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1. INTRODUCTION

Recently new formulations of the relativistic string model
have been proposed’/ =7/, In papers’/ 2% the geometric approach
to the relativistic string theory was developed by describing
string dynamics in terms of the differential forms defined on
its world sheet. This approach is based on the consideration
of the moving frame on the world sheet of the string. Changing
this frame in motion of its origin along the string world sheet
is given in terms of the differential forms by linear equations.
The integrability conditions of these equations are considered
as dynamical equations in this approach. In differential geo-
metry these conditions are known as the embedding equations of
Gauss, Peterson-Codazzi and Ricci. If on the world sheet of
the string the conformally-flat coordinate system is chosen,
then, as is shown in papers’/3-5/, the embedding equations for
the string world sheet are reduced to one nonlinear Liouville
equation. In the three—-dimensional space-time this equation
defines a real function and in the four-dimensional Minkowski
space a complex-valued function*

In describing the strlng world surface in terms of the dif-
ferential forms there is the gauge freedom connected with the
S0(1,1)xS0(n~-2) rotations of the moving frame at each point of

the world surface, in the tangent plane the SO(l,1)-group acting;

and in the normal space, the SO(n-2)-group, where n is the dimen-
sion of space-~time in which the string is moving. In the Kamimu-
ra paper/?/ this freedom has been used for imposing special
gauge conditions on the differential forms of the world sheet

of the string. As a result these forms are defined in/?/ by the
solution of the D"Alembert equation instead of the solution of
the nonlinear Liouville equation.

In this note we show that the Kamimura gauge is a direct
consequence of the Backlund transformation relating the solu-
tion of the Liouville equation with that of the D”Alembert equa-
tion. The rotation angle of the moving frame on the world sheet
of the string which enables transition to Kamimura®s gauge is
defined by the solution of the D"Alembert equation, and the

* The embedding equations for the string world sheet in 5-
and 6-dimensional pseudo—-Euclidean spaces were obtained in pa-
pers/8-10/,Tbid their general solutions were constructed.
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Liouville equation describes the metric on the string world
sheet in the usual orthogonal gauge.

Another interpretation of the Kamimura gauge is possible
also. It will be shown here that this gauge can be treated
as a consequence of the conformal invariance in the relativis-
tic string theory moving in three-dimensional space-time.

The paper is arranged as follows. Section 2 is devoted to
the formulation of the relativistic string model using the
method of the moving frame in the surface theory.In section 3
the Kamimura gauge is obtained as a consequence of the B&cklund
transformation for the Liouville and D" Alembert equations. In
section 4 the same gauge is considered as a consequence of the
conformal invariance in the string theory. Section 5 is devo-
ted to the purely geometric derivation of the Bidcklund trans-—
formation relating solutions of the Liouville and D”Alembert
equations.

2. MOVING FRAME IN THE RELATIVISTIC STRING MODEL

Let #(ulu?), p=0,1,.,n~1 be the parametric representation
of the world sheet of the string moving in an n-dimensional
pseudo-Euclidean space-time with the metric signature 7n,, =
= diag(1, -1,~1,...).The string coordinates obey the following equa-
tions

y i A ,
11 T2 =Y (2.1)

2 2
B = (K1) =m By = =¥ ) ma’l D), g =g, pxf]x, 520, (2.2)

where g;; wlu?), i,j=1,2 is the induced metric on the string
world sheet and the index with comma denotes the partial deri-
vative with respect to the corresponding parameter ul or u?2.

At any point of the world surface of the string we construct
the moving orthonormal frame using two tangent vectors eq and
el and (n-2) unit normals eg , a=3,4,..,0

F!Lae#b = Nab * a,b-l,
(2.3)
Nap ™ diag (1, -1, -1,...).

Alteration of the basis {e”} by the motion of its 0r1§1n i)
along the surface is given by the following equations

dX#- wle‘il R (2'4)

€=, e, i (2.5)




Qap + Qe =0,

2.6
ivjvkn-o—l 2 apb.C,-u=1,n.,fl, ( )

where w' and_Q}? are linear differential forms’'¥yi=e ! dul

Q,y=0°b ol dul. The integrability conditions for eqs. (2.4) ané
(2.5)
d%x = dadx? ZeH
= X =0, d ea=0 (2-7)
give rise to the basic equations in the surface theory
A @
w'AQy =0, (2.8)
i _ i i
do =w AQj- » (2.9)
. b ‘e - b
e, =Q,_ A Q, . (2.10)
i,j=1,2, a,b,c:I,...,n, a-3.4.....n.

The solutlons of eqs. (2.8)-(2.10) w! and Q determlne the sur-
face #%u 0 ) up to its motion as the whole in space,

Eqs. (2.8)-(2.10) are the well-known embedding equations
ol uduss, reterson—-todazzl and Ricci in the classical surface

theory .They are written here in terms of linear differential
forms of the surface.

In addition to the linear forms ' and Q;ﬁ in the surface
theory the quadratlc differential forms Bij bahj and the
torsion vectors v, are used also. The latter forms define
the motion along the surface of the basis [xH T x“z,e“ }

ac-
cording to the formulas
n
I u
Vi = Zoegbgii; eq o (2.11)
& ik “
fai =7 PafijBT Xk * % cglga)i € -
(2.12)

Lik oo =1,2, a,B,y,..=3,..,0,

n b =diagic1,e2 reser€y i,

Here y; denotes the covariant differentiation with respect to
the metric g;; = x¥ x

The quadratlc ang 11near differential forms of the surface
are connected in the following way

2
_ k ¢
Bij ‘k,il"k[lwi i I

2
r -0
balij=— 2 T’kp(dlna'l] ’
k,f=1 2.13)
n
v = ‘B

yali™ gEaTyBMals

i,j,k ,-..=I,2, a,ﬁ,y ,...-3,...,[1.

The condition that the world sheet of the string be a mini-
mal surface (eqs. (2.1) and (2.2)) is expressed in terms of
the quadratic forms as follows

ij
bejij & =0, a=3,.mn. (2.14)

Tha nn—mn\nnn framo a# a-1 ' n at nnnh naint ~F £ha oree
a

> - e M prasrie Ve e wwa

face is defined nonun1que1y We can go from the basis {el}
to a new one {ek}

- b
el ~g,. €} (2.15)

with the matrix g from the SO(1,1)xS0(n-2) group. Under this
transformation the tangent space and the normal space at each
point of the world sheet of the string are not mixed. The em-
bedding equations (2.8)-(2.10) determining the surface by dif-
ferential forms are covariant under this transformation of the
co-moving frame (2.15).

3. THE ROTATION OF THE CO-MOVING FRAME
ON THE WORLD SHEET OF THE STRING

First we shall consider the relativistic string theory in
the three-dimensional space-time where it is described by one
nonlinear Liouville equation for a real function/3=%. Taking
into account eqs. (2.6), (2.8), (2.9) and the minimality con-
dition of the world sheet of the string (2.14) we can represent
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the matrices Qab in the

b
a
o 22 _ 1
a a
+b a9 byo
220 212
Qa.]l a a
b b
11 b1
- — — 0
a2  a

following form

o

a’l
a

bys
a

3‘1
T2

bn
a

3.1

The integrability condition (2.10) is written obviously as

0, -0, +10,.0,1=0.

3.2)

Putting 3,2=exp(_¢) and substituting (3.1) into (3.2) we obtain

$11-8 g9 =2 WM q_(w)e?,

bj;,1—b 12,2~ 0,

b b =0,

11,27 V12,1
b,,+b,,= g (u+)
117 V12™ Y4 ’

ut=ulsu“ .

byy=bpp=a ™ ),

3.3)
(3.4)

3.5)

(3.6)

Without loss of generality one can choose the functions qt(u*)

as constants/ 5/

") =q_(7)=q.

3.7

Now we use the gauge freedom in the theory and introduce in-
stead of the basis {ef }| a new one {e ¥}

obh -
€, =84, By

with the matrix

g[A(ul.uz)] - 'sh A

U

sh A 0
ch A 0
0 1

(3.8)

3.9)

The differential forms ﬂab are transformed as gauge fields
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ﬁi -g_lﬂig —g—]aig, i=1,2. (3.]0)
Let us write explicitly the matrices Eh:
%, 2 b
0 - Al —qexp(-z)chA
ob $.2 é.
a-ll- -—é--z\,l 0 qexp(—z-)shz\ ’
-qem()ch A -qexp(.i‘zl)sm 0
0 _%_1_)\,2 .qexp(%)sm 3.1D
-.p ¢'1 .
Qa-lz_ --2—--/\,2 0 —qexp(-g)ch)\ )
aemErsmr e )enn 0

Now we take into account the Bicklund transformation that
comnects the cclat

the colutions of the Livuville aud U Alempert equations.
It has the form/16.17/ '

%’1- +A 4 =-[q] em(-gf-)chA. %3 +A1={q exo(-(g) ~sh A, (3.12)
Here the function ¢ (u Lud) obeys the Liouville equation

8 11- b g0 =202 6% (3.13)
while the function /\(ul,uz), the D"Alembert equation
Ay A= (3.14)
If

o & = 4 £, 5 @) 3.5y

a? [, (") @I

is the general solution of the Liouville equation (3.13), then
the solution of the D"Alembert equation (3.1%4) entering into the

7



Bicklund transformation (3.12) is expressed also in terms of
the functions f (u*) and f_(u™)

A(ul,u2)-_.-2L1n £ ) + iz-ln £ (u ). (3.16)

Now we take in matrices (3.}!1) as the transformation para-
meter A(ul,u?) ‘the solution (3.16). Then by virtue of (3.12) it
follows that the transformed matrices Q1] obey the conditions

-1 a4
Qo.;i =-signaQy, ;o

i=1,2, (3.17)
where sign q is
. +1, g>0,
'sign q = { (3.18)
-1, q<0.

It is easy to verify by eqs. (3.1) and (3.2) that in terms
of the transformed differential forms the theory of the relati-
vistic string in three-dimensional space-time is defined by the
D°Alembert equation’’

311 — 3 99 =0. (3.19)

Equations (3.13) with q <0 are the Kamimura gauge conditions
in the relativistic string theory moving in the three-dimensio-
nal space-time’?/.

Let us go to the four-dimensional Minkowski space-time.As is
shown in paper/* the string theory in this case is reduced to
the nonlinear Liouville equation for the complex-valued func-
tion. It is convenient to direct unit normals at each point
of the string world sheet along the vectors lef‘l and V;xf‘2/8’9{
As a result, the matrices } describing the co-moving frame
e‘u‘ ,a=l,..,4on the string world sheet take the form

[ ¢ ¢ 0
0 - L2 - 2 cos = 0
= 18 5 083
0
-f-!—z 0 0 -qexp('i <sin =
b 2 2 2
Qu-"la ¢ 0 6 9
—qexp—zcos—z- 0 0 T
b .0 6,9
0 eXp —Sin— -l 0
qexp B) Sn2 B)

i

ey gtk

%1 ¢ .0
0 -5 0 —~Qexp ?smz—r
- f—t—1 0 -qexp%--cosg; 0
Qb . 2 (3.20)
u-!2 0 61
' 2 cos 2. 0 -
0 qexp > cos 5 5
¢ 0 6.1
- L gine— 0 - — 0
A6¥p 5 - Sing 2

The compatibility conditions (3.2) with the matrices Q gi-
ven by (3.20) reduce to the Liouville equation for the complex-
valued function wa= ¢+ i6

w’“—w,22-2qze“’. (3.21)
The gauge freedom in the theory enables the transition from

the co-moving frame eX ,a=1,..,4 to a new basis ek, a=1,..,4
with the matrix from the S0(1,1)xS0(2)-group

ch A ‘sh A 0 0
sh chl o ¢
glaculu?), @l ud)- (3.22)
0 0 cosy  —siny
0 0 ‘sin ¢ coS i
We write now explicitly the matrix elements ﬁnb , obtained
by eq. (3.10)
=.9 L= 3 - 1 R . -
Ql-]1+ 1Q0.]1 qexp[2(¢+10)] sh(A+iy ),

.3 1 . .
Boi ™ War= =g lb p +10,) (A +ivy)
(3.23)

-- -3

02 il , = -aem [-%—»(¢+i0)] . ch(A+ i),
.1 .= 3 1 R .

Goqo = 10y y == 5(d 1 +10,, )=(A 5 +14 ).

Extending the Bicklund transformation (3.12) on the complex-
valued functions ¢+if and A+iy and taking into account (3.23)
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one can impose the following conditions on the matrices (3

=,1 -

. «3 : ~e2 . =3
Q_-1(22_--slgnq(ﬂl_+1(20_). (3.24)
From here the Kamimura gauge conditions in the theory of the

relativistic string moving in four-dimensional space-time fol-
low directly/7/

8l .52 5% .__g°3
Q. =012, 0,7 =-0;% . q<o (3.25)

When these conditions are satisfied, the embedding equations
(2.8)-(2.10) for the world sheet of the string are reduced to
the D”Alembert equation for one complex-valued function’?’.

Thus the Kamimura gauge in the theory of the relativistic
string moving in 3- and 4-dimensional space-time is a direct
consequence of the Bidcklund transformation for the Liouville
equation.

4., CONFORMAL INVARIANCE IN STRING THEORY
AND THE KAMIMURA GAUGE CONDITIONS

Equations (2.1) and (2.2) determining the string dynamics
admit conformal transformations.of the parameters ul , u?

lliaul Tuo V+(ui) 4.1)

with arbitrary functions v (we do not consider now effects of
the boundary conditions in string theory and assume for simpli-
city the string to be infinite). It appears that in the three-
dimensional space-time the Kamimura gauge can be treated as

a consequence of the conformal invariance in string theory. If
the freedom connected with this invariance is not fixed, then
the relativistic string dynamics is defined in terms of the
differential forms by the Liouville equation (3.3) with arbit-
rary functions q,(u*) and by the second quadratic form (3.6).
?he gfneral solution of eq. (3.3) has the form analogous to
3.15

4 £ () 1™

exp[¢(ul.u2)]- — P
q,(ut)q_(u7) [f+(u+)+f_(u-)]

(4.2)

Let us use the transformation (4.1) and instead of choosing the
functions ngu‘)be constants as it has been made in (3.7), we

10

+
express them in terms of the functions f4(u~) entering into
the general solution (4.2) in the following way

qf) =-200"),  q () = -200 ). (4.3)
Substituting (4.3) into (4.2) one gets
a=exp(- %) - f+(u+) +f (™). (4.4)

Thus the metric on the world sheet of the string is determined
now by the solution of the D”"Alembert equation (3.19). Calcu-
lating by (4.3), (4.4) and (3.6) the matrix elements in (3.1)
we obtain the Kamimura gauge conditions for the relativistic
string in the three-dimensional space-time

1 3 -1l 1 3 £y +fL
Bor =M f, +1_" Bo.j2 =0r2 = f,+1 .3

These gauge conditions can be expressed in terms of the
string coordinates

2 2
(x"‘“ i'x{‘w ) =t4{fi(ui)], (4.6)

where qui) are functions in the general solution (4.2).

In the four-dimensional Minkowski space there is no such
a simple relation between the Kamimura gauge and the conformal
invariance in string theory.

5. GEOMETRIC DERIVATION OF THE BACKLUND TRANSFORMATION
FOR THE LIOUVILLE EQUATION

The Bdcklund transformation for the sine-Gordon equation,
as is well known/18/is obtained naturally as a consequence of
the so-called Bdcklund theorem for the pseudo-spherical surfaces.
According to this theorem with each surface of a constant nega-
tive curvature in the three-dimensional Euclidean space one can
relate a new pseudo-spherical surface. The co-moving frames of
these two surfaces at the corresponding points appear to rotate
relative to each other by the same angle.

It will be shown in this section in what way the Bicklund
transformations (3.12) relating the solutions of the Liouville
and D"Alembert equations may be obtained by considering the
geometry of the minimal surface in the three-dimensional pseudo-

11



Euclidean space., As far as we know the geometric derivation of
the Bicklund transformation for the Liouville equation has not
been given in the literature.

At the outset we prove the following algebraic lemma. Let
be a linear differential form in the basis {mxkdu2}taking va-

lues in the Lie algebra of the SO(l1,2)-group and obeying the
equation

dG=G A G (5.1)

Here A is the wedge productll&{Then by the gauge transformation

-1 -
Q=g 0g-g-lag, (5.2)

where g is a matrix from the SO(l,1)-group of the type (3.9),
one can satisfy always the condition

=1 -2

Qo = 20 . (5.3)
The proof of this lemma is reduced to verifying that the

condition (5.2) enables one to determine the corresponding

transformation parameter A(ul,u?) in the matrixg in eq. (3.9).

From (5.3) one obtains the following Pfaff equation for the

function A(ulu?) ‘

. . o2
ar= ;! 2 (2% -0 e, (5.4)

It can be verified by the direct calculation that the integrabi-
lity condition of this equation

a2\ = dAdA =0

is fulfilled by virtue of (5.2). Thus conditions (5.3) can be
satisfied always by means of the gauge transformation (5.2).

Now we consider the minimal surface in the three-dimensional
Minkowski space. In conformally-flat coordinate system (2.2) the
matrices {} describing the co-moving frame on this surface have
the form (3.1). The arbitrary functions q u~) are assumed again
to be constants. Applying to the transformed matrices ¢ (3.11)
the lemma proved above (the equality (5.3)) we obtain immediate-
ly the Bicklund transformation (3.12). In this approach we do
not know beforehand the equation satisfied by the function
A(ul,u?), However, using (3.12) one can be easily convinced by
the differentiation that the function A01Hu2) is a solution of
the D"Alembert equation (3.14).

12

6. CONCLUSION -

From the results obtained it follows that the world sheet
of the relativistic string may be described equally well from
the geometric viewpoint by the nonlinear Liouville equation
and by the free D"Alembert equation. Which way will be more
suitable for constructing the noncontradictory quantum theory
of the string will be shown by further investigations in this
field.

One can give another interpretation of the result obtained:
the nonlinear Liouville equation with two independent variables
is gauge—equivalent to the free D’Alembert equation. Recall
that in the theory of nonlinear evolution equations integrable
by the inverse scattering method two equations are called gauge-
equivalent/lg/ if their linear spectral problems are related by
the gauge transformation (3.10).

REFERENCES

. Polyakov A.M. Phys.Lett., 1981, 103B, p.207,211.

Lund F., Regge T. Phys.Rev., 1975, Di4, p.1524,

Omnes R. Nucl.Phys., 1979, B149, p.269.

Barbashov B.M., Koshkarov A.L. Teor.Mat.Fiz., 1979,

39, p.27. .

5. Barbashov B.M.. Nesterenkn V.V | Chervialov A M =~ Toor,
Mat.Fiz., 1979, 40, p.15.

6. Zheltukhin A.A., Yad.Fiz., 1981, 33, No.6, p.1723; Teor.
Mat.Fiz., 1982, 52, p.73.

7. Kamimura K. Lett.,Math.Phys., 1980, 4, p.115.

8. Barbashov B.M., Nesterenko V.V., Chervjakov A.M, Teor.Mat.
Fiz,, 1982, 52, p.3.

9. Barbashov B.M., Nesterenko V.V,, Chervjakov A.,M, Comm.
Math.Phys., 1982, 84, p.471,

10. Barbashov B.M., Koshkarov A.L., Nesterenko V.V. JINR,
P2-82-647, Dubna, 1982.

11. Scherk J. Rev.Mod.Phys., 1975, 47, p.123.

12, Barbashov B.M., Nesterenko V.V, Physics of Elementary
Particles and Atomic Nuclei, 1978, 9, p.709.

13, Favard J. Cours de geometrie differentialle locale. Gauthier-
Villars, Paris, 1964,

14, Flanders H. Differential Forms. Academic Press, New York,
1963,

15. Eisenhart L.P. Riemannian Geometry. Princeton University
Press, Princeton, 1964.

16, Solitons in Action. Ed. by K.Lonngren and A.Scott. Academic

Press, New York, 1978, ch.l.

W N -

13



17.

18.

19.

14

Braaten’ E., Curtright T., Thorn C. Quantum Bicklund
Transformations for the Liouville Theory. Preprint UFTP-82,
18, University of Florida, 1982.

Eisenhart L,P. A Treatise on the Differential Geometry

of Curves and Surfaces. Dover Publication, INC, New York,
1960,

Honerkamp J. J.Math.Phys., 1981, 22, p.277.

Received by Publishing Department
on December 30,1982,

bap6amoB B.M., Hecrepenko B.B. E2-82-922
Ilpeo6pa3zoBaHHe BakiyHgma [Jjisi ypaBHeHHA JIMyBHIUIs
¥ KanuOpoOBOUHHIE YCIOBHUSA B TEOPUM PENATHBHCTCKOH CTPYHL

MoxasaHo, 4To kKanmuOpoOBOUYHbIE YCJIOBHSI B TEOPHH peJIATHBHCT-
CKOH CTpYHh, KOTOpHIE NO3BOJIAIT HCINOJIb30BATh 30eCh BMECTO He—
JHHEeHHOTo ypaBHeHHA JIuyBHWILUIA ypaBHeHHe [JamaMm6epa, ABIAITCA
HpsMbIM clIefqCcTBHeM npeo6Gpas3oBaHHA BakilyHOa, CBs3HBalmMEro peme-—
HHA 3THX ypaBHeHHH. I[IpefnnoxeHa eme OJHA HHTepHpeTalydsa JAaHHOH
KanubpoBKH, a HMEHHO, [OKa3aHo, 4YTO B 3-MepHOM NpOCTpaHCTBe-
BpeMeHH ee MOXHO TPAaKTOBAaTh KAaK cliecTBHe KOHPOPMHOI HHBApHAHTA
HOCTH B TEOPHH DPEJIATHBHCTCKOH CTpPYHBI. [JaH YHCTO reoMeTpH4YecKHH
BhRIBOO npeobpasoBaHHii BakniyHma mnsa ypaBHeHHA JIMyBHILIA,

PaGora BnmosiHeHa B JlaBopaTopuy TeopeTHueckoi ¢pusuxku OHUAH,

NpenpuHT 06BbEAUHEHHOrO MHCTUTYTa AAEPHNX MccneaosaHwh, [y6Ha 1982

Barbashov B.M., Nesterenko V.V, E2-82-922
Bicklund Transformation for the Liouville Equation
and Gauge Conditions in the Relativistic String Theory

It is shown that the gauge conditions in the geometric
theory of the relativistic string which make it possible to
use here the D"Alembert equation instead of the nonlinear
Liouville equation are a direct consequence of the Bicklund
transformation relating the solutions of these equations. Just
one more interpretation of this gauge is proposed. It is shown
that in the three-dimensional space-time it can be treated as
a consequence of the conformal invariance in the relativistic
string theory. A purely geometric derivation of the Bicklund
transformation for the Liouville equation is given also.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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