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l. Introduction 

Recently /I, 21 , we have investigated the most strin
gent isospin bounds on H (see the definitions (2b) and 
(3a)) as well as the constraints on polarization parameters, 
in the· pion nucleon scattering, using a set of bilinear 
forms which can be constructed from the scattering 
amplitudes. Thus we have obtained that the most strin
gent bounds on H a,re exactly saturated on the zeros
trajectories of these bilinear forms. The exact saturation of 
these bounds was·,recently/2/ investigated using the CERN
phase shift solutions /J/ for the pion-nucleoin scat
tering. Also, the uyper bound on II, derived recently 
by Donee! et al./4 was analyzed by Tornqvist/" I . 
A systematic comparison with the experimental data 
of the isospin inequalities on unpolarized differential 
cross sections was given In ref. I 6 I In connection A'ith 
the isospin polarization parameter introduced in ref. 7 I . 
Next, defining i" integrated cross sections and using 
classical Minkowski's and Holder's inequalities we 
have obtained a large class of isospin inequalities on 
(unpolarized and polarized) integrated cross sections. 

If th_e complete experimental data are available then 
a study of the saturations of the most stringent isospin 
bounds on H 1421 is useful in order to obtain the ~trong 
constraints on the amplitude analysis Om Z. 0 l = o , 

) . • ' J 
lm z\"i = 0 see the definitions (Ia, lb)). If some experi-
mental data are lacking, as is usually the case, it would 
be interesting to see if these constraints can be obtained 
directly from the experimental data or not. In this paper, 
in Sect. 2, we improve the isospin bounds (10) on 
-.\(a+,a_, a,.CE)- function which satisfy the condition that 
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their saturation is strictly connected with the zeros
trajectories of lm Z ~ 0 l and Im Z (~ l , n = 1,2,3. 
Also, in Sect. 2, V:~ discuss the co~~traints imposed 
on the experimental data and amplitude analysis when 
the isospin bounds are saturated or degenerated. The 
exact saturation of the isospin bounds (10), using the 
CERN -phase shift 131 for the pion-nucleon scattering, 
are investigated in Sect. 3. The "integrated" analogues 
of the bounds (10) as well as the stringent bounds on 
~< nl -integrated cross sections are obtained in Sect. 4, 
Some extensions of the isospin inequalities, based on 
Young's inequality are suggested in Sects. 2 and 4. 
The constraints (8a,b) on the experimental data and am
plitude analysis obtained in this paper are relevant and 
very useful for a phenomenological description of the 
scattering processes. 

2. Isospin Bounds and Constraints on Experimental 
Data and Amplitude Analysis 

In order to discuss the isospin bounds and the con
straints imposed on the experimental data and amplitude 
analysis, when the isospin bounds are saturated or dege
nerated, in a systematical way, we start with the following 
definitions. 

Let f. and g. be the spin-non-flip and spin-flip 
pion-nuc!e'on scatterihg amplitudes and let K<±L f. ± i g. ( ±) . . . 1 I 1 andll. =f. ±g .. Themdlcest=+,-,CE,21,21

1 , 2I l 1 1 s 1l refer to the charge or (I , I , I ) -isospin channels. 
We define • · ' " 

M(±ll, [ K(±l]*K (±); 
lJ I ] 

~(±. 2 ) = [ II(:!J]* II(±); M<.+. 3l = 2£~ £; ; 
IJ 1 J IJ 1 1 

(- 3) 
Mii=2gtgi 

z<.o> = 
2
1 [ M<.+_n> + M<.-_n>]; z<.~>, 

2
1 [ M<.+.•l- M<.-."11; 

lJ lJ lJ IJ lj I) 

(± n) _ + • ( 0) _ • ( n) _ 
M k k - (l - X k) "k ' Z k k - a k ' zk k - X k ak ' 
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(Ia) 

(!b) 

(!c) 

whereXk s(Pk ,Tk ,Sk)· for n=l,2,3 respectively, and 

,\(z,y,z) = x2 + y 2 + z2- 2xy-2xz- 2yz, (2a) 
1--+-+ -+-+ . Hi i = 2 [ 1 - pi . pi ] "I a i ' pi . pi = pi pi + Ti Ti + S i S i• 

(2b) l l 9 l 9 C+- = 2C+cE= 2C-cF= 4C13s =4C02t = 4C13o =l. 

(2c) 
Then the isospin in variance alone (see refs. /I'~ I ) 
implies 

C H =11>0, 
i j i j (3a) 

C [Jm M ( ± n) ] 2 = - .L ,\ [ M ( ±n) M( ±n) 2M(± n) ] = -
ij ij 4 ++' --' CECF. -

.1.,\(±) 
4 n' 
(3b) 

c .. [ Imz<.~>J 2 
J J. 1 J -II- 4

1 
.\(a ,a ,2acvl 2: 0, + - ,r .. (3c) 

C [Imz<•\ 2= H- 1 .\[ z<nl z<•> 27(nl 1 
ij ij 4 ++' -- ' CF.CF.' 

(3d) 
and 
C .. I[ReN .. ]2 - N .. N .. l = l...\[N ,N , 2N cvcv 1] I J I 1 J J 4 + + -- r .• r. 

l , (3e) 

f N M'±nl z(Ol z<nl 2, d or any i(" ij , ij, ij , n=l, 3 an any 

(ij) = ( +-), (+CE), (-CE) ,(!3s) ,(!3u) ,(02t). 

Therefore, the positivity condition 
2 2 [ Re N ijl . 2: o , [ lm N ij ] 2: 0 , 

implies the following isospin bounds 

0<-1+1 < 
- n -

4. min I C .. M(+n)~( +n) 1 
( ij) I J 1 i j j ' 

(4a) 

0 < -,\(-) < 4.min I C M(-n)M(-n)l 
- n - ( ij) i j i i jj ' 

(4b) 

- 4.max{C .. z<.•_> z<.•) 1:> .\[ z<nl z<•>, 
(ij) lJ 11 JJ ++' --

(n) 
2ZCECE ] ::0: 411, (4c) 
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4H ~->.(a+· ,a_, 2a CE) ~ 4. min I C .. a. a. }, (4d) ( ij) I J I J 

max I o, 
4
1 A[ z< nl, z< nl , 2Z < nl ll < H < -

4
1 >.(a ,a ,2a J ++ -- CECE - - + - CE ' 

(4e) 
for any n = 1,?. 3 and ( i j) = ( + -,) .• ( + CE) , (- CE),( 13s) ,( 0 2t), 

( 13 u) • 

Therefore, when A[Z~"1. z~:>, 2Z~;!c_El<O for any n=1,2,3, 
the lower bound (4e) on H can be appreciably weaker. 
In this case the best isospin bounds on H can be 
improved using the inequalities: 

2IReZ<
1
.01 1 S 2IZ<.o>ISIM(~n) I+ IM~-:-·> 1. 

J lJ lJ . 1] 

(5a) 

21 Re Z ( ~) I < 21 Z <. n) I < I M ( ~ n) I + I M ( :- n) I , 
lJ - I J - 1) I) 

(5b) 

from which we obtain 

(6a) 
I 2 (-) max C .. a. a. [(X. -X.) + ~ .. ll< 4H< ->.(a+'" ,2acE), ( i j)( X) I J I J I J 1 J - - _ 

max IO,,\[ z<•>,z<•> ,2ZC(nF)CF ll<411< min IC .. a. a. [(X.-X.J2 +l':~l. 
( n) ++ -- · • - - (X)( ij) It I J I J IJ 

(6b) 

respectively for any xk = ( Pk , Tk ,Sk), where 

~<±>= 2- x7- x~ ±2[(1- X2JO- x:JJ 1
/
2 • (6c) 

1 J 1 J I J 

The isospin bounds (4a,b,c,d,e) and (lOa,b,c) are suf
ficient for the study of any experimental situation at all 
energies and any scattering angles. 

The following consequences of the isospin inva
riance are of great interest for an amplitude analysis: 

(i) If -C iizl.•.>z<.•.> =Cke"k "e then the isospin bounds 
(4c), (4d), (4e) 'ar~ 1 degenerated and the lower isospin 
bounds (4a) and (<!b) are saturated. The constraints on 
the scattering amplitudes are I Z L~ 11 = o , I Z \ j 11 = o . 
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(ii) If t.(a+·,a , 2acF) =C . . i.~>z~~> .. then the isospin - . • IJ 11 JJ' 
bounds (4c) and (4e) are degenerated and the lower 
bounds (4a), (4b) are saturated. The constraints on the 
scattering aJI!~lit~~es ~re Im z<;0il= 0 and I z<.~> I= 0 • 

(iii) If >.[t_:., Z ~-• 2Z C'~ =C ke "k ae , then ttiJ isospin 
bounds (4d), (4e) are degenerated and the lower bounds 
(4a), (4b) are saturated. The constraints on the scattering 
amplitudes are Im z<.•> = o and I Z ~ ~ 1 I = 0 • 

(iv) If -,\(a+ ,a_
1
}2acE) =I.(Z~1 , z(_:>2, 2ZtE\;E'.then the 

lower isospin bounds (4a), (4b) are saturated while the 
bounds (4e) are degenerated. The constraints on the 

tt · litud I ( 0 ) ( n) sea ermg amp es are m Z ij = Im Z; · = 0 . 
The constraints on the expenmental data when R eN .. = o 

N - M( +n l M( -n 1 Z ( 0 1 Z ( nl 0 0 tabl I 'I ij = ij • ij , ij, i),, are g1ven m ~/we 
have used the relations ~19a,b,c,d,e,f) from ref. 

1 
). 

Now, in order to obtain the constraints on the experimen
tal data when lm z\~ 1 = 0 or lm Z <;j1 = 0 we observe. that, 
using (lb) and (3b), Imz<. 0 > .and Imz<.~l can be written 
intheform: 

11 
'
1 

C [ lm Z ( 0 ) 12 = - 1-l ...; - t.< +) 
i j i j 16 I 

where 

_1_ [ '- ~ +) 
16 v 2 

_1_[ y-i.(+l 
16 3 

+< y-A(-)12 
I I 

+<2...;-~;)]2 

+' -J-t..(-l ]2 
3 3 • 

c .. [ lm z< n) J 2 
1 J i j 

_1_[·'-t.<+l _, y'->.H ]2 
16 

V n n n ' 

(7a) 

(7b) 

. (+n) (-n) 0 II (Ol.2 [ (n\21 < = Sign[ lmM.. ·lmM .. ] = s1gn lmZ .. J - lmZ 1- o] = n 1 J 1 1 1 J J 

. I 1 J 1 l z< •> 7< •> 2z < •> I =stgn -2H-41.(a+•"-•2"CE +4A ++•"--' CECE · 
(7c) 

Therefore, if Im z\0i1 =· o , , 1 =, 2 =, 3 =- 1, then we obtain 
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( n) ( n) 
22 CECE (a+ +a_ - 2acE) = Z++ (a+ -a_- 2acE) - (Sa) 

-z~ja+ -a_ +2ac~, 

or equivalently 

( (n) z(n) (n) l (_/n) z(n) z(n) J 
2aCE z++ + ---22 CECE = "+ z:++- --- 2 CECE -

(z(n) z(n) z(n) l 
-a_ ++- --+ 2 'CECE' 

(Sb) 

valid for any n=l, 2, 3. The constraints (Sa) or (Sb) are 
also obtained when Im z(_~l = o only for that n for 

• ( ) I J 
which Im z .~ = o . EquatiOns (Sa) or (Sb), table I and 
table II, a~~ sufficient for the study of all contraints im
posed on the experimental data and amplitude analysis 
when the isospin bounds are degenerated or exactly 
saturated. For example, if one knows that the bounds 
(4d) are degenerated then H= C;iai "r and I Z \~ ll = o .There
fore, from definition i3a) of~" or using Eqs. (Sa,b) and 
table I we obtain: Pi = - P 1· • In this case the angles 1 4 ~ . eke =cos ( fk· Pe) are all known since H k e= Cij"i a i I C k e 
(see table II). In a similar way, if the isospin bounds 
(4c) are degenerated ( 1 z\jl 1

2 = o), from Eqs. (Sa,b) and 
table I we obtain zM Ia· =-Z(.~l Ia· and z(~'l Ia· =Z~~')Ia· 

II I )) J II I -Jl · J for any n' 1- n, Also in this case eu can be determmea 
from the relation Hke = -C;. ·z\i'Z(j)lc.r (see table II) 
for any (U) = (+-) ,(+CEl ,(-CEJ ,(13s~, (02t) ,(l3u). 

In general, when a+ ,o· _,aCE and also Z ~n,J, Z(_':!_ , 
Zt~cF. are known from experimental data for a given 
n then the true solution for H is one of the values 

obtained from the relation 
l 1 (n) ( n) ( n) 

H =-SA (a+'"- , 2a CF.) + 8 A ( Z++' z __ , 2ZCECEJ-

-~ .!_~+) .I_A(-) 
8 V n V n ' 

(9) 

where 'n = ± 1 . 
In order to choose the correct solution for H one 

tries to use the isospin bounds (6a,b) or an additional 
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theoretical input. It furthermore H is known from the 
experimental data then the relation (9) can be used for 
a fundamental test of the isospin invariance in the pion
nucleon scattering. 

Next, from the isospin bounds (4e) and relation (9) we 
obtain the bounds 

( 
( n) (n) ( n) ] (+) H (10) A Z++, Z __ , 2Z CECE + y- An y- An :': - A(a+•" _,an~), 

valid at any energy and scattering angle for any n= I, 2, 3, 
as well as the equalities: 

'(Z(n) z(n) 2Z(n} ]- .I_,(+} .t ,(-} -" ++' --' CECE £nv 1\ y-1\ -
(11) 

= A[Z(n'l z(n'l 2Z(n'lj- < r 1 -A(+_l v-A(-}" I 
++ ' -- ' CF. n V n n 

for any n, n' = l, 2, 3. 
The quantity I is invariant under rotations of the spin 

reference frame. The equalities (11) can also be used for 
a fundamental test of the 1sospin invariance when two 
components of the polarization vectors i' +' p_ 'r n: are 
known from the experimental data. 

The isospin bounds (10) are particular cases of the 
inequalities (we have used· the inequalities (14. 7) from 
ref./9 I ) 

( -A(+)ll/p [-A(-} ]1/q A(+) (-) 
n < - _n _ _ ~ (12a) 

n p q 

A (-} 
- __ n_ (12b) ( - A (-+) 11 /p ( - A (-} I I! q ?_ -

A(+} 
n 

n n p q 

according as p > o or 0 < p < I . The sign of equality 
holds in the inequalities (10) and (12a,b) if and only if 
A(! l =A(.- l . Therefore the bounds (12a,b) and the lower 
bounds (10) on -A(a+ ,a_,2acr.) are exactly saturated 
on the zeros trajectories of lm Z \ f l and lm Z \j l 
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Therefore in this case the constraints on the experi
mental data are given by Eqs. (8a,b). The bounds (10) 
as well as the bounds (12a,b) are more stringent than 
the isospin bound 4H s -ida ,a ,2acrl derived by Donee! 
et al. / 4/ and are the best possible ones since giving 
only a·+,a-, aCE and X+, X_, XcE we can obtain the 
strong constraints on the data and amplitude analysis as 
well as a fine test of the isospin invariance in the pion
nucleon scattering. 

In a similar way we obtain the inequalities 

( n) ( n) z I~ A [Z++, Z __ ,2 CECE ]la 1 !-! A(a+,a_,2aCE) la 2 ::: 

(l3a) < .':1 ,\[ z<nl z<nl zz<nl ] - a2_ A ( 2 ) - 4 ++' --' CECF. 4 a+ ,a-' aCE ' 
1 a a a 1 1- 4A(a+ ,a_,2acE)I I H 2:;- TA(u+,u-,2ucp)+a 2H, 

(13b) 
!.L;..[z<•l z<•l 2Z (nl II a! Ha2 ~A[ z<•> z<•l zi•l I · 4 ++' --' CECE _2 4 ++' --' CECE + 

+a
2 

H, (13c) 

[z(nlz(n) 7 ~nl ] for any a 1 >O,a 2 >O,a1 +a 2=l, and A ++' __ ,2'"CECE ?_0, 
and 

Hai[-l"a 2a )]a2{l..A[Z(nlz<•>zz<•l lla3.< 4 1\1, +,a_, CE 4 ++' --:-' CECE - (13d) 

a2 1 [ (n) z<•l z<nl l .::; a 1 H- TA(a+,a- , 2acr) + 4A Z++' --' 2 CECE , 

fora1 >0 ,a2 >0,a 3 >0,a1 +a 2 +a3 =l, and 

>.[ z< n) 'z ( n)' 2Z( n) J > 0. 
++ -- CFCE -

The sign of equality holds in (13a,b,c,d) if and only if 

>. [ Z~~ , z<~~, 2z<;~CE ] = -A (a+ ,a_, 2acE ) ' (14a) 

4H ->.(a+ ,a_ ,2a·cE)' (14b) 
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4H = A[ z< nl z< nl 2Z (nl ] (14c) ++' --' CFCE ' 

( n) ( n) ( n) 
4H = -A(a+,a_,2aCE) =A[ Z++'z __ ,2ZcECEJ, (14d) 

respectively. Therefore, the isospin bounds (13 b,c) are 
exactly saturated on the zeros-trajectories of lm z <.o l 
and Im Z < ~l respectively, while· the bounds !l4a,d) 'dre IJ (0) ,(n) saturated when both the lm Z ; i and lmZ; i are 
zero. 

Finally, we remark that a large class of isospin 
inequalities can be derived using the Young inequality /9 I 

a b 
1 ab ~ J ¢(x) dx + J ¢- (y) dy, (15) 

0 0 
where a and b are any combinations of II , A 1.+ l , 
A<;;- l such that a> o , b;: o, y = <p \ xl is any continuous 
strictly increasing .function of x for x:: o with ¢ ( o) = o 
and ¢- 1 ( y) is the function mverse to ¢ ( x) • The sign 
of equality in (15) holds if and only if b = ¢ (a J • There
fore, spectalizing ¢ ( x) , a and b in (15) we can 
obtain a number of interesting isospin inequalities. In 
particular with the substitution a~a 1 1r , b~b 1 1'1 ,1..+1..=1 
and with y = xP-1 (15) yields P q 

al/p bl/q<..!.+.!!... if p > 1 and al/p bl/q > .::_+.l if 0 < p < -p q -p q 

( p,;. 0) from which we have derived the inequalities 
(l2a,b) and (l3a,b,c) specializing a and b . 

3. Exact Saturation of Isospin Bounds (10) 

For the study of saturation of isospin bounds (10) 
we have used the CE~N-phase shift solutions 131 in 
order to calculate the zerps-trajectories of Im z(ol and 
Im zl jl ( or Im Z ;)•> in the helicity reference 1frame), 
n=l,2,3 in the (pLAB•cosiJ)· -plane, where 0 is the 
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'•~, 

scattering angle in the centre-of-mas~ tf1eference frame, 
so that the zeros-trajectories gf Im Z; i (solid lines) 
and zeros-trajectories of lm z\j ( lm Z ;'{1 ) (dashed 
lines) for different n = 1, 2, 3 are presented in Figs. 1-5, 
respectively. In order to determine the regions from 
( PLA , cos e l- plane where the isospin bounds (10) are 
nearry saturated (the unhatched regions from Figs. 1-5), 
we have used the quantities F( F') , F(0 ( F ·<OJ andF(n)( F'(nl) 

defined by the relations (7a,b,c) from ref/21 , such that 
the hatched regions shown in Figs. 1-5 are obtained 
according to F-F< 01 2:0.1 or F(nl -F>0.1 (or F'(nl_F' 2:0.1 
respectively), since it was pointed out by Tornqvist /s I 
that these differences are known, through the phase shift 
solutions, with an accuracy of 0.1-0.3. Therefore, we find 
that the isospin bounds (10) are saturated within the ex
perimental error limits in the entire cos e- region below 
one pion production threshold for all n = l, 2, 3 (see 
Figs. 1-5), this result being in agreement with the satu
ration of the isospin bounds 01,1 qnpolarized integrated 
cross sections observed by Roy /IO f in the same energy 
region. 

As can be seen from Figs. 1-5, the isospin bounds 
(10) are exactly saturated along certain lines in the 
( p LA 8 , cos e ) -plane. ·These lines are independent of 
n = 1, 2, 3 and ( ij) when correspond to the zeros
trajectories of Im Z ~ p 1 (solid lines) and are dependent 
on n = 1, 2, 3 and independent of ( i~) when correspond 
to the zeros-tr:J,jectories of lm z\~ (dashed lines) 
and impose the strong constraint~ (Sa) on the experi
mental data. 

Therefore,if a+ , a_ , acE and also p+ , P _ , PeE 
are known from the experimental data our results pre
sented in Fig. 1 can be used for a fine test of change 
independence since we know the regions from (p LAB 

cos e ) -plane where the isospin bound (10) for n = 1 is 
almost saturated (the unhatched regions) according to the 
phase shift analysis. For such a test it is sufficient to 
verify the relation 
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u -> 
IJ.J 
~ 1.5 
~ 

:a 
:::> 
>-
z 
UJ 
:a 
~ 1.0 

:a 
<t 
UJ 
CD 

0.5 

p 

. ( 

~
-,, 

... . , 
' ........ , <., 

I ·~ -~ <':.:: __ _.E'_:'s 
~ ............ ,/ .-:., 

-1 

.. 
0 

0 
cos e 

] 
+1 

Fig. 1. The saturation of the isospin bound (10) for 
n = 1, ( Pl, ( Z \i l ~ P; a; ) • The solid lines correspond 

to ex~ct saturation of the bound (10) for n = 1 due 
to Im Z i ~ 1 = 0 while the dashed lines correspond to 
exact saturation of bound (10) due to lm Z ~ 0 = o . Un
hatched regions: the bound (10) for n = 1 Is saturated 
within the experimental errors ( F- F < o l < o . 1 or 
F(ILF<O.l) 
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2.0 

<..) ..... 
> t5 
lLl 
1.!) 
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1-
z 
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:::E 
0 
:::E 
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llJ 
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0.5 

-1 
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-, ,. ___ _ 

~----------------

0 
cos a 

+1 

Fig. 2. The saturation of the isospin bound (10) for 
n ~ 2 , ( T) , ( z<•> = i a ) . The solid lines correspond 

i j i j 

to exact saturation of the bound (10) for n ~ 2 due to 
Im zc,9 >~ 0 while the dashed lines correspond to exact 
saturation due to lm Z\ fl ~ o . Unhatched regions: the 
bound (10) for n ~ 2 is saturated within the experimental 
errors ( F - F< o l::: o . 1 or F< 2l_ F ::: 0.1 ). 
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-1 
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+1 

Fig. 3. The saturation of the isospin bound (10) for 
n ~ 3, ( S) , ( z',3/ = s, cr 1 ) • The solid lines correspond 
to exact saturation of the bound (10) for n ~ 3 due to 
Im Z\~ >~ 0 while the dashed lines correspond to exact 
saturation due to lm Z.' 1

3> ~ 0 . Unhatched regions: the 
bound (10) for n = 2 is saturated within the experimental 
errors (F-F<O>o;o.l or F'3J-F .<; 0.1 ). 
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saturation of the bound (10) for n = 2, due to 1m Z'\0ll = 0 
while the dashed lines correspond to exact saturation 
due to lm Z'W = 0 . Unhatched regions: the bound (10) 
for n = 2 is saturated within the experimental errors 
(F'-F'<0 ~0.l orF'< 2l-F':': 0.1 ). 
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'P 
CE 

P a (a -a -2a CE) - P a (a -a + 2a CE) 
+ + + - - - + + . • (16) 

2"cE ("++a_ -2aCE) 

in the unhatched regions. This relation seems to be 
verified in the entire cos 0 -region for PLAs<0.6 GeV /c, 
for all values of PLAn up to 2.1 GeV /C when cos 0 ?: 
0.6, and in the entire backward hemisphere for 1.2<JlLAJ{ 
< 1.6 GeV ;c. Furthermore, this relation is also well 
verified in the near-forward region for S<p LAB < 
< 13.3 GeV ;c since we know that the isospin bounds (6a) 
for X ·• P · are degenerated within experimental errors 
(see ref. /II). Also, since the degeneration of the isospin 

bounds (6a) implies I m z< 0 ~~ o then we expert that the 
constraints (16) are als~J valid for the spin rotation 
parameters in this energy and transfer momentum region. 

Next, since the true structure of the z_eros trajecto-
ries of Im z< o l and lm z< ~~ is expected to be much 

lJ I j 
simpler and smoother than that observed, the small 
details in Figs. 1-5 cannot be taken seriously because 
of the uncertainties of phase shifts. Thus, the exact 
positions of the lines where the isospin bounds (10) 
or (12 a,b) are exactly saturated are not well known; 
if these quantities are calculated from phase shifts, 
the result depends mainly on the theoretical assumptions. 
In such a situation, it will be interesting to obtain these 
lines (where the isospin bounds (10) are exactly saturated) 
from other phase shift analyses (e.g., Saclayf121 phase 
shift) and to compare these results with our results 
presented in Figs. 1-5 in order to study in more detail 
the ambiguities present in the phase shift analysis. On 
the other hand, any suggestion for a simple zeros
line pattern should be useful in order to construct dif
ferent theoretical models. Also we note that the conti
nuations of Figs. 1-5 to higher energies are of great 
interest for ·an amplitude analysis and a phenomenolo
gical study of the pion-nucleon scattering. On the other 
hand, our results presented in Figs. 1-5 will be useful 
for the localization and a detailed investigation of the 
isospin breaking effects /l 3 / (e.g., the indirect effects 
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due to mass (and Width) differences, mixing between 
,,o and ~ or between formed 6.'s and N • 's, dif
ferences in coupling constants). It would be interesting 
to perform a phase shift analysis of "N 4 "N at beam 
momenta up to 2 GeV ;c, in a model-independent way, 
relaxing the isospin invariance or tolerating isospin 
breaking of order lOo// 141, arid to use the relations (3a) in 
order to estimate the breaking effects. Since the new solu
tions must lie near the isospin invariant ones, if the actu
ally isc;>spin invariant phase shift solutions are unique (see 
ref. /l 5/ ), then the breaking phenomena are expected 
to be present in the unhatched regions from Figs. 1-5. 
Finally, we note that the equalities (3a), (9) and (ll) are 
sufficient to determine quantitatively the breaking pheno
mena when accurate experimental data will be available. 

4. The Isospin Bounds on Integrated Cross Sections 
and Average Polarizations 

Let i < nl be the integrated cross sections defined 
as 

};(n)~[J l"di'Jl/n 
D 

..L.<n<+OQ, 
' 2 

(17) 

where:£i =ai, (l±Xi)Oi·, Xi=Pi,Ti ,si or Pi,Ai, Ri, 
D is a region from the physical domain, and " is a po

sitive measure defined on the physical domain, i ~ +,//E. 
Then, the tsosp~ invf,~iance alone implies (see ref. 8 ), 
that the ~ ~l.~<~ .~ CE -integrated cross sections satisfy 
the inequality 

-X[i<nl l(nl z};<nl]>O 
+ ' - ' CE - ' 

Next, let x\+n 1 and x<;" 1 be defined as 

X~ n) dji(n)' I(n) '2I(CnE) J. 
+ - ' X 

(18) 

(19) 

for l; ~< 1 + X;) a; and l i ~(l- X; l Oi respectively. Then, 
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since - )..(j:nl?: o we can write the following inequalities 
X xl+n) )..(=n) 

[ _ {':_nl 11/p [ -)..(-~) l 1/q < __ x ___ x_ (20) 
X X - p q ' 

for any p > 1 , _!_ + l ~ 1 . The inequality is reversed 

for o <p < 1. The ~ign ~f equality holds in (20) if and only 
if )..(:!:• 1 ~ x(.::nl. Now, specializing (20) for different 

n, p; q ~e obtain a number of interesting results. For 
example, if n ~ 1 , p ~ q ~ 2, we obtain the inequality 

[->-.(~1 ] 1/2 r-x(:::111/2 s ->-.(a+,;;_,2a0 )- (2la) 
X X 

-xr x+;;-+, x_;;-_, 2Xc~ac·~ 1. 

where 

,(!=l ~ >-.[(1 ±X+);;+ ,(I± X_)o_ '2(1± Xc~l acE], 
X 

(2lb) 

ii: ~;;:~ll are _the _USUiJ.l integral cross sections and X; ~ ( P; , 

T; , S i ) , ( P; , A i , R i ) , ... are . the average values of .the 
polarization components for a given kinematical region 

- 1 
X.=- f X. a. d!l, a.= J a. d!l,!l

0
;; 4,, (2lc) 

1 a..oll 'nl 
1 0 0 

The isospin bounds (21) are equivalent to 

2 - - 2 - -r;;_ -a+l +l x_;;_- x+ ;;+ J. ;; 4(1 + x0, xCF:l x 

- - - - [ ( +) 1/2 (-) 1 /2 
xuc~(u +u -ucvl- -L] [-,\_] 

~ + - ,,, X X 

(22) 

X: o t = - (23) 

a+ +a_ -aCE 

The sign of equality holds in 
and (22), if and only if x\_+l = x(.::l. 
valent to x x 

(20) (for n = 1 ), (2la) 
This condition is equi-
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2Xci-'cE (a+ +a;_ -2acE l ~ x+;; + <o + -a_- 2o cE l- (24a) 

-X a (a -a +2acEl, 
- - + - ' 

- - - - - -
2acE(\O'+ +X_a_-2XcEO'CE)~a+(X+a+ -X_a_ -2Xc~CE)-

-a_(X+a+-X_a_ +2XcEU'cEl. (24b) 

The isospin bounds (22) enable us to understand the small 

differences between elastic integrated cross sections at 
high energies in terms of small charge exchange integra

ted cross sections. These bounds require that 
if 

;; <o CE + 
-

+-a )-0, 
·~~ 

(25a) 

then 

- -
u -u~o X -X ~o 

+ s~oo ' - + s-too ' 
(25b) 

and 

l-l~ll~/2 [-;{:.-)]1/2 ~ 0, 
X X 5--JOO 

(25c) 

for any average polarization component in any spin 
reference frame, and, conversely the "N - charge 
exchange integrated cross sections cannot vanish for 
s ~ ~ if one of the above relations (25b,c) does not hold 
when s ~ ~ . On the other hand, from the isospin bounds 

(22), which are more stringent than the isospin bounds 
(36) from ref. /s/ we obtain the Pomeranchuk-type 
theorem (25b) assuming that 

4[l+X x la <a +a -a l-r-l+1 J112 [-AHJ1
;

2-o. 
0 t CE CE + - CE X X H~ 

(26) 

Next, from (5a,b) and Holder's inequalities (see refs /8, 9 I) 

we obtain: 
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- - - - 2 -(-) - -
Cijaiaj [(Xi-Xj) +/;ij ];:; -A(a+,a_, 2aCE ), (27a) 

A[X+,]+,X a , 2XcEaCEJ <C .. ,;: a.r6. -X.) 2 +~<;ll (27b) 
- - ~ • - lJ l J l J IJ' 

valid at an energy for any X -average polarization 
component in any spin reference frame and for any 
( ij) =( +-) ,(+ CE)/ -CE), ( l3s) , (02 t), 03u) where 

i ( ±l = 2- X 2 - X? ± 2[( l - X 2 ) (I - X . ) J I I 2 
lj l J : I J 

and c ,
1
. are given by (2c). 

Nex , if we define 

J ReN ;1· dO= HeN·· N·. = M<:+cnl M <:-:nl z (Ql z !pl 
(l I J' J J - IJ t lJ t IJ , 1 J , 

0 

J N;;d!l=N;;, 

no 

then it is easy to see that 

---2 ~--

c,jiN,, Nii- [HeNij] I=- '4,\[ N++'N __ , 2N n:o:l· 

Therefore, from (9), (29) and (2la) we obtain: 

(+) - - -
0 < - X_ < 4. min I C 1 · 1. (I + X ,· ) a 

1
· ( 1 + X 

1
. ) a 

1
- I , 

- X - ( ij) 

(-) - - - -
0 < -X < 4. min I C · · (I -X· ) a· (I - X. ) a · I 

- - ( ij) 1 j I I ] J t 

(27c) 

(28a) 

(28b) 

(29) 

(30a) 

(30b) 

-4.maxiC .. X. X.;;,;;, I<,\ (X ;; ,X ;; ,2XC'';;CE) < 
( ij) 1 J l J 1 ) - + + - - . C'. • ' 

A(- - - l [ *+l.,I/2 [ AH]I/2 (30c) s:_- a+,a_,2acE --X' -X ' 

- - - - - - (+) I/2 (-) 1/2 
A (X u , X a , 2 X CE u CE ) + [ - L ] [ -,\- ] < 

+ + - - X X 

<-A(a ,a ,2acEl< 4.miniC .. c7.0:.!. 
- + - - ( ij) 1] 1 J 

(30d) 
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We remark that the isospin bounds (30a), (30b), (2la), 
the lower bounds (30c) and the upper bounds (30d) are 
the "integrated" analogues of the isospin bounds (4a), 
(4b), (10), the lower bounds (4c), and the upper bounds 
(4d), respectively. _ 

Next, if we define H.. by 
1 J 

~ -jo -jo ... 

- l ---- --
Hij = 2 [l - P; · ~ ] a i u i ; Pi · Pi = Pi ~ + T i Ti + S i S i (31) 

Then it would be interesting to obtain the conditions for 
which the equalities (3a) and (9) as well as the isospin 
bounds (4c) have an "integrated" analogue. For this 
we observe that if we define the scattering amplitudes 
li and ; i by the relations: 

- - 2 - 2 - - - -± - - - -± 
ui =lfil +lgil ;uiPi =2lm(figi),uiTi=2Re(figi) 

----2-2 
a i si = I r i I - I s i I 

(32) 

and ~lso we define the bilinear forms M\~nl , Z If) , 
and Z i i , n = 1, 2, 3, by the relation§ (la,b,c) using the 

b titliti - - (+) (+) - .-s? s _ 0!! fk ~ f k '· Sk ~ Sk , K [ ~ Kk- = f k ± 'g k 
H ±l ~ H( ±l = r ± g then it is sufficient to assume that the 
scattering amplitudes fi and g; satisfy the same 
isospin sum rules as ti and Si ones, in order to 
obtain for each equality or inequality from Sect. 2 an 
"integrated" analogue. It would be interesting to examine 
in more detail this hypothesis and to test it from the 
experimental data or available amplitude analysis. 

Finally we remark that other interesting results 
can be obtained if we use the Young inequality (15) 
with a and b as functions A <_::l , A<:l , Hij and 
->.(a.;. ,a:._, 2u CE) such that a ;:: 0 ,x b;:: 0. X 

5. Conclusions 

In this paper we have obtained that the isospin in
variance alone implies the relations (3a,b,c,d,e), (7a,b), 
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(9) and (ll) as well as the isospin bounds (4a,b,c,d,e), 
(6a,b,c) and (10). These relations are sufficient for the 
study of all the constraints imposed on the experimental 
data and amplitude analysis when the isospin bounds are 
saturated or degenerated (see the tables I, II and rela
tions (Ba,b)). On the other hand, since the isospin bounds 
(10) are equivalent to 

[a -a 12 +[X a -X a ] 2 +[-A(+)]I/2 [-A(-)]I/2 < 
- + -; - CE CE n n -

:S 4(l+X 01 XCE)acr.(,.++a_-acE)' 
(33) 

these bounds enable us to understand the small diffe
rences between elastic differential cross sections at 
high energies and fixed momentum transfer, in terms of 
the small charge-exchange differential cross sections 
and to obtain Pomeranchuk-type theorems: 

if 

a -a 
+ 

~o, 
s_.oo, t- fixed 

X -X ~o , 
+ - s_.oo, t- fixed 

4( l + X0 1 X CE) a CF. (a+ + <7 _ -,. o:l -

-[ -,UlJI/2 [-A <-l I 1/2 ~ . . 
n n s._.oo, t- hxed 

(34a) 

(34b) 

The bounds (10) (as well as the bounds (12a,b)) are 
more stringent than the isospin bound 411 S-A (a+,a-,2ncEl 
derived by Doncel et al. / 4 / and are the best possible 
ones since giving only a+ , a_ , 2a cr. and X+, X _, X cr. we 
can obtain the strong constraints on the data and ampli
tude analysis. The saturations of the isospin bounds (10) 
are investigated in Sect. 2 using the CERN-phase shift 
solutions for the pion-nucleon scattering. We have found 
that the isospin bounds (10) are exactly saturated along 
certain lines (the solid and dashed lines. in Figs. 1-5) 
in the (PLAB, cos e ) -plane. On these lines the strong 
constraints on experimental data and scattering amplitu
des are imposed, so that the solid lines from Figs. 1-5 
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Table I 
The constraints on Ni i when 
M<:-:nl, z<~l, z<~l , n ~ 1, 2, 3. 

ReNij ~ 0 , N--~M<+nl 
1]- ij ) 

1 l 1 1 1 J 

Zeros of Costraints on N .. 
" 

*) 

ReN I N ~ t-[ N + N +- CECE ++ 

ReN+CE I N CECE 
1 ~-[N - N ] 2 -- ++ 

ReN_cE I N CECE ~ .l.[ N - N ] 2 ++ --

ReN 13 s N CECE ~ .l.[ 3N + N ] 
6 -- ++ 

ReNo 2t N++ ~ N __ 
\ 

ReNI3 u N CECE ~ ! [3N++ + N __ 

-----------'------------------
•l Nij = M<trl,M(ijnl, Z\fl, Z\'f, n ~ 1,2,3. 
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correspond to the zeros-trajectories of Im z l i0/ (see 
the definitions (la,b,c)) and to constraints: 
~ ~ 

2PcEaCE(a+ +a_.-2acE)=P+a+(a+-a_-2acE)- (35) 
~ 

- P_ a_ (a +-ac.. + 2a cE1 

in any spin reference frames and, the dashed lines 
correspond to the zeros-trajectories of lm Z <ill and to 
constraints (8a) or (8b) valud only for that n for which 
the isospin bound (10) is exactly saturated. Also we have 
found that the isospin bounds (10) (or )(12a,b) are sys
tematically saturated, within the experimental error li
mits, in the entire cos 0 -region below one-pion produc
tion threshold and also in the forward and backward 
regions, at all beam momenta considered here, especially 
' for P , T , A , -polarization parameters. These statements 
hold also for the bounds (10) on S, R parameters only 
for p LAB > 1 Ge V 1 c in the forward region and for 
PLAB < 1.5 GeV jc in the backward region. The continua
tion of Figs. 1-5 to higher energies are of great interest 
for an amplitude analysis and for a phenomenological 
study of the pion-nucleon scattering. An interesting 
feature of the pion-nucleon scattering at high energies 
and low transfer momenta, is the satu7at}on of the isospin 
bounds (10) since we know from ref. 11 that the bound 
(6a) on X , p (where .;<+2 have been neglected) are 
nearly degenerated in the near forward region. Therefore, 
we expect, that at high energies in the diffractive region, 
the relation (35) can be good approximations in order to 
determine P CE when a+ , a_ , aCE and also P + , P _ 
are known from the experimental data. Also, we expect 
that the true structure of the zeros trajectories of 
Im Z < .

0
) and Im Z ( ~l , n = 1 , 2, 3, determined from the 

expertmental data u~lng the isospin bounds (10) or directly 
from the constraints (35) or (8a) in the entire (PLA&cos 0) 

plane, will be relevant for a phenomenological descrip
tion of the scattering processes. On the other hand, our 
results presented in Figs. 1-5, will be useful for a funda
mental test of the isospin invariance as well as for 
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a localization and a detailed investigation of the breaking 

isospin effects /! 3 /. We note that the equalities (3a}, 
(9) and (ll) are sufficiently in order to determine quanti
tatively, directly from the experimental data, the brea
king effects when accurate experimental data will be 
available. 

Finally we note that the isospin bounds (30a,b} and 
(2la) obtained in Sect. 4, are the "integrated" analo
gues of the isospin bounds (4a,b} and (10) respectively. 
The isospin bounds (2la), which are more stringent -as 
familiar triangle inequalities require the validity of the 
Pomeranchuk like theorems (25b} on the integrated cross 
sections and average polarization parameters if the 
conditions (26) hold in the high energy limit. Some 
extensions of the isospin bounds, based on the Young 
inequality, are suggested in Sects. 2 and 4. ' 

I would like to thank Drs. C.A.Gheorghe, S.Berceanu, 
S.Holan and F .G.Nichitiu for useful suggestions and 
discussions. 
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