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1. Introduction

The elastic electron scattering is the main experimen-
tal source of information on the electromagnetic size
of nucleus. These experiments consist of scattering of
high-energy electrons from target nuclei and studying
the energy and angular distributions of the scattered
electrons,

Theoretically the electron-nucleus interaction is well
understood (it is the electromagnetic interaction with
the nuclear charge and current densities) and for light
nuclei it is possible to analyse the scattering within
the conventional framework of the first Born approxi-
mation. The differential cross section can be expressed
through the kinematical variables (energy and scattering
angle) and electromagnetic form factor F(t) which is
a function of the momentum transfer q(t=—q?) and is
the Fourier transform of the charge distribution p{r).

The electromagnetic size of the spin-zero nucleus is
characterizﬁ by the root-mean-square (r.m.s.} charge
radius <r?> Many attempts have been undertaken
to determine this parameter for different nuclei (see
refs.”/173/  and reference cited therein). The procedure
commonly followed in the determination of <r25'? from
analysis of the elastic electron scattering experiments is
to test various model-dependent forms of charge distri-
butions containing a number of free parameters. By
x 2 minimization technique these are chosen to be such
as -to optimize the agreement between the calculated and
experimentally measured values of cross sections. The
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best values of these parameters are finally used in

p(r) to determine the r.m.s. charge radius defined
max

by <r2'> =1 f r p(r)d3r[

From some previous papers ohe can immediately
see a significant model-dependent effect m the deter-
mined values of <r®. For example, for cl! authors
of paper /4/ , using the Fermi distribution function for
plr) with two free parameters, have obtained the
value <r 25'/% 2,53 + 0.02 fm. On the other hand, using the
modified harmonic osc1llator model for p(r) they have
found the value<r2>/“=2.44+ 0.02 fm from the same
experimental data. As a consequence the determined
magnitudes of <t 251 are scattered in a rather broad
interval: 1.63 fm" . .;2J/2 <1.71 fm (ref./! - ), 2.35 fmg

9 12 Hed \ _
S <2.53 fm (refs./?-5/ ) and 2.65 fm_<,<r(9;lé s1/2 <

sz 73 fm (refs./2:3/ ),

In this paper we proposeanew model- mdependent met-
hod of determination of <r2 based on the hypothesis
of analyticity of form factor in the complex momentum-
transfer-squared t -plane. The method is described
in Sect. 2. In Sect. 3 we present some concrete numerical
results and discuss some indications that the diffraction
minima of elastic electron scattering on light nuclei
might be interpreted as zeros of corresponding electro-
magnetic form factors. We complete with Sect. 4 where
inconsistencies of experimental data and underestimation
of their errors are noted and conclusions are drawn

2. Analyticity Hypothesis Applied to Electromagnetic
Form Factors of Spin-Zero Light Nuclei

It is generally believed that the electromagnetic form
factors of elementary particles are analytic functions in
the cut complex t -plane. We extend this ‘hypothesis to
electromagnetic nuclear form factors. It allows us to
apply a model- independent method of determination of
r.m.s. charge radius to nuclei. Moreover, taking into
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account the fact that there are no near singular points
on the first Riemann sheet of the t -plane(aside from the
cut from t=4m2 to +~ ), it is difficult to understand
the nature of the sharp change of the behaviour of F(t) in
the vicinity of the diffraction minimum of elastic electron-
nucleus scattering. It seems for us to be natural to ex-
plain this phenomenon as an occurance of zero of the
form factor in this t range. At least three points do not
contradict this assumption. First, the existence of zeros
of form factor for t<0 is not forbidden by any of the
fundamental principles. Second, it is practically impos-
sible to measure experimentally whether the differential
cross section is equal to zero at the diffraction minimum.

Third, the differential cross section contains |F(t) |2

being thus insensitive to the sign of the form factor after
the diffraction minimum.

It is interesting to mention that in some papers the
analyticity property of nuclear form factor has already been
exploited, however, tacitly. We have in mind the use of
the well-known expression

F(t)=1+-é-<r2->t )

in fits of low- energy da}ta on F(t) at very small values
of t (see, e.g., ref.- 5/ ). Equation (1) is nothing but
the two first terms of the Taylor series, provided that
F(t) is an analytic function inside the circle around the
point t=0 . Its radius of convergence equals R= 4m§, =
~0.0784 GeV2 =~ 2.0 tm™ . Although it is not so simple
to specify the region of validity of the approximation
(1), it is clear that one can use it with confidence only
for |t| <<R. Therefore, as long as one wants to use eq.
(1) for determining <r? :1 one must have data at very
low energy measurements, so as to remain in the t re-
gion where }t|<<R.

We propose to exploit the analyticity of F(¢) in
the whole complex t -plane. We are able to write an
expressions for the form factor which is convergent in
the whole region: —w< t < 4m? This allows us to use
all data abailable on F(t] afso at large values of t=—q2,
for determination of <rZ>"2’



The goal is achieved by tne use of the conformal
mapping tech‘nique *.  We map the entire cut t -planeonto
an unifocal ellipse in the =z-plane so that the last
experimental point (with the largest [t| value) is map-
ped inz=~1 and thepoint t= 0 in z=1. The cut is situated
on the ellipse.

To determine the charge radius we use a search of

the form

‘M .
Flz(0=1+ 3 A BT, (2)-1], ()

where the normalization F{0) =1 is taken into account
automatically due to the property of the Tschebyschetf

, (a1 - -4
polynomials T,(1)=1.Here B, =(R i )+R-2(n 1125“'_1,0),12 is

the sum of the semiaxes of the ellipse and A, are

coefficients to be found from a fit. After the fit one can
take the limit '

fim 6 dF[{z(t)]

=<12> 3
t> 0 dt ( )

1/2
whence it is straightforward to calculate <r2~>/ and its

error.

3. Numerical Examples

To demonstrate our method practically we have chosen
the measurements of differential cross sections at ener-
gies which cover also the region of diffraction minimum:
eHe*  scattering at 800 MeV from ref./l/ | eCl2 scat-
tering and eQl6 scattering at 374 MeV from S .

~ *For more detail about it see, e.g., ref. /" Where
it has been used for another problem of nuclear physics:
determination of the nuclear spectroscopic factors.
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Usually some approximations are made in well-known
formulae which connect the differential cross section
with the form factor. To be consistent in all cases, we
have evaluated this relation once more in one-photon
exchange relativistic approximation. It has the following
form: .

dg _ 7? [F(0 1

2 2
30 BrZs  Aqi(l-cosf)? {2(E,E ,+q”)(E E , +q c0s6)

..mzA(Ee2 —-q 2c0s8) + mzemil,

Here do is a differential cross section, ¢ is a
scattering angle, q is a momentum, E. and E, are
total energies of an electron and nucleus respectively.
All these quantities are in ¢.m. system, m_ and m, are
masses of the electron and nucleus respectively,s-ﬂIE“E/\)z
and Z is a charge number of corresponding nucleus.

By means of eq. (4) we have calculated F(t) and its
errors using the aforementioneddata *, We show the eva-
luated values of form factors in Figs. 1-3, assuming that
they alter the sign afier diffraction minima,

At the beginning, we carried out the fits without
introducing zeros of form factor at the diffraction mini-
mum. Comparing these {its with those with zeros we
came to the conclusion that the values of X were redu-
ced several times in the latter case (see Tables 1-3)..
We consider this as a practical support for our hypot-
hesis about existence of form factor zeros in the region
of diffraction minimum.

Nevertheless, as can be seen from Tables 2,3, the
values of x2 (even with zeros) are too large in the
cases of form factors of C!2 and 0!¢ . The analysis
of the partial values of ¥2 revealed that just the points

*Note that data on ..‘1‘.’_ " in original papers are given
in lab. frame. Q
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Fig. 1. The (}ata on the eHe® elastic scattering at 800 MeV {
from ref./l/ and the fits to them with M=3. The solid ¢
line corresponds to the fit to all data and to the case
when the form factor is assumed to have a zero., The
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dashed line corresponds to the fit of the data before

the diffraction minimum only. Fig. 2. The data on the eC!? elastic scattering at 374 MeV

from ref. and the fits to them withM=3. Conventions
are the same as in Fig. 1.
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Fig. 3. The data on theeQ'® elastic scattering at 374 MeV
from ref./3/ and the fits to them withM=3. Conventions
are the same as in Fig.l.

around diffraction minimum were responsible for such

large values of the total value of x*. Recalling the

experimental difficulties in measuring the differential

cross section in the vicinity of diffraction minimum we

c(i)njecture that the errors of these particular values of
have been underestimated.

To perform the conistency check of the determined
values of radii we have also carried out the fits (see
dashed lines in Figs. 1-3) only with the values of F(t)
before the diffraction minimum. Also in this case rea-
sonable results have been obtained (see Tables 1-3).

4. Conclusions

We have proposed a pew model-independent method
of determination of <r2>'/2 for spin-zero light nuclei.
Some practical examples also have been considered.

In principle one could reanalyse all existing data on
eHe? ,eC!2 and e0' elastic scattering using this method
in order to find the most unbiased estimates of radii
of corresponding nuclei. However, it does not seem tc be
so straightforward to carry out it practically due to
inconsistencies of available data obtained in different
experiments (compare, for instance, the data on eHe4
scattering from ref./1/ and ref,/?/ ). On the whole, we
feel that the errors of the data have been underestimated,
especially, as has already been mentioned, in the regions
of diffraction minima. In any case, one should begin this
work with thorough analysis of errors and mutual con-
sistency of experimental data. We consider these ques-
tions as exceeding the scope of this paper.

At the end we would like to note that the model-
independent fit of the form factor which can be obtained
by our method can pe used not only for determination
of the radius but also, through the Fourier transform,
for the model-independent determination of the charge
distribution p(r). The latter, subsequently, can be compared
with predictions of different nonrelativistic nuclear mo-
dels.



Table 1

Results of the fits to the data on ¢He! elastic scattering at 800 MeV !
from ref.”". The truncation poini of the series (2) should be determined ’ o

by minimizing the quantity X-x?+4¢ where ¢ is the Culkosky convergence

test function {see, e.g,, ref. ’*’ ). The numbers in parenthesis at M-3 , ;

show the values of x? and < s“when the form factor was assumed noti o

have a zero. . Table 3_
! Results of the fits to the data on 0"  elastic scattering at 374 MeV
/3/ .
all data (13 points) dats before diffracticn mini 4 . from ref.”¥. Conventions are the same as in Table 1,
N only (7 points) . . . '
4, .
I,’ X -<rt)“iA(rt>‘I|(f“) xt X (rS"‘z acrhs (f""‘ ‘ L All data (335 pointas) Data ‘bar:::e th: tiﬁﬁtgiffractxo
2| e84 |689 | 1.661+0,001 8.5 | 9.3 ] 1.767+0.005 ~x! X [edhracdhi)| xt I x| <t acrh® (g
3| 18.6 | 25| 1.883.c. 1) 8.5] 1.8640.06
329-007 ? > = 2 | 60865 | 60872 2.40240.001 | 23.3| 32 | 2.643+0,002
(86) (1.99240.007)
3( 3000 | 3013 | 2.75140.001 | 4.0 | 13 | 2.70+0.01
5| 14.1| 23| 2.0140,0% 2,0 28 | 2.97+0.58 :
5| 12.8| 35| 2 - 0.7 ; - s6 (4257) (2.94640.001)
. 4630, . Y . .
- ? 35523 2971 2984 | 2.71640,005 | 2.4 | 22 | 2.79:0.04

Table 2 5§ 2907 2938 2.88:0.01 2.4 33 | 2.75:0.30

Results of the fits to the data on «<C'*  elastic scattering at 374 MeV
from ref.’. Conventions are the same ap in Table 1.

PITRIEAIRT

all data (28 points) data before the diffraction mini-
u mum only (15 points)
X' | X keS| Xt X | <rsteacrd™ (fom)
2] 18996 | 15003} 2,272:0.001 | 56.2 | 6a | 2.423+0.002 *
3{ 2375 | 2386| 2.537+0.002 | 55.4 | 63| 2.4240.01 i
(4633)| (2.75020.002) . ]
2372 | 2383| 2.51840.007 | 45,6 | 72| 2.8140.03
2332 | 2364| 2.72+0.02 30,5 { 77 | 1.4840.25
i
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