yl-x2 • -vi n,s tn (X)+v2(n,s)t:- (x), 

s where 2)(n-s)(s+l) , (n,s)=-.,..,..._.,. (n+S+ •r2 ~(n,s)- ?o~l 
I 

v (n,s)=~+2)J.n-s) 
l 2s + 1 

1 
v2 (n,s)= 2s+1 ' 

(4.12) 

from eq. (3.8b) we have 

n ~~] Ml ! a l(d
1

-1)[1'
1
(n,s)t 

s=:O s n 

s-1 s 
(u

1
)+1' 2(u,s)t

0 
(u1)]t

0
(u

2
)!!,(w)+ 

s+l s-1 s + s(S+l) [v (n,s)t (u
1
)+1'

1
(n,s)t (u

1
)]t (u 2)P (w)+ I n n n s 

+ ( d-2) [v 
1 
( n,s) t ;" 1 

( u 
1

) + 1'
2 

( n, s) t ;:-I ( u
1
)] t : ( u 

2
) x 

in![~ •-~ (4.13) 
2 • 2 

x[sP (w) + ! (2s-4k-3)P 
2 

( w)]+ 
s k =0 s-3.-

s s+l ~1 +(d-2) t 
0 

(u
1
)[v

1
(n,s)t 

0 
(u 2)+1'in,s)t 

0 
(u~] x 

. f(s-1 s-2) 
In ---z- , ----y-

X ! (2s-4k-l )P "kjw) + k=O s-. 

12 

J 

r 

•+ I · s-1 s +[1' 1(,t,s)t 
0 

(u 1) +1' 2(n,s)t
0 

( u1 )]t 0
(uzl[ sP 

8 
(w) + 

[ s-2 s-3. 
}Jif ,-.-zl 

+ I (2s-4k-3)P 2k 2 ( w)] + 
k~ s- -

s ~ ~~ 
+ t

0
(u 1)[1' 1(n,s)t

0 
(u;>+ 1'

2
(n,s)t 

0 
(u2)lx 

lof[ ·2-1. "22] 
xI (2s-4k-l)P (w)I=O, 

k=O s-2 k -1 

where the sum over k is taken up to one of the two 
numbers [a ,,8) which is integer. 

From (4.8c) we can write down, a second algebraic 
equation which is completely equivalent to eq. (4.13) due 
to consistency condition (4.3). 

If d=n + 2, i.e., we deal with canonical dimensions, 
from (4.13) it follows that in the decomposition (3.5) the 
term with max. spin value s = n alone is present. This Is 
the case of conserved tensor currents. 

In the general case, when d ,In +2, in the decomposi
tion of the conformal invariant kernel all spin values 
s.O, ... ,n are present. In this case from eq. (2.12) we 

have the following relations: · 

a[n,dl. _ (n+S+2)(n-s)(d+s-1 )(2s+l) a[n,d]. (
4

.14) 
s+l (2s+l)(d-s-3) • 

These relations are satisfied if we have: 

[n,d) ( l)s. d (2s+1Hn+•+ll! r(d+s-l)r(d-s-2) 
1 a 

8 
= - N 0 , " , (4. 5) 

d 
where N • Is one normalized constant depending only 
on the rank and scale dimension of tensor fields. 

From (3.5) and (4.15) we can write the general form 
of the conformal invariant kernel of a two-point function 
- [xl d 2 d-2 n [n,d] 
F (p;z 1,z 2)=N

0
(p) .:0f3s ll

8
(ul'u 2,w), (4.16) 
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where 
are 

n" s are the spin projection operators, which 

n 2 s 1 2 s/2 s+l st-1 fl_(u 1 ,u2,w)~K,{l-u 1 )' (1-u~) Cn-s ('1)C~- 8 (utP8(w)(4.17) 
here 

( n+l )(2 S+ I)( s! )2 (n-s )! 
K = ----~-·---~----' 22(n-s)(n+S+l)' ( 4.18) 

are normalized coefficients. 
From (2.17), (4.15), (4.16) and (4.17) we have: 

2n 
(I.~(-!)' ..LJ:_(d+s_:-,ll!:~.::s-2), (4.19) 

~" O+ 1 

The positivity and locality conditions of the Euclidean 
two,point function are analyzed in paper -'6 / 
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Appendix A 

The generators of the group 50(4), in terms of 
continuous variables ~ can be written down: 

~af3=i(~aa~ -t;f1a~-). (A.l) 
{1 ·a 

To construct the basis functions of the irreducible 
unitary representatuons of SO( 4), it is convenient to go 
to the spherical coordinates in 4-dlmensional space: 

~ 1 =p sin x sin 0 sin¢, 

~2 = psinx sin 0 cos¢, 

14 

• 

{j 
3
=p sin X C<50, 

{j =pCOSX, 
4 

(A.2) 

where p > 0 , 0 $ ¢ :;o 2" and o::; 0, x -s " . (A.2) 
gives the general case of spherical coordinates in Eucli
dean 4-dimensional space. In the case, when ~ are on 
the unit sphere, we have p = l. i.e., 

z t;a t; =-- a a P - ,g 2 (A.3) 

The generators (A.2), in terms of variables x , 0 
and ¢ can be written down 

-i¢ M+=e+ (-i-L __ l _L) - ao + tg o a.p 

M . a 
3=-'"JT 

(A.4) 

-I¢ 
N+=e+ <+sinO-a-_ cosO cos¢ - ax + c~x 

~ + .!.!&K ..L ) ao sino a.p 

N.= i(cosO_a__ _sinO a 
ax ctgx ao). 

where MJ. = + < Jk e ~ kf , M ± = M 1 ± i M 2 , N i = ~ ,1 i and 
N± = N1± 1N2 • 

The Casimir operators of group 50(4) and its sub-
group S0(3) are: 

--}~ ~ = M +N =(1-cos xl--a_ - 3cosx-a-+ -
1
:;,._-M a(cosx) acosx 1-cos X 

(A.5) 
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2 1 ...,2 -1o2 2 a 
_ ! (3 !af3= M + N = (1-cos xl--- -
2 a a(cosx) 

a - 3cosx + acosx 

1 ,;j2 +--y 
!-cos X 

2 
~ 2 2 a a M = (1- cos 0) - 2 cosiJ __ __.:1:__,---

2 a 6 2 a< cos IJ) cos 1- cos IJ 

(A.6) 

2 
a 

a;r· 
The basic vectors of the tensor representations of the 

group 50(4) are given as the eigenfunctions of the follow
ing three commuting operators M2 + N2 , M 2 and 
M3 • i.e., 

n 

<M.-or., <x.IJ.cf>l=o, 

~2 n 
[M - s(S+l))fs( ()(,IJ,cf> )= 0, 

(A.7) 

""*2 ....,2 n 
[M +N -n(n+2)lf

8
t; (x ,IJ,¢>)=0. 

The solutions of the system (A. 7), may be written down 

n n 3 s+ I ( - i((b 
f s( (x.O.cf>)=As( sin'xc.-s (cosx)P

8 
(cosO)e · 

(A.8) 
n m . 

where As ( are normalized constants, C n are Gegen-
bauere polynomials, P.s are spherical functions. 

For the functions f(~) , we have the following scalar 
product 

(f,g) =2
2

" J f(~ )g(08( ~ 2 -J)d 1~. (A.9) 

In the spherical coordinates (A.9) may be written down 
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2 2n-l I I 2" 
(f,g)= fsinxdcosx fcdcos!Jfdcpf(x,IJ,cf>)g(x,IJ,cf>). 

"2 -I -I 0 
(A.lO) 

The orthonormalized conditions for the functions (A.8) 
are 

n n' 
(fJ",f•J"•)=iJ ,iJ •on·· sc, s c, nn ss ':.':. (A.ll) 

From (A.8), (A.9) and (A.ll), we have: 

A"=~ [ (n+l)(2S+l)(n-s)!(s-0! ]~ 
•( 2•-• (n+s +1)! (S+()! 

(A.l2) 

The coefficient in the scalar product (A. 9) is taken 
to have a direct correspondence with the tensor compo
nent. For instance: 

I 
f
00

( )(,IJ,cp )=COS)( =Z 4 , 

!
1
1
0 

(X ,IJ ,cf> )= sinx P: ( cosiJ) =•inx cos IJ= z 3 

Appendix B 

The projection operators (4.17) may be decomposed 

n<:> (u 1,u:i,w )=(~-• u:((p;z 1 )~:, (p;z 2 ), (B.l) 

where 
n n 

u s((p;z)=f•( (Lpz). (8.2) 

Here ·L P are boost transformations, i.e., transformati
ons which transform the momentum 4-vectorp from rest 
frame to any arbitrary frame, i.e., 

17 
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0 0 -+ 0 

pa = (L r )a·l P.1 p = (O,p,1 ). (B.3) 

To prove (B.l) we take into account the relativistic 
invariance of (4.17). If we go to the rest frame for the 
momentum p from (4.17) we have: 

n s+l 
fl 8 (p =0,z I ,z 2 ) = K

8
Sin"x1 Sin 

8
X 2Cn-s (cosx

1
) X 

S+ I 
x C ( cosx

2
)P (w).= n-s s (B.4) 

, 1'1 s+ I 
= K Stns X sin X C 

s I 2 n-s 

s+l 
(cos X 1)Cn-s (cos x2 )(P ,(cosO 1)P,( CQli0 j+ 

s +< -{ 
+ 2 ~ .!._;;_-()! P (cosO )P , 

h=l (s+Z()! s I s 
(cosO ) -;hl¢1-';\) 

2 c 2 ]"' 

~ n -.--

}; r.,:(zllfs,:<z2 ), 
h=-s 

where 

w ( p = 0) =Cos01 cos0 2 +sin 0
1 

sin0
2

cos((b 
1 

-(f;
2

). (B.5) 

Here we take into account the summing formula for the 
Legandre polynomials. 

Appendix C 

Here we shall prove the projection properties of the 
operators (4.17), i.e.: 

n n 
n, n., 
n n 

=0 .a n" 
nn ss s (C .1) 

}; fl
8

=l, (C.2) 
s=O 

where I is the unit operator in the representation space, 
i.e., 
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(lf)(z)= f(z). (C.3) 

From (B.l), (A.lO) and (C.2), we have: 

<n: n:. )(ul ,u3,w ')= 

2n-l 
2 n n' 2 s/2 s '/2 

-
2
- K

8 
K 

8
, (1-u 1) (l-u 3 ) x 

" 
S+s 

s+l s'+l 1 2 -2-
x Cn-s (u 1 )C.·_.·(u 3)_{(1-u 2 ) 

s+ I 
c._Ju2)x 

s, + 1 
x C , , ( u

2
) du 

2 
x (C.4) 

n -s 

1 271 s +h -h 
x fdcost1

2
fdrl. I P (cos0

1
)P (cost1

2
)+2}; P (cost11)P (cosO) 

-1 0 ""'2 s s h= I s s 2 

s h' 
X cos s( ¢2 -¢1) II p '(cos02)P ,(cosO )+2 I p '(cost12)x 

8 s 3 b'::::l s 

-h' 
x P

8
, (cost1

3
)cos S' (¢

3 
-¢ 2 ) I = 

2(n-s) 
n 2 (n+stl)! =a ,a .K ~2--"" ss s (n+ll(2s+l)(s n (n-s)! 

n 
Il s ( u1 , u 3 , w '), 

where 

w '= cos 8 '= cos 0 I cos 0 3 > sin 0 I sin 0 3 cos ( ¢; ...¢3) . 

Equation (C.4) gives the constants K 3 (4.18). 
The completeness condition (C.2) may be proved if we 

put (4.17) in (C.2): 

n n+l n 
I n.<u,,u2,W)=--I 
~o 2 2n s=O 

2s 2 
2 (s! ) (n-s)! 

(n+s + 1)! 
(2S+l)x 
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s/2 s/2 s+l s+l 
x(1-u¥l ( 1-uil C

0
_

8 
(ui)C

0
_

8 
(u 2)P 8 

(w)= 

0+1 CI[ 2I/2 I/2 
=7n- n °I 0 2+(1 -ui) (1-u~) w)= 

n + 1 I 
=---C (ziz 2). 

2 2n n 

(C.5) 

Here we take into account the summing formula for the 
Gegenbauere polynomials I I 5/: 

,1, • • r(2A+ll 
C (cosrp cos¢+ sm rp stn¢ cosO)=---- x 

n . [r(A)]2 

k 
(C.6) 

x ! 2 (n-k)! [r(A+k)) 

k=O f'( 2A+ O+ k) 

k k A +k A +k A-~ 
x ( 2A+2k -1 )sin rpsin ¢Cn-l< (cosrp)Cn-1< (cos¢)Ck (cosO), 

for 
y, 

,\= 1-Ck (x)=Pk(x). 

The right-hand side of (C.5) gives the unit operator, 
i.e., 

O+ 1 I 
I( zi z 2 )= -

2
- C (ziz ). 

2 n n 2 

This may be proved if we take into account (C.6). 
From (4.17), for n = I , we have: 

I a{3 I 2 
0 0 =UIU 2 =flo (p)zazf3 

I 2J/2 2I/2 af3 I 2 
ni =(1-ui) (1-u2) w =OI (p)zazf3, 

where 

n';P= 

20 

~ p 
' fl ~ =a"f3 - p" pf3 

p2 

(C.7) 

are the well known projection operators for 4-vector 
fields. 
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