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1. Introduction

In the scope of perturbation theory (PT) method the quantum
field functions of the types of the Green functions, anomalous dimen-
sions,ﬁ -function (or Gell-Mann-Low function), etc., are in correg-
pondence with a formal series in the coupling constant ? 3
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It has been shown in numerous models that the coefficients @,
rose factorially with increesing f, and the series (1) is divergent
{noe rafa 1,2 anAd +he wavia 3 ). Thare ia a vart arhitrarinemsa in
the definition of tne function ﬁ(}) by its expansion (1). For
example, the arbitrary function of the type ofaf(g)wp(-a/g) (l{ is
regular - the vicinity of 4=0 ), which has the expansion in
at 9=0 with zero coefficients, may be added toﬁ(}). Therefore,
we need an additional information about the properties of the func-
tion and its series for the unambiguous restoration of‘ﬁ(?) from
the expansion (1).
Such expansions are often summed by the Borel method, i,e.,the
sum is defined by the Laplace integral:
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By the Watson theorem/4/ the function f(?) may be represented
in the form (2) provided it satisfies the strong asymptotic condi-
tion/S/;



a) the function ﬁ(?) ig analytic in the domain

G={?’0<13I<R,la¢3?k%—r+5, §>01;

b) such constants C and 6 exist that for all /V and all
? in
il n N+ W4
lptg)-2 ant-93'| < Co™ ewrat 191"

h=K,

Hitherto, it has been proved only for some models that the Green
functions satisfy the strong asymptotic condition. Besides, the ef-
fective methods of approximate restoration of f(?) from a few
of the first PT coefficients and asymptotics of Q4 at R~>0°
basing on formula (2) (for example, the conform - Borel method/s/)
essentially use the knowledge of the asymptotic behaviour ofﬁ(’)
at o0 ,

We shall examine another method for the summation of the PT
series. In sect. 2 the conditions sufficient for the summation of
the expansion (1) in the Sommerfeld-Watson sense are formulated,
and the relation between such e summation and the Borel summation
is pointed out. The method of solution of the problem of approxi-
mate restoration of the sum of the series is presented in sect. 3.

To see the efficiency of this procedure the latter has been used

for the calculation of critical e'xponenta of phase transitions basing
on the § -expansions and ‘f;or the restoration of thne Ja ~function
in the scalar massless \P(,') model (sect. 4).

2. The Sommerfeld-Watson Summation

Let us have the series (1), which is divergent in general, and
the following conditions are trues

A) there is a function @ (¥) (we shall call it the coefficient
function) such, that @(R)=a, at R=Ky,Ky+d,Ko+2,... ;

B) a(%) is enalytic in the half~plane Re ¥>6,where & is
the definite value and 6<K, ;

C) a(®) = I(x+y) p(% with a parameter ¥>0 and at

|Zl-» o in the analyticity domain

ffz)=Cz°‘;i; (1+%‘—+§§+...) (A>0), (3

This is a complex and for the present unsolved problem to prove
the validity of the conditions (A)-(C) for the realistic quantum
field models. Therefore, we ghall consider here (A)-(C) to be sup-

positions leading to the reasonable results which are in good agree~
ment with the other approaches, as we shall see below. Here, we can
only present some arguments for the validity of the suppositions
being made. Usually, the coefficients of the PT series (1) for the
theory with action SE¢J=SOEYJ*?SME‘FJ (Sa is the free part,

int determines the interaction) are determined by the functional
integrals of the type
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From the intuitive understanding of the functional integral (4),
based on analogies with integrals of finite multiplicity, we may
consider that the convergence in (4) will not be violated if M is
complex and Ren>6>0, the eveluation of Qp by the steepest-descent
method gives at high . /1737,
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During the derivation of this formula, however, the fact that
h is a natural number is never used. It may be considered complex
with Ia"l’,ll.l<5f/2, that is also confirmed by the analysis of the
ordinary integral. The conditions (A)-(C) are satisfied in the
thonwr with atranc nanlinannits 1A an > an ¢t A e e Srm— 2 Yali
e - mw e mes =TT TemD smmesmosrm e ey T(q) yrs T /8/\ - ha bt A ~s
and in some other models (see, for example,ref. e

Let us now formulate the important statement (we shall restrict
ourselves to the case y=4 , K°=1 ; the generalization is tri-
vial):

let the formal series
= n
) o, Cx) (s)
h=4

be such that the coefficient function O(Z) exists with the following
properties:

1) Aln)= dn,n=4,2 H

"Ul
2) (%) is analytical at ReE>6, 04644 ;
3) 0(('2')/’-'(2'0)’) =J"(Z) is the function of exponential
type at Reg>6 ; .,,1"%;

o E&mmwze U=m-8 850 .
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Then, such a function i(ac) exists that



be the rightest singularity of the function a(%) in the complex
X -plane. Then,using the fomula of the same type as (6), one can

show that
_ oo sin Ty ['(§+4) 95" Iso
POy dag

at Igl> 00 (if sin WG #0 ). E
|

3. The Approximation of the Sum of the Perturbation Theory
Expansion

Usually a few of the first coefficients of PT only are known

in quantum field theory. In some cases the leading asymptotics of
an at N»o® ig known. Also the first correction A,/ﬂ- (see in

eq. (3)) is known in the g -mode1’ 1/, 411 this information may
be taken into account when approximately restoring the functionﬁ(’)
from the series (1) by the Sommerfeld-Watson method. Assume the poles
and cute to be the only singularities of the function Q(¥) ., Then,
the asymptotic behaviour of ﬁ(?) at @—>0° will be of the type (12).

Let us define the function J(F)=A '/u(z)=A za.(z)/f'(l-r)’), .
It follows from (3) that

T(®)= Czd(itA,/z+Az/zz+...)

(13)

at |Z|—2>o0c and Re #>6 . Let the parameter Y> 0 be so chosen that

&K ©be an integer. Then, it is reasonable to approximate the func-
tion T(®) by the rational function, the so-~called multipoint Pade
approximant 12/:

M
[32]®= Qu»/Pu, (3,

where QNi and PMg are polynomials in ¥ of the degrees H1 and
M2 , respectively; PM (0)=4, The polynomial coefficients are deter-
mined from the known K terms of the PT series (1), 1.e.,
we deal with the problem of rational interpolation of §F(Z).
We may also impose the condition of coincidence of the asymptotics
of the approximant and the function J(X) (eq. (13)) at /¥ P oo yp
to the known terms.

Por the case when the interpolation points tend to infinity the
convergence of the sequence of Pade approximants has been established [
hitherto only for one class of the meromorphic functions, the so-
called functions of the Stieltjes type/13/. But a good agreement

of the results obtained in sect. 4 and the results obtained in other
theoretical approaches and in the experiment (for critical exponents)
is the indication of the applicability of the procedure described
above. )

The approximants for the Sommerfeld-Watson sum of the series (1)
are calculated by the formula .
0 +too

4
=-4 &) L(z+y) rM
‘ﬂnbnz (?) 2."6;5‘_;!: (A) Lin AE [—M:J(Z).

The calculations show one remarkable feature of this approachi
if one constructs in a given physical problem the sequence of appro-
ximants including a different number of the PT coefficients an
and terms in asymptotic formula (13) or corresponding to various
integers & , then the rightest poles of the majority of appro¥i-
mants will lie relatively close to each other in the complex z -
plane. This leads to the stable approximation of the asymptotic be~-
haviour of f(’) at 7—)09 .

4, P s'ical Results

The procedure of approximation described above has been uped
to calculate the oritical exponents of phase transitions in the
framework of quantum field approach to critical phenomena. The eX-
ponents IZ,V,U are representeflh by the expansion over the para-
meter & up to the term (2t) ', K involving the four~loop approxi=
mation in the O(N)-symmetrical (P(l,) -model 14/. Taking into account
the nature of the asymptotics of the PT coefficients (y at n>o° ,
we have calculated approximate values of these exponents at the
point 2e=1 . Table 1 shows our results. It also presents the expe-
rimental data as well as the values calculaied in other theoretical
approaches; namely by the conform-Borel method in the framework of
the (P(3) model 15/ gnd of the € -expansion/M/. We have obtained
also the values of o and ; determining the asymptotics of
the functions §(2€), (1/Y)(2€) ,w (2€) a1 26> 00 (f""-fo (z€
(see Table 2). The estimates of the parameter EO have been ob=-
tained in 14/ from the minimization of the relative error of appro-
ximation. The absolute errors indicated in Tables 1 and 2 are deter-
mined by the maximal deviation of the values given by various appro-
ximants, constructed with regard for the largest number of PT coeffi-
cients, from the averaged value.

The second problem that has been solved by the Sommerfeld-Watson
summation is the problem of restoration of the f -function {or Gell-

)5")



Table 1.
The values of critical exponents calculated by the
Sommerfeld-Watson summation (the first column), by the
conform~Borel method in/”'/ (the second column) and
/15/ (the third column) and obtained experimentally/15/

Table 2,
The values of the parameters *o and ‘9 P obtained
by the Sommerfeld-Watson summation and the estimates
of b, obtained in 14/

(the fourth column) N n /Y o
N1 + + * 0.1
1 0.326 ¥ 0.008 1.32 £ 0,03 2.18 L 0,11
0.0313%0,0005 0.0333%0,0001 0.031520.0025 | 0.016%0.014 —
$ol2| o0.448 % 0,003 1.82 £ 0,10 2.37 ¥ 0.09
N 0.627 £ 0,006 | 0.628 * 0,002 | 0.6300%0,0008 | 0.625%0.005 . -
3 0.570 ¥ 0,010 2.33 % 0.18 2.59 ¥ 0.13
w | 0.786 X 0,020 | 0.781 ¥ 0,015 [ 0.782 % 0.010
1 2.40 I 0,16 1.18 £ 0,05 0.88 ¥ 0.04
N =2
%, | 2 2.44 ¥ o0.20 1,20 % 0,07 0.89 ¥ 0,02
n 0.034 * 0,001 0.0352%0,0001 0.0335%0.0025 0 - .
3 2.46 % 0,23 1.20 = 0,12 0.89 ¥ 0.03
Y | 04673 %0,003 | 0.666 X 0.004 | 0.6693%0,0010 | 0.675%0.001
0
w | 0.781 2 0.026 | 0.777 % 0,015 | 0.778 * 0.008 * /ii 2¢3 1.0 ¢ 1.3 0.7 & 0.9
Nao3
h | 0.036 % 0.002 | 0.0354%0.0001 | 0.0320%n, 0nos |
9
+ + +
. - Ue . - . M —O. 11
y | 0.713 L 0.007 | 0.700 % 0,007 0.7054%0,00 2000,
® | ©.776 2 0,041 | 0.779 £ 0.007 | 0.779% 0.006
Mann-Low function) in the O(N)-invariant massless theory (1‘3'2/11!)9%2’, 1500 ¢

The questions about the existence of the nontrivial zero of the ﬁ -
function and the behaviour of ﬁ(g) at §@-> 60 are of the main inte-
rest., We have restored the behaviour of (9) in the O<9S 50 inter- 1000
val for N=1 (see the figure,ourve 1) ahnd E=10. It should be noted that 1
we constructed bhe approximants using 4 known coefficients of PT/16/
the leading term of the asymptotics of a.,, at N-»oe /1,2/ and the
first correction Ai (see eq, (13); A1=-4.7 for Nai andA4=1.6 for
N=10) n » The relative error of the approximation is about 20% for
N=1 and 6% for N=10 atg =50.The Figure presents the averaged curves(the
curve 1 is obtained by the Sommerfeld-Watson summation, and the curve

2 by the conform~-Borel method )o Our result is in a good agreement
with that obtained by the conform~Borel method in (in this case

»
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the relative error is about 10% at @=40). We have obtained the fol-
lowing values of the parameters ‘ﬂo and Eo (ﬁ(g)":ﬂog;%t g2

={1.06 0,03 __,{1.90 1 0.05 for N=1
Po 2.13 £ 0,06 50 1.90 ¥ o0.01 for N=10,

which are in a qualitative agreement with the asymptotics "B(j)~0.9gz
obtained 1n/6 for Nal1 from the minimization of relative error of
approximation. ‘This analysis of the behaviour of the function ﬂ‘ﬂ')
shows that most likely the zero~charge situation takes place. This
means that the ) model is inherently inconsistient and can desc-
ribe the interaction of the particles only together with other fields
and interactiona. It should be noted that all obtained results essen-
tially used the suppositions (A)-(C) formulated in sect. 2.

t+ 14+
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Appendix
Let us choose & such that 0<E<8'81 ; then there is R=R(E)
such that for ’Z>R the inequality (7) is valid, where the indica-
tor &(9) satisfies (8). Then at ‘TN=N+J >R+6

o~ 4 1. 0. an PO ST [ P |
I‘JA (I‘v’f 6" < v?/\l' < ;&:f;[;:i;z;rmo J” T;(JNTI’II{QOT:}UJ.
By the Stirling formula the constant B exists such that at
large N y
(5 -72)
. 2 2,2YW Yy
IP(Ty+iy)| ¢ B (3 +y") exp [~y arely L 5],
The remainder RN(x)(aee eq. (10)) satisfies the inequality

Tv _(€+%,) (Ty~6) & Lo q+d
IR”(x)]<lilxl No t?t 4 Bde((%+1)z+yz)z, ,:/*,z)
0

Isn gyl (A1)
vexp (Vy-Iv-1),
V= F-(8-81-€)- andy (y/(3y+1)),

Let us choose A such that 0% 2‘5‘(84*5)3111.1 then find @
such that for Y /(3,+1)> @ the inequality

x Y =
a >amfg?”+—13%f-2=am§u

10

is valid. We shall divide the interval of integration in (A.1) into
two parte: (O,w(Jy +14)) and (W(Ty +1),o°)and evaluate each of
the integrals separately:

W (T +1) icr +-1-) o
2 F A ) Ty =1
o I, = S dy ev’*[(:rﬂ+1)+y"_7 e ¥ ¢
* mete -3 g @O o 2 _$@+L)
N -JIn- Yy YT
£ (T,+1) e dy ¢ o
g bg ¢ [4 (:r,.,+1)zJ <

N+l
<(Cy (A/+i),"6'1 ”X ;

U
6'1'—" e Owﬂi.'.wjz ; 'U'o-_'%_(tf_si_e);
b) for Y > W (Ty+4) U'<-ACE,2)<OQnere Ate)=6-8-€-2

[-2-]
$y+%) je—A(s,Z)v 7;V+4/z_d

o
Iz<e o (1+w2)
W(Ty+1)
-2 N+
< Cy v+ W82

6,=Vi+w?/CeA(e,2)),

Finally, we obtain the estimate (11) for the remainder R, (X),
where 6= eap (E+@y)Mmax (6'1,65", which is valid for all N)N”}R'd"
and for all X€9D .
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Ky6uiwmn 10,A. ' E2-82-916
CyMMUpPOBaHME PAAOE TeopuM BO3MyuWeHui no 3ommepdennay=-BaTcoHy

COOpPMYNMPOBaHE YCNOBUA, NPU KOTOPBIX PAA TEOPUU BO3MYUEHMIA CyMMupyeTcA
no 3ommepdensay-BaTcoHy. PazpaboTaHa npoueaypa NpuBNMKEHHOro BOCCTAHOBMIEHUA
cyMmbl paga. llpusepeHn pe3yneTaTe ANA HEKOTOPHIX. GU3UYECKUX 3ajaud. .

PaboTa BunonHeHa B flaGopaTopun TeopeTuueckon dunsnkm OUAK.

’

NpenpuHT 06beauHEHHOrO0 MHCTUTYTa AfepHLX uccneposawwi. AybHa 1982

Kubyshin Yu.A. ' E2-82-916
The Sommerfeld-Watson Summation of Perturbation
Theory Series

The conditions for the Sommerfeld-Watson summation of perturbation theory
series are formulated. The procedure for an approximate restoration of the
series sum has been developed. The results for some physical problems are
presented.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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