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1. Introduction 

In the scope of perturbation theory (PT) method the quantum 
field functions of the types of the Green functions, anomalous dimen
sions,JS -function (or Gell-Mann-Low function), etc., are in corres
pondence with a formal series in the coupling constant f 1 

00 
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( 1 ) 

It has been shown in numerous models that the coefficients a~ 
rose factorially with increasing n. and the series (1) is divergent 
!=~~ ::"~~~ .. /1 '2/ ~~~- of:!'!':!' :!'~,; ~,./J/): 'llhA.,...~ i a A VARt. A-rhi tT'AT-i nAAA 1 n 

the definition of tne function j3(<j) by its expansion (1 ). Fo·r 
example, the arbitrary function of the type of~f)emp(-a/gJ ( # is 
regular .. the vicinity of J= 0 ) , which has the expansion in tj 
at tj-= 0 with zero coefficients, may be added to J&C1). Therefore, 
we need an additional information about the proper~of the func
tion and its sex::les for the unambiguous restoration o-r J3 Cf) from 
the expansion (1). 

Such expansions are often summed by the Borel method, i.e.,the 
sum is defined by the Laplace integral: 

00 

JH1) = S cJ:r e-x B cxg-). 
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(2) 

By the Watson theorem/4/ the function ~(1) may be represented 
in the form (2) provided it satisfies the strong asymptotic condi
tion/5/a 
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a) the function fi('j) is analytic in the domain 

G = { 11 o < 19-1 <: R , I 01rf ~ /<: ~ + d', cS' > o} ; 
b) such 

fj in G 
constants C and 6" exist that for all /tl and all 

I f,_ It /11+1. N+J. 
j{'])-L- an(-1) /l: Ctr (/1/+J.J! Ia/ 

tr.•Ko tf 
Hitherto, it has been proved only for some models that the Green 

functions satisfy the strong asymptotic condition. Besiaes, the ef
fective methods of approximate restoration of j(J) from a few 
of the first PT coefficients and asymptotics of Q,ll. at It-+ 00 

basing on formula (2) (for example, the conform- Borel method/6/) 

essentially use the knowledge of the asymptotic behaviour ofJS(9) 
at ~-"00 • 

We shall examine another method for the summation of the PT 
series. In sect. 2 the conditions sufficient for the summation of 
the expansion (1) in the Sommerfeld-Watson sense are formulated, 
and the relation between such a summation and the Borel summation 
is pointed out. The method of solution of the problem of approxi
mate restoration of the sum of the series is presented in sect. 3. 
To see the efficiency of this procedure the latter has been used 
for the calculation of critical exponents of phase transitions basin~ 
on the E -expansions and £or the restoration of the ,P -function 
in the scalar massless 'felt) model (sect. 4). 

2. The Sommerfeld-Watson Summation 

Let us have the series (1), which is divergent in general, and 
the following conditions are true: 

A) there is a function GL(Z) (we shall call it the coefficient 
function) such, that a(tt)= a.n at nsK0 ,K,+~,K0 +2, ..• ; 

B) a(!) is analytic in the half-plane Re 1 >6" ,where 0 is 
the definite value and 6' < KIJ 1 

C) a.('l) = f(1+-'0J4Cl) with a parameter Y>O and at 
Ill-" oo in the analyticity domain 

.fC1) = C z"A1
1 (1+ ~1 ~ ~! + ... ) (A >o). (3) 

This is a complex and for the present unsolved problem to prove 
the validity of the conditions (A)-(C) for the realistic quantum 
field models. Therefore, we shall consider here (A)-(C) to be sup-
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positions leading to the reasonable results which are in good agree
ment with the other approaches, as we shall see below. Here, we can 
only present some arguments for the validity of the suppositions 
being made. Usually, the coefficients of the PT series (1) for the 
theory with action $C:.'fJ=SoDf]+1$;.,tnp1 ( $0 is the free part, 
s~ determines the interaction) are determined by the functional 
integrals of the type 

J. 1 5 -s C:tpJ h. 
an. =rotH> T Q'lHp(zJ /)tp(~v e o ( S.wDfl) . <4> 

.Jo ., 

From the intuitive understanding of the functional integral (4), 
based on analogies with integrals of finite multiplicity, we may 
consider that the convergence in (4) will not be violated if ~ is 
complex and fle n.>tf>O. The evaluation of alt. by the steepest-descent 
method gives at high tt 11-311 

a .. =Crcn+v)not.1.. (.~+At+Az+) 
·~ A"' .J. n n.a. ... 

During the derivation of this formula, however, the fact that 
h. is a natural number is never used. It may be considered complex 

with l~lt./<"/2. that is also confirmed by the analysis of the 
ordinary integral. The conditions (A)-(C) are satisfied in the 
+'hon.,....,r ur-i+h .... +.,...,...,..,,..,. ,...,...,..,,..;,..,..,....,,....;.,.,.., 1"f'1:l. ....,._.._ ,,J_, ... ,, ... _..,, ,/7/ -----v ··---- ------o --------------u TlCIJ '··- - ,_ -··-,..,. ,_,' 
and in some other models (see, for example,ref./S/). 

Let us now formulate the important statement (we shall restrict 
oursel vee to the case v= 1 , Ko = 1.. ; the generalization is tri-
vial): 

let the formal series 
00 L ocn (- x) n 

tt=l 
(5) 

be such that the coefficient function OC(Z) exists with the following 
properties: 

1) o<(n)= oe,, 11.=~.2, ... 
2) 0( ('i) is analytical at Re ?>6", O< 6-' 1 ;. 

3) OC('l)/r(i+ll) =,ff(l) is the function of exponential 

type at Re l > o ; + ; ~ 
-"Z 

./itn, k, l,ll(o+ "t e )/ =:Jr-G d>o . 4) 
"t~OO "l ' 

Then, such a function ~(X) exists that 
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be the rightest singularity of the function a(Z) in the complex 
l -plane. Then,using the fo~ula of the same type as (6), one can 

~0 ~0 show that .... ,..l r(K+ll It + D(/11 ) (12) 
o<o l+l. }C'J) = ~3rlio (4'J) 

at ljl...,. oo (if sin 3r~0 :1=0 ). 

3. The Approximation of the Sum of the Perturbation Theory 
Expansion 

Usually a few of the first coefficients of PT only are known 
in quantum field theory. In some cases the leading asymptotic& of 
a,. at n~oo is known. Also the first correction A~./11. (see in 

eq. (3)) is known in the lf'ctJ -model/111. All this information may 
be taken into account when approximately restoring the functionJS(IJ 
from the series (1) by the Sommerfeld-Watson method. Assume the poles 
and cuts to be the only singularities of the function aC!) • Then, 
the asymptotic behaviour of j!J('j) at 9-~00 will be of the type (12). 
Let us define the function :T'(l)=A~(l) =A !a(l)/r('l+Y). 
It follows from (3) that 

!r(l)= C'ld.(i+:At/Z+A:~,/1 2+ ... ) 
(13) 

at I il_. oo andRe l>6' • Let the parameter 'I> 0 be so chosen that 
~ be an integer. Then, it is reasonable to approximate the func

tion !r('i) by the rational function, the so-called multipoint Pade 
approximant 112/a 

[~~]Ci)= Qlf~(i>/PM 2 ("l), 
where Q Mt and PM~ are polynomials in 'l of the degrees Mt and 
M2. , respectively; PM,COJ=L The polynomial coefficients are deter

mined from the known K terms of the PT series (1), i.e., 

we deal with the problem of rational interpolation of !f'(Z). 

We may also impose the condition of coincidence of the asymptotics 
of the approximant and the function T('~) (eq. (13)) at 1~-+- up 
to the known terms. 

For the case when the interpolation points tend to infinity the 
convergence of the sequence of Pade approximants has been established 
hitherto only for one class of the meromorphic functions, the so
called functions of the Stieltjes type/131. But a good agreement 
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of the results obtained in sect. 4 and the results obtained in other 
theoretical approaches and in the experiment (for critical exponents) 
is the indication of the applicability of the procedure described 
above. 

The approximant& for the Sommerfeld-Watson sum of the serieS (1) 
are calculated by the formula • 

~+too l 

( ) __ 1. Jdl (l._) N'l+)l) [Mt] 
flM~, M:~, 1 - :l,i • A ~cr! -M (l). 

' 6cioo """ 2 

The calculations show one remarkable feature of this approacha 
if one construct• in a given physical problem the sequence of appro
ximant& including a different number of the PT coefficients Gtn 
and terms in asymptotic formula (13) or corresponding to various 
integers oC , then the rightest poles of the majority of approJti-
mants will lie relatively close to each other in the complex ~ 
plane. This leads to the stable approximation of the asymptotic be
haviour of tP(J) at t~oo. 

4. Paysical Results 

The procedure of approximation described above has been used 
to calculate the critical exponents of phase transitions in the 
framework of quantum field approach to crit:..cal phenomena. The ex
ponents 'l, Y, fAJ are represented by the expansion over the para-.. ~~ . 
meter A.f up to the term < il. t J 'It invol v in' the four-loop appro ....... -
mation in the O(N)-symmetrical felt) -model 141. Taking into account 
the nature of the asymptotic& of the PT coefficients a,. at tt._. 00 • 
we have calculated approximate values of these exponents at the 
point ~£• i. • Table 1 shows our resul ta. It also presents the eJCPe
rimental data as well as the values calculated in other theoretical 
approaches; namely by the conform-Borel method in the framework of 
the <pc~J model/t5/ and of the E -expansion/ 14/. We have obtained 
also the values of ~ o and 7 0 determining the asymptotics o£ 17 
the functions ~(2,£},C~N)(:t.E) ,W(..Z£) atZE...,.oo <f.-/o(:l.f) 0

) 
(see Table 2). The estimates of the parameter ~D have been ob
tained in 114/ from the minimization of the relative error of •ppro
ximation. The absolute errors indicated in Tables 1 and 2 are deter
mined by the maximal deviation of the values given by various •ppro
ximants, constructed with regard for the largest number of PT coeffi
cients, from the averaged value. 

The second problem that has been solved by the Sommerfeld-Watson 
summation is the problem of restoration of the } -function {or Gell-
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Table 1. 
The values of critical exponents calculated by the 
Sommerfeld-Watson summation (the first column), by the 
conform-Borel method in/14/ (the second column) and 
115/ (the third column) and obtained experimentally/15/ 
(the fourth column) 

N • 1 

o.o313±o.ooo5 o.0333:to.ooo1 o.o315±o.oo25 o.o16±o.014 

0.627 :t 0.006 0.628 :t 0.002 o.63oo±o.ooo8 0.625±0.005 

0.786 :t 0.020 0.781 :t 0.015 0.782 :t 0.010 

N • 2 

0.034 :t 0.001 o.0352±o.ooo1 o.0335:to.oo25 

0.673 :t 0.003 0.666 :t 0.004 0.6693±0.0010 o.675:to.oo1 

0.781 :t 0.026 0.777 :t 0.015 o. 778 :t 0.008 

N • 3 

o.o36 :t o.oo2 I 0.01<;4!0.0001 ! o_o~Ao!o. oo?" I 
I I - - - .. I 

0.713 :t 0.007 0.700 :t 0.007 0.7054±0.0011 

0.776 :t 0.041 0.779 :t 0.007 0.779! 0.006 

Mann-Low function) in the 0 (N )-invariant massless theory (!6Z2/4!)gpct. 
The questions about the existence of the nontrivial zero of the J9 -
function and the behaviour of jCgJ at 1~ oc are of the main inte
rest. We have restored the behaviour of JC~) in the o~g.~ 50 inter
val ~or N=1 (see the figure,curve 1) and N=10. It should be noted that 
we constructed the approximants using 4 known coefficients of PT/161, 
the leading term of the asymptotics of a~~. at n~- 11 •21 and the 
first correction Af (see eq. (13); A1=-4.7 for N•1 andA1=1.6 for 
Na10)1

11
1. The relative error of the approximation is about 20% for 

N•1 and 6% ~or K•1 0 at~ =>50. The figure presents the averaged curves (the 
curve 1 is obtained by the Sommerfeld-Watson summation, and the curve 
2 by the conform-Borel method/61). Our result ia in a good agreement 
with that obtained by the conform-Borel method in/6/ (in this case 
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Table 2. 
The values of the parameters ~0 and 7o obtained 
by the Sommerfeld-Watson summation and the estimates 
of ~0 obtained in 114/ 

N tz iN t.J 

1 0.326 ± o.oo8 1.32 :t o.o3 2.18 ± 0.11 

2 0.448 ± 0.003 1.82 ± 0.10 2.37 ± 0.09 

J 0.570 ± 0.010 2.33 ± 0.18 2.59 ± 0.13 

1 2.40 ± 0.16 1.18 ± 0.05 0.88 ± o.04 

2 2.44 ± 0.20 1.20 ± 0.07 0.89 ± 0.02 

3 2.46 ± 0.23 1.20!0.12 o.89 ± o.OJ 

2 • 3 1.0. 1.3 0.7 • 0.9 

_fo(<j) 

fO 20 30 40 5IJ 1 
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the relative error is about 10% at g.= 40). We have obtained the fol
lowing values of the parameters flo and ~ 0 {j<9J";J09'~"at f~OO)s 

{
1.06 ! 0.03 {1.90! 0.05 for N•1 

jo= 2.13 ! o.o6 ?o= 1.90 ! 0.01 for N•10, 

which are in a qualitative agreement with the asymptoticsJB~)-v0.9g2 

obtained in/6/ for N•1 from the minimization of relative error of 
approximation. This analysis of the behaviour of the function J9Cf) 
shows that most likely the zero-charge situation takes place. This 
means that the fc~) model is inherently inconsistent and can desc
ribe the interaction of the particles only together with other fields 
and interactions. It should be noted that all obtained results essen
tially used the suppositions (A)-(C) formulated in sect. 2. 

Acknowledgement. The author is indebted to D.V.Shirkov, V.P.Vo
lobujev, D.I.Kazakov and O.V.Tarasov for informative and stimulating 
discussions. 

Appendix 

Let us choose £ such that 0< f. <8-8 t ; then there is R = Rc£) 
such that for ~>R the inequality (7) is valid, where the indica
tor ~ (9) satisfies (8). Then at 7/f = N+ X > R + ~ 

' ~, a,_. ., Ji/l'W' • ~·. ~ , , ,/ .. ___ r"""' L . ' • """ - . _, ~ .•. ,, ~ - ... --, 

ajl ... , •. 0 ., • • 3 ./,- --rL""'!''I'ra. 0 "N Tt.\JNTjl'"'~oTt)U.J. 

By the Stirling formula the constant B exists such that at 
large II 

z z tc~-¥.2> -u 
/rcT11 +i~JI ~ B c:r" +~ J e«f [ -~ ~ 1; -:TN J. 

The remainder R,v(.X)(see eq. (10)) satisfies the inequality 

I RAJ(~)/~ 4 lxl "" €(~+tleoH7N-6) Brei~((~+~)~ ~Z) f (.W+tJ 
l#n :Tr(/ 0 (A.1) 

• etx.p (V~- :r,r J.) , 

1[= ~- cG-St-E)-~ (y/C:!f.I+O). 

Let us choose A such that 0-" A <S-(Gl+£)and then find W 
such that for 'If/ (TN+~)~ Ct) the inequality 

~ > ~ _:}L_ ~ '1r- A E n~JJ. (I) 
TN+! Z -~1 
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is valid. We shall divide the interval of integration in (A.1) into 
two parts: (O,w(:JN+O) and (W('i,t+i),oo)and evaluate each of 
the integrals •eparately: J. 

w erN +l) 111 z f c .r" + 'i) - :!# -J 
a) I -= s. d'l e 1t[(T"'+1.) +v:z.J e ~ 

~ 0 
l' wC'ii+J.) L ~ 

~+ 12 -3N-1 s lfy "12, J;(J#+-z) 
<. c:r"'H) e d"t e [1 + J < 

0 (:J'"'+i)2 

II+! K 
<: Cf (N+Of 6't N 

-v;,wv z· "" 6'1 = e i+W ; v;, = f- (rf-8rO; 

b) for "f>W(:JN+O V ~-.1 n,ii)<O,where L1 CE,/0: S-Sre -II 

I 2 ~ e -3',ri (~+ w.Z) i CT,..+~) r e-ti(E,A)¥ T"+J./z 
WC:TiJ+f) y d"J < 

<: c (tJ+ i) I .J K- if2. N+! 
~ • IV (5"';L ; 

t>2 =vi+ w "'I (e t1 CE, Ia) ). 

Finally, we obtain the estimate (11) for the remainder R11 (x), 
where 6= eocp C£+ ae0 )ma.oe (~~, 5iJ, which is valid for all N ~II*>R-tJ' 
and for all xE 2> • 
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Ky6~W~H IO.A. E2-82-916 
CyMM~posaH~e PRAOB Teop~~ B03My~eH~H no 30MMep~enbAy-BaTCOHY 

C~opMyn~posaH~ ycnoB~R, np~ KOTOp~X PRA Teop~~ B03My~eH~H CYMM~pyeTCR 
no 3oMMep$enbAy-BaTcoHy. Pa3pa6oTaHa npo~eAypa np~6n~meHHoro soccTaHosneH~R 
CYMM~ PRAa. np~BeAeH~ pe3ynbTaT~ AnR HeKOTOp~X.~~3H4eCK~X 3aAa4. 

Pa6oTa s~nonHeHa a fla6opaTop~~ TeopeT~4eCKOH ~~3~K~ O~R~. 

npenp~HT 06oeAHHeHHOro ~HCT~TyTa RAePH~X ~ccneAOBaH~H. AY6Ha 1982 

Kubyshin Yu.A. 
The Sommerfeld-Watson Summation of Perturbation 
Theory Series 

E2-82-916 

The conditions for the Sommerfeld-Watson summation of perturbation theory 
series are formulated. The procedure for an approximate restoration of the 
series sum has been developed. The results for some physical problems are 
presented. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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