

объединеннып институт ядериых исследовании
 дубна

Yu.A.Kubyshin ${ }^{*}$

CORRECTIONS

TO THE ASYMPTOTIC FORMULA

FOR HIGH ORDERS
OF PERTURBATION THEORY

Submitted to "ТМФ"
*Institute of Nuclear Physics, Moscow State University

It has been established for a variety of quantum-field models that the coefficiente of the perturbation theory (PT) for the Green functions, anomalous dimensions, β fiunction (or Gell-Mann-Low function), etc., show the asymptotic behaviour of the type (see, for example, refs. $1,2 /$):

$$
\begin{gather*}
\beta(g)=\sum_{n} \beta_{n}(-g)^{n} \tag{1}\\
\beta_{n}=\frac{1}{A^{n}} n!n^{\alpha-1} C\left(1+b_{1} / n+O\left(1 / n^{2}\right)\right) \tag{2}
\end{gather*}
$$

 the functional integral determining the Green function in the $n-t h$ order of PT by the ateepeat descent method by analogy with an ordinary integral. The clasgical solution of the equation of motion corresponds to the saddle point. A partial proof of this method for the lattice theory is given in $/ 3 /$. If we suppose that β-function is analytic in coupling constant g in the complex plane cut along the negative real axis (as it takes place in the case of anharmonic oscillator $/ 4 /$), we may write the disperaion relation

$$
\begin{equation*}
\beta(g)=\frac{1}{2 \pi i} \int_{-\infty}^{0} \frac{\operatorname{disc} \beta\left(g^{\prime}\right)}{g^{\prime}-g} d g^{\prime} \tag{3}
\end{equation*}
$$

where disc $\beta(-g)=\beta(-g+i 0)-\beta(-g-i 0)$ and $\beta(-g \pm i 0)$ is the analytic continuation of the functional integral, determining the Green function, from the positive semiaxis to the negative one through the upper or lower half-plane. The disc $\beta(-g)$ can be also evaluated by the calculation of the functional integral by the steepest descent method $/ 5,6 /$. If the asymptotic formula for disc $\beta(-g)$
at $g \rightarrow+0$
is of the form

$$
\operatorname{disc} \beta(-g)=-i B e^{-A / g} g^{-\alpha}\left(1+g \frac{a_{1}}{A}+O\left(g^{2}\right)\right),
$$

2
we can aubstitute it in (3) and obtain (2) with

$$
\begin{equation*}
C=\frac{B}{2 \pi A^{\alpha}} \quad, \quad b_{1}=a_{1}+\frac{\alpha(\alpha-1)}{2} \tag{5}
\end{equation*}
$$

Up to now only the leading asymptotic term (i.e., the numbers C, A, α) has been calculated in quantum field theory. But for example, in the case of the $\varphi_{(4)}^{4}$ model the comparison of the asymptotic coefficienta (1.e., the coefficients calculated by eq. (2) in the leading approximation) for $n=2,3,4,5$ with the exact ones shows that the asymptotics does not set on in the fifth order in $g / 7 /$. The analysis of anharmonic oscillator enables one to make a conclusion that the situation aic oscillator enables one to make a concluaion that the situation
improves considerably if the corrections b_{1} / n and b_{2} / n^{2} in (2), which have been calculated in $/ 8 /$ and $/ 9 /$, are taken into account. That is why the calculation of the correctiong in the realistic field models is of some interest. The values of b_{1}, f_{2}, \ldots may be used to approximately restore the function $\beta(g)$ from several exact coefficients and the asymptotic formula (see ref. $/ 10 /$).

The main purpose of this work is to give an account of the technique of calculation of the coefficients a_{i} in formula (4) and to calculate a_{1} for massless acalar model $\varphi_{(4)}^{4}$. The feature differing this model from the anharmonic oscillator is the presence of ultraviolet divergencies and the necessity of renormalizations.

1. General formulas and method of regularization

Pollowing/1,2/ we shall examine the acalar model with action

$$
\begin{equation*}
S[\varphi]=\int d x\left[\frac{1}{2} \sum_{i=1}^{N}\left(\partial_{\nu} \varphi_{i}\right)^{2}+\frac{g}{4!}\left(\sum_{i=1}^{N} \varphi_{i}^{2}\right)^{2}\right]+S^{\prime}[\varphi ; g] \tag{6}
\end{equation*}
$$

in the four-dimensional Euclidean space. Here $S^{\prime}[\varphi ; g]$ contains the counterterms which provide for subtraction of the ultraviolet divergencies, g is the renormalized coupling constant, μ is the parameter of renormalization

$$
\begin{aligned}
& S^{\prime}[\varphi ; g]=\int d x\left[\frac{1}{4!}\left(\varphi_{i}^{2}\right)^{2}\left(g^{2} \alpha_{2}(\mu)+g^{3} \alpha_{3}(\mu)+\ldots\right)+\right. \\
& \left.\frac{1}{2}\left(\partial_{\nu} \varphi_{i}\right)^{2}\left(g^{2} c_{2}(\mu)+\ldots\right)+\frac{1}{2} \varphi_{i}^{2}\left(g d_{1}(\mu)+\ldots\right)\right]
\end{aligned}
$$

By substituting $\varphi(x) \rightarrow \psi(x) / \sqrt{g}$ it can be shown that for amall g the saddle point solution is determined by the part of the action without counterterms. For the β-function defined in a atandard way /11/ the discontinuity on the cut disc $\beta(-g)(g>0)$ is determined only by the disc $G^{(4)}\left(p^{2} / \mu^{2} ;-g\right)$ if the terms $O\left(g^{2}\right)$ in (4) are neglected.
$G^{(4)}$ is the four-point Green function including weak-connected and disconnected diagrams. It is defined by the functional integral as

$$
\begin{align*}
& G^{(4)}\left(\frac{P_{1}^{2}}{\mu_{1}^{2}}, \ldots, \frac{P_{4}^{2}}{\mu_{4}^{2}} ; g\right)(2 r)^{4} \delta\left(\sum_{n=1}^{4} p_{n}\right) T_{i_{1}} \ldots i_{4}= \\
& =\prod_{n=1}^{4} P_{n}^{2} \int \exp \left(i \sum_{m=1}^{4} P_{m} y_{m}\right) \prod_{k=1}^{4} d y_{k} G_{i_{1} \ldots i_{4}}^{(4)}\left(y_{1}, \ldots, y_{4} ; g\right) ; \tag{8}
\end{align*}
$$

$$
\begin{aligned}
& G_{i_{1} \ldots i_{4}}^{(4)}\left(y_{1}, \ldots, y_{4} ; g\right) \equiv G_{i_{k}}^{(4)}\left(y_{k} ; g\right)=\frac{1}{J_{0}} \int \prod_{x} D \varphi_{i}(x) \prod_{k=1}^{4} \varphi_{i_{k}}\left(y_{k}\right) e^{-S[\varphi]} \\
& J_{0}=\int \prod_{x} D \varphi_{i}(x) \exp \left[-\frac{1}{2} \int d x\left(\partial_{\nu} \varphi_{i}\right)^{2}\right]
\end{aligned}
$$

Here $T_{i_{1} . . .} i_{4}$ stands for the $O(N)$ rotation-group tensor:

$$
T_{i_{1} \ldots i_{4}}=\frac{2}{3}\left(\delta_{i_{1} i_{2}} \delta_{i_{3} i_{4}}+\delta_{i_{1} i_{3}} \delta_{i_{2} i_{4}}+\delta_{i_{1} i_{4}} \delta_{i_{2} i_{3}}\right)
$$

To regularize the theory we shall operate in the space of dimension $d=4-2 \varepsilon$ instead of the four-dimensional space and replace the constant g in (6) by the function $g_{\varepsilon}(x ; g)$ which is aufficiently smooth in x, vanishes at $|x| \rightarrow \infty$, is regular in ε and \hat{f} noan the paint $g=n, f=n$ and natiafiea the conditions

$$
\begin{equation*}
\left.g_{\varepsilon}(x ; g)\right|_{\varepsilon=0}=g,\left.\quad g_{\varepsilon}(x ; g)\right|_{g=0}=0 \tag{9}
\end{equation*}
$$

In virtue of the local character of counterterms, the results of the calculatione in PT with such a regularization after the tranaition to the limit $\varepsilon \rightarrow 0$ will not be different from the resulta obtained by any other method (for example, by the dimensional regularization). Let us conaider for example the 4-point Green function in the one-loop approximation for $\mathrm{N}=1$

$$
\begin{aligned}
& G^{(4)}\left(y_{k} ; g\right)=\int d^{d} x g_{\varepsilon}(x ; g) \prod_{n=1}^{4} \Delta_{0}\left(y_{n}-x\right)+\frac{1}{2} \int d^{d} x_{1} d^{d} x_{2} . \\
& \cdot g_{\varepsilon}\left(x_{1} ; g\right) g_{\varepsilon}\left(x_{2} ; g\right)\left\{\prod_{n=1}^{2} \Delta_{0}\left(y_{n}-x_{1}\right) \prod_{m=3}^{4} \Delta_{0}\left(y_{m}-x_{2}\right)\right. \\
& \left.\cdot\left[\Delta_{0}^{2}\left(x_{1}-x_{2}\right)+\delta\left(x_{1}-x_{2}\right) \frac{2}{3} \alpha_{2}(\mu)\right]+\text { permutations of } y_{n}\right\}+\ldots
\end{aligned}
$$

where $\alpha_{2}(\mu)$ is the factor from (7), $\Delta_{0}(x)$ is the free propagator.

After the subtraction of divergencies, the integrand in brackets is finite, and we may put $\varepsilon=0$ and our result will not differ from the one obtained with $g_{\varepsilon}(x ; g)=g=$ const. Let us note that with such a regularization the term with the derivative of the field in (7) muat be rewritten as follows:

$$
\int d^{d} x\left[\partial_{\nu}\left(g_{E}(x ; g) \varphi_{i}(x)\right)\right]^{2} c_{2}(\mu)
$$

We shall use the arbitrariness in the definition of the function $g_{\varepsilon}(x ; g)$ to choose it as

$$
\begin{equation*}
g_{\varepsilon}(x ; g)=g\left(\frac{2}{1+x^{2}}\right)^{4-d} \tag{10}
\end{equation*}
$$

Then, it can easily be verified that the function

$$
\begin{equation*}
\left(\varphi_{c}\right)_{i}(x)=u_{i} \sqrt{\frac{3 d(d / 2-1)}{g}}\left(\frac{2}{1+x^{2}}\right)^{d / 2-1} \tag{11}
\end{equation*}
$$

where u_{i} stands for the arbitrary isotopio vector with $u_{i}^{2}=1$, Is the solution for the saddle-point equation obtained by varying the regularized action with negative coupling constant $(-g)(g>0)$, The action calculated on the solution (11) is finite and at $d \rightarrow 4$ (11) turns out to de the sodution usea dy hipator ${ }^{1}$!.

The conventional version of dimensional regularization with constant $g_{\varepsilon}(x ; g) \equiv g$ was used to calculate the leading term in the asymptotic formula in $12 /$; in this case, however, the exact solutions for the equation of motion are not known. Moreover, the initial theory is invariant with respect to the $O(5)$ group which may be realized as a linear tranaformation group by making the stereographic projection onto the sphere S^{4} in five-dimensional Euclidean space. The transition to the space of dimension d and the co-ordinated introduction of the function (10) make the theory $O(d+1)$ invariant thereby considerably simplifying the calculations. With other regularization methode irrelevant to the dimensional regularization the equation of motion has the exact solution (11) with $d=4$, but the $O(5)$ invariance disappears.

When expanding the action around $\varphi_{c}(x)$ the spectrum of the operator of quadratic fluctuations has the zero eigenvaluea associated with rotational invariance in the theory and the eigenvalues proportional to ε and associated with tranalational and scale invariance since the latter is violated by the regularization. To correctly calculate the functional integral we shell use the Faddeev-

Popov method. First of all we shall pass to the space of dimension $d=4-2 \varepsilon$, substitute in (8) the representation of the unity(see Appendix) and then replace the coupling constant g by the function

$$
g_{\varepsilon}\left(x ; g ; x_{0}, \lambda\right)=\frac{1}{\lambda^{4-d}} g_{\varepsilon}\left(\frac{x-x_{0}}{\lambda} ; g\right)
$$

where $g_{\varepsilon}(x ; q)$ is determined by eq. (10).
We shall carry out the calculations in the scheme of momentum subtractions at the symmetrical point μ^{2}; the Green functions will be considered in the regime of symmetrical asymptotics with respect to momentum $p_{n}:\left(P_{n}+P_{m}\right)^{2}=4 p_{k}^{2} / 3$. At the subtraction point $\mu^{2}=$ $\left(p_{n}+p_{m}\right)^{2}(n, m, k=1,2,3,4)$. The constants in counterterms (7) are given in Appendix.

2. Expansion around saddle point solution

To facilitate the calculations, we shall operate on the sphere S^{d}

$$
\begin{gathered}
\text { In the } d+1 \text {-dimensional space with coordinatea } \\
Z_{\mu}=\frac{2 x_{\mu}}{1+x^{2}}, Z_{d+1}=\frac{x^{2}-1}{x^{2}+1}, \sum_{\alpha=1}^{d+1} Z_{\alpha}^{2}=1, \mu=1,2, \ldots, d, \\
\varphi_{i}(x)=\left(\frac{2}{1+n^{2}}\right)^{d / 2-1} \psi(Z),
\end{gathered}
$$

where $\psi(\bar{x})$ is the function defined on the sphere.
Fulfilling the expansion around the clasaical solution in a atandard way $/ 1,2 /$, we obtain

$$
\begin{align*}
& \operatorname{dixc} G_{i_{n}}^{(4)}\left(y_{n} ;-g\right)=D g^{-\frac{d+4+N}{2}} e^{-A(\varepsilon) / g} \int_{0}^{\infty} d \lambda \lambda^{3-3 d} \int d^{d} x_{0} \tag{12}\\
& . \int d^{(N-1)} \vartheta\left(1+u_{N}\right)^{N-1} \Phi_{i_{1} \ldots i_{4}}\left[\frac{\delta}{\delta \theta}\right] \not Z[\theta] /_{\theta=0} \\
& \Phi_{i_{1} \ldots i_{4}}[\Psi]=\prod_{n=1}^{4}\left\{\frac{2}{\left.1+\left(\frac{y_{n}-x_{0}}{\lambda}\right)^{2}\right\}^{d / 2-1}\left(u_{i_{n}}+\frac{1}{\Psi_{c}} \psi_{i_{n}}\left(x_{n}\right)\right)}\right. \tag{13}
\end{align*}
$$

$\cdot \operatorname{det}\left(\delta_{\rho \sigma}+\sqrt{g} a_{\rho \sigma}[\psi]\right) \operatorname{eop}\left(-\Delta S+\sqrt{g} S_{1 / 2}^{\prime}+g S_{1}^{\prime}+\ldots\right) ;$
$\Delta S=-\int d \Omega_{d}\left[\sqrt{\frac{g}{6}} \frac{d}{2}\left(\frac{d}{2}-1\right) u_{i} \psi_{i}(x) \psi_{j}^{2}(x)+\frac{g}{4!}\left(\psi_{i}^{2}(x)\right)^{2}\right]$.

The terms $\mathcal{D}, A(\varepsilon), \mathcal{Z}$ are presented in Appendix, u_{i} is the isotopic vector in (11), the argument \mathscr{X}_{n} of the function ψ corresponds to the point $\left(y_{n}-x_{0}\right) / \lambda$ in the d-dimensional Euclidean space, $d \Omega_{d}$ is the volume of integration over the sphere S^{d}. The terms $S_{1 / 2}^{\prime}$, S_{1}^{\prime} are the coefficients before \sqrt{g} and g in the expansion of counterterme, $a_{\rho \sigma}[\psi]$ arises from the expansion of $B_{\rho \sigma}$ (see Appendix) around the classical solution $\left(\psi_{c}\right)_{i}=u_{i} \psi_{c}$ defined on the aphere $\left(\psi_{c}=\sqrt{3 d}(d / 2-1) g^{-1}\right)$. The generating functional $\mathcal{Z}[\theta]$ is equal to

$$
\begin{align*}
& Z[\theta]=\frac{1}{J_{0}} \int \prod_{z} D \psi_{i} \delta^{(d+N)}\left(\int d \Omega_{d} \psi(z) \eta(z)\right) \\
& \quad \cdot \exp \left[-S_{2}+\int d \Omega_{d} \dot{\theta_{i}}(z) \psi_{i}(z)+S_{0}^{\prime}\right] \tag{14}
\end{align*}
$$

Here S_{0}^{\prime} is the part of counterterme independent of g,

$$
\begin{equation*}
S_{2}=\frac{1}{2} \int d \Omega_{d} \psi_{i}(x)\left[\left(\delta_{i j}-u_{i} u_{j}\right)\left(-L^{2}\right)+u_{i} u_{j}\left(-\hat{L}^{2}-d(d / 2-1)\right)\right] \psi_{j}(z) \tag{15}
\end{equation*}
$$

is the part of the initial action square in quantum fluctuations Ψ. The aymbol $\eta(Z)$ atands for the eigenfunctions corresponding to the zero $\left(\eta^{\top}\right)$ and proportional to $\varepsilon\left(\eta_{\alpha}^{L}, \alpha=1, \ldots, d+1\right)$ eigenvalues of the operator of quadratic fluctuationa (aee ref. $/ 1,2 /$), \mathcal{L}^{2} is the angular part of tne d'iti -almenslonal Laplace operator.

To calculate the leading asymptotics (4) by the steepest deacent method we have to limit ourselves to the term quadratic in fluctuations in the expansion of the action around the aadde solution(this term is independent of g) (see ref. $/ 1 /$). To obtain the corrections to the leading asymptotica, we have to expand $\Phi[\psi]$ in $g, i . e .$, carry out perturbation calculations around the clasaical solution. Used as a propagator is $G_{i j}\left(p\left(z, z^{\prime}\right)\right)$, the function of propagation of the field Ψ in the external field ψ_{c}, which depends on $p\left(z, x^{\prime}\right)=$ $\sum_{\alpha} Z_{\alpha} Z_{\alpha}^{\prime}$, the distance between the points Z and \mathcal{Z}^{\prime} on the ephere, which is invariant with respect to $O(d+1)$ transformations. The propagator has the longitudinal and transverse, with respect to the isotopic vector U_{i} (see eq. (11)), components G^{2} and G^{\top} satisfying the equations determined by S_{2} :

$$
\begin{align*}
& {\left[-L_{z^{\prime}}^{2}-d(d / 2-1)\right] G^{L}\left(p\left(z^{\prime}, z^{\prime \prime}\right)\right)=\delta\left(z^{\prime}, z^{\prime \prime}\right)-\sum_{\alpha} \eta_{\alpha}^{L}\left(z^{\prime}\right) \eta_{\alpha}^{L}\left(z^{\prime \prime}\right) ;} \tag{16}\\
& -L_{z^{\prime}}^{2} G^{\top}\left(p\left(z^{\prime}, z^{\prime \prime}\right)\right)=\delta\left(z^{\prime}, z^{\prime \prime}\right)-\eta^{\top}\left(z^{\prime}\right) \eta^{T}\left(z^{\prime \prime}\right) .
\end{align*}
$$

These equations may be solved either by the Fock method of fifth parameter (see ref./13/) or by preaenting G^{L} and G^{\top} to be a series in apherical functions of the $d+1$-dimensional space (seeref./1/) and using the addition theorem for the Gegenbauer polynomiala and the generalized Dugoll equality (see in Appendix). Eventually we get

$$
\begin{aligned}
& G^{L}(p)=\frac{\Gamma\left(\frac{d-1}{2}\right)}{4 \pi^{(d+1) / 2}}\left[-\frac{\pi}{\sin \pi x^{2}} C_{x^{\frac{d-1}{2}}}^{\left.(-p)-\frac{d+1}{d(2-d / 2)} C_{1}^{\frac{d-1}{2}}(p)\right]}\right. \\
& G^{T}(p)=-\frac{\Gamma\left(\frac{d-1}{2}\right)}{4 \pi^{(d+1) / 2}}\left[\left.\frac{d}{d s} C_{s}^{\frac{d-1}{2}}(-p)\right|_{s=0}+\frac{1}{d-1}\right]
\end{aligned}
$$

where $C_{\underset{叉}{\nu}}^{\nu}$ is the Gegenbauer function (seeref. $/ 14 /$), and $\mathscr{X}=-(d-1) / 2+$ $\sqrt{(d-1)^{2} / 4+d(d / 2-1)}=1-4 \varepsilon / 5+O\left(\varepsilon^{2}\right)$. We shall present also the expressions of the propagators G^{L} and G^{\top} in the external classical field at $\varepsilon=0$:

$$
\begin{aligned}
& G^{L}(p)=\frac{1}{8 \pi^{2}}\left[\frac{3 p^{2}-1}{2} \frac{1}{1-p}-3 p \ln \frac{1-p}{2}-\frac{3+7 p}{2}-\frac{3}{5} p\right] \\
& G^{T}(p)=\frac{1}{8 \pi^{2}}\left[\frac{1+p}{2} \frac{1}{1-p}-\ln \frac{1-p}{2}-11 / 6\right]
\end{aligned}
$$

3. Calculation of the first correction to the asymptotice

To calculate the first correction to the leading approximation of the asymptotic formula for $\operatorname{disc} G_{i_{n}}^{(4)}\left(y_{n} ;-g\right)$, we have to retain the term proportional to g in the expansion of $\Phi[\psi]$ (see eq. (13)) in coupling constant. The integrals contributing to corrections to asymptotic formula (4) can be pictured in the form of diagrams.

The Feynman rulea in the case Na 1 are repreaented in fig. 1 , $G_{0}(P)$ is the free propagator of the initial theory (6). The diagrams depicted in Fig. 2 a-e contribute to the first correction a_{1}. Moreover, the diagrams F_{1}, F_{2}, F_{3} arise from the expansion of ΔS in (13). The double line in Fig. 2 d-e corresponds to the functions arising from the expansion of $\operatorname{det}\left(\delta_{\rho \sigma}+\sqrt{g} a_{\rho \sigma}[\psi]\right)$ and the product of $\Psi\left(\mathcal{X}_{n}\right)$ in (13). The counterterma must also be represented as a series in g. All the contributions are computed with the help of the formulas given in $/ 14 /$ and $/ 15 /$.

Let us consider the calculation of F_{3} in detail. We did not succeed in direct calculation of the integral

$$
\int d \Omega_{d} d \Omega_{d}^{\prime}\left[G\left(p\left(z, z^{\prime}\right)\right)\right]^{3} .
$$

(a) $G(p)$

$Z^{\prime \prime}$
(b) $G_{0}(p) \not z^{\prime}$ \qquad
(d) $3 \frac{d}{2}\left(\frac{d}{2}-1\right)$
(e) $\sqrt{\frac{g}{6} \frac{d}{2}\left(\frac{d}{2}-1\right)}$

(c) Ψc x
(f) $\frac{g}{4!}$
Fig. 1.
(a) $F_{1} \longrightarrow$
(d)
(b) F

(e)

(c) F_{3}

Fig. 2.

That is why we represent F_{3} in the form $F_{3}=F_{3}^{(1)}+F_{3}^{(2)}$, where $F_{3}^{(1)}$ corresponds to the diagrams in Fig. 2,f. It can be easily shown by defining on the sohere the free provagator $G_{n}(P)$ of the initial theorv

$$
G_{0}(p)=\frac{\Gamma\left(\frac{d-2}{2}\right)}{2^{\frac{d+2}{2}} \pi \pi^{d / 2}} \frac{1}{(1-p)^{d / 2-1}}
$$

that $F_{3}^{(1)}$ is finite for $\varepsilon=0$ and can be calculated with another regularization. For example, we may write the integral in the form $\int d \Omega_{d} d \Omega_{d}^{\prime} \ldots=\Omega_{d} \Omega_{d-1} \int_{-1}^{1}\left(1-p^{2}\right)^{d / 2-1} d p \ldots=\Omega_{d} \Omega_{d-1} \lim _{\alpha \rightarrow 0} \int_{-1}^{1-\alpha}\left(1-p^{2}\right)^{d / 2-1} d p \ldots$ and then take the limit $\varepsilon=0$. Finally we obtained the following values of the constants in asymptotic formulas (2) and (4):

$$
\begin{gathered}
\alpha=N / 2+3 ; A=16 \pi^{2} ; \\
C=\frac{N+8}{9} \frac{\Gamma(5 / 2)}{\Gamma\left(\frac{N+4}{2}\right)} 2^{\frac{40-N}{2}} 3^{\frac{2 N+7}{6}} \pi^{-\frac{N-1}{6}} W \\
\\
\quad \exp \left[\frac{N+2}{\pi^{2}} \zeta^{\prime}(2)-\frac{N+2}{6} C_{E}-\frac{N+14}{4}\right]
\end{gathered}
$$

Here $C_{E}=0.577216 \ldots$ is the Euler constant, $\zeta^{\prime}(2)=-0.937 \ldots$ is the derivative of the Riemannian zeta-function, the factor W is

$$
W=\int_{0}^{\infty} d x K_{1}^{4}(x) x^{3+(N+8) / 3}
$$

where $K_{1}(x)$ is the modified Bessel function. The expression for C coincides with that obtained in $/ 1,2 /$ (the only difference is in the form of writing). Our main result is the value of the coefficient a_{1} in (4):

$$
\begin{aligned}
& a_{1}=-\frac{N^{2}+10 N+36}{6} C_{E}+\frac{3 N^{2}+28 N+104}{36} \ln \frac{3}{4}-\frac{N+8}{6} \frac{7}{36} \pi^{2}+ \\
& \frac{5 N+22}{9} 9+\frac{73 N^{2}-228 N-2000}{360}-\frac{N^{2}+10 N+36}{2(N+8)}+I_{1}+I_{2}+I_{3} ; \\
& I_{1}=-\frac{1}{W} \frac{N^{2}+10 N+36}{6} \int_{0}^{\infty} d x x^{3+(N+8) / 3} K_{1}^{4}(x) \ln (x / 2) ; \\
& I_{2}=-\frac{N+8}{9} \frac{3}{\pi^{2} W} \int_{0}^{\infty} d x x^{4+(N+8) / 3} K_{1}^{3}(x) \int d^{4} y \frac{e^{i x(\nu y)}}{1+y^{2}} . \\
& {\left[\frac{y^{2}+14}{60\left(1+y^{2}\right)}-\frac{5}{12} \div \frac{\ln \left(1+y^{2}\right)}{1+y^{2}}\right] ;} \\
& I_{3}=\frac{1}{W} \frac{1}{2 \pi^{2}} \int_{0}^{\infty} d x x^{5+(N+8) / 3} K_{1}^{2}(x) \int d^{4} y_{1} d^{4} y_{2} . \\
& \frac{\exp \left(i x\left(v_{1} y_{1}\right)+i x\left(\nu_{2} y_{2}\right)\right)}{\left(1+y_{1}^{2}\right)\left(1+y_{2}^{2}\right)}\left[G^{L}\left(p\left(z_{1}, z_{2}\right)\right)+\frac{N-1}{3} G^{T}\left(p\left(z_{1}, z_{2}\right)\right)\right],
\end{aligned}
$$

where the factor $\mathcal{G}=0.749 \ldots$ arises from the two-loop counterterm (see in Appendix), the points Z_{1} and Z_{2} on the sphere S^{4} correspond to the points y_{1} and y_{2} in the four-dimensional Euclidean space, the 4 -vectors ν, ν_{1}, ν_{2} satisfy the relations $|\nu|=\left|\nu_{1}\right|=\left|\nu_{2}\right|=1$, $\cos \left(V_{1} V_{2}\right)=-\frac{1}{3}$. After simplifications the integrals I_{1}, I_{2}, I_{3} may be computer - calculated numerically. The Table presenta the numerical values of the constants C, a_{1}, b_{1} (see formulas (2) and (4)) for certain N.

Table
The values of the factor c and coefficients a_{1}, b_{1}
in the asymptotic formulas (4) and (2)

Isotopic Number N	1	2	3	4	7	10
C	1.097	0.543	0.249	0.107	0.00644	$0.284 \cdot 10^{-3}$
a_{1}	-12.6	-14.8	-17.1	-19.2	-26.5	-34.4
\boldsymbol{b}_{1}	-4.7	-4.82	-4.76	-4.2	-2.1	1.6

Acknowledgement. The author is indebted to D.V.Shirkov, A.A. Vadimirov, D.I.Kazakov, O.V.Tarasov for informative diacusaions.

Appendix

To integrate over the rotational variables u_{i}, we shall introduce $N-1$ values v_{S} :

$$
u_{s}=\frac{2 z s}{1+2^{2}}, u_{N}=\frac{1-z^{2}}{1+2^{2}} \quad(s=1,2, \ldots, N-1)
$$

We substitute the following representation of unity into eq. (8): $1=\int_{-\infty}^{\infty} d \lambda \int_{-\infty}^{\infty} d^{d} x_{0} \int_{-\infty}^{\infty} d^{N-1} \psi \delta^{(d)}\left(\int d x \lambda^{d / 2-2} \varphi_{i}\left(\lambda x+x_{0}\right) u_{i} \frac{2 x y}{\left(1+x^{2}\right)^{d / 2+2}}\right)$. $\delta\left(\int d x \varphi_{i}\left(\lambda x+x_{0}\right) u_{i} \frac{x^{2}-1}{\left(1+x^{2}\right)^{d / 2+2}}\right) \delta^{(N-1)}\left(\frac{4}{d+2} \int d x \lambda^{d / 2-1}\right.$.
$\left.\varphi_{i}\left(\lambda x+x_{0}\right) V_{i, s} \frac{1}{\left(1+x^{2}\right)^{d / 2+1}}\right) \operatorname{det} B\left[\varphi ; \lambda, x_{0}, z\right] ;$

$$
\begin{gathered}
V_{t, s}(z)=\delta_{t s}-u_{t} u_{s} /\left(1+u_{N}\right) ; \quad V_{N, s}(z)=-u_{s} ; \\
s, t=1,2, \ldots, N-1
\end{gathered}
$$

Here λ is the scale and x_{0} ia the translational parameter , B is the matrix of the size $(d+N) \times(d+N)$. Its components may be $o b-$ teined by differentiation of the argumenta of δ-functions with respect to $\boldsymbol{x}_{0}, \boldsymbol{\lambda}$ and $\boldsymbol{\gamma}$.

The constants in counterterms (7) in our renormalization scheme are as follows:

$$
\begin{aligned}
& \alpha_{2}(\mu)=-\frac{N+8}{6} \frac{1}{(2 \pi)^{d}} \int \frac{d^{d} p}{p^{2}\left(q_{\mu}-p\right)^{2}}=-\frac{N+8}{6} \frac{\Gamma(2-d / 2)}{\Gamma(d-2)} \frac{1}{16} \frac{\Gamma^{2}(d / 2-1)}{\pi^{d / 2}} . \\
& \cdot\left(\frac{4}{q_{\mu}^{2}}\right)^{2-d / 2} \\
& \alpha_{3}(\mu)=\alpha_{3}{ }^{(1)}(\mu)+\alpha_{3}^{(2)}(\mu) ; \\
& \alpha_{3}^{(1)}(\mu)=\frac{N^{2}+26 N+108}{36}\left[\frac{1}{(2 \pi)^{d}} \int \frac{d^{d} p}{p^{2}\left(q_{\mu}-p\right)^{2}}\right]^{2}=\frac{N^{2}+26 N+108}{(N+8)^{2}}\left(\alpha_{2}(\mu)\right)^{2} ; \\
& \alpha_{3}^{(2)}(\mu)=-\frac{4(5 N+2 \lambda)}{36} \frac{1}{(2 \pi)^{2 d}} \int \frac{d^{d} p d^{d} k}{p^{2} k^{2}\left(q_{1 \mu}-p-k\right)^{2}\left(q_{\mu}-k\right)^{2}}= \\
& =-\frac{4(5 N+22)}{36} \frac{1}{2^{8}}\left[\frac{1}{2 \pi^{4-2 \varepsilon}} \frac{\Gamma^{3}(1-\varepsilon) \Gamma(1+2 \varepsilon) \Gamma(1-2 \varepsilon)}{\Gamma(2-2 \varepsilon) \Gamma(2-3 \varepsilon)} \frac{1}{\varepsilon^{2}}\left(\frac{4}{q_{\mu}^{2}}\right)^{2 \varepsilon}+\frac{\sigma}{\pi^{4}}\right] ; \\
& C_{i}(\mu)-\frac{N+2}{18} \frac{1}{(2 \pi)^{2 d}} 1_{q_{1 \mu}^{2}}^{1} \int \frac{d^{d} p_{1} d^{d} p_{?}}{p_{1}^{2} p_{2}^{2}\left(q_{1 \mu}-p_{1}-p_{2}\right)^{2}}= \\
& =\frac{N+2}{18} \frac{1}{2^{9} \pi^{4-2 \varepsilon}}\left(\frac{4}{q_{1 \mu}^{2}}\right)^{2 \varepsilon} \frac{\Gamma^{3}(1-\varepsilon) \Gamma(1+2 \varepsilon)}{(1-2 \varepsilon) \Gamma(3-2 \varepsilon)} \frac{1}{\varepsilon} ; \\
& d_{i}(\mu)=0 .
\end{aligned}
$$

Here q_{μ} and $q_{1 \mu}$ are the momentum subtraction pointa, $q_{\mu}^{2}=\mu^{2}$,
$q_{1 \mu}^{2}=3 \mu^{2} / 4$, factor $^{\prime}$ is

$$
T=\frac{1}{\pi^{2}} \int \frac{d^{4} p}{p^{2}\left(q_{\mu}-p\right)^{2}} \ln \frac{\left(q_{1 \mu}-p\right)^{2}}{p^{2}}=0.749 \ldots \quad[7]
$$

The constants \mathcal{D} and $A(\varepsilon)$ in (12) are:

$$
\begin{aligned}
& D=\left[-\sqrt{3 \Omega_{d} d(d / 2-1)}\right]^{d+N}\left(\frac{d-2}{2 \sqrt{d+1}}\right)^{d+1}[3 d(d / 2-1)]^{2} ; \\
& \Omega_{d}=2 \pi^{\frac{d+1}{2} / \Gamma\left(\frac{d+1}{2}\right) ;} \\
& A(\varepsilon)=\frac{3}{2} \Omega_{d}\left[\frac{d}{2}\left(\frac{d}{2}-1\right)\right]^{2} .
\end{aligned}
$$

Ω_{d} is the surface of the aphere $\mathbb{S}^{d}, A(\varepsilon)$ characterizes the action calculated on the classical solution $\varphi_{c}\left(S\left[\varphi_{c}\right]-S^{\prime}\left[\varphi_{c}\right]=\right.$ $A(\varepsilon) / g)$.

The generalized Dugoll equality is
$\sum_{n=0}^{\infty} \frac{(2 n+2 \nu)(-1)^{n}}{(n-\mu)(n+2 \nu+\mu)} \frac{\Gamma(n+2 \nu)}{\Gamma(n+1)} \cos (n+\nu) z=-\frac{\pi}{\sin \pi \mu} \cos (\mu+\nu) z-\frac{\Gamma(\mu+2 \nu)}{\Gamma(\mu+1)}$.
Let us consider the integral along the circumference of the radius $N+1 / \lambda(N$ is integer) in order to derive this equality:

$$
\int_{C_{\left(N+\frac{1}{2}\right)}} \frac{\cos (z+y) z}{z-\mu} \frac{1}{\sin \pi z} \frac{\Gamma(z+2 y)}{\Gamma(x+1)} d z .
$$

We may evaluate it with the help of the theorem of residues and then take the limit $N \rightarrow \infty$ and obtain the previous equality. For $V=1 / 2$ this equality is given in $14 /$.

Keferences

1. Lipatov L.N. jov. JETP, 1977, 72, p. 411.
2. Brezin E., Le Guillou J.C., Zinn-Justin J. Phys.Rev., 1977, D15, p. 1544.
3. Spencer T. Commun. Math. Phys., 1980, 74, p. 273.
4. Loeffel J.J., Martin A. Cargese Lect. in Physice, v. 5, N.Y., 1972, P. 415.
5. Parisi G. Phys.Lett., 1977, B66, p. 167.
6. Bogomolny E.B. Phys.Lett., 1977, B67, p. 193.
7. Dittes F.M., Kubyshin Yu.A., Tarasov O.V. Teor.Mat.Fiz., 1978, 37, p. 66.
8. Bender C.M., Wu T.T. Phys.Rev., 1973, D7, p. 1620; Collina J.C., Soper D.E. Ann. Phys., 1978, 112, p. 209.
9. Figeron R. Commun. Math. Phys., 1981, 79, p. 401.
10. Kazakov D.I., Tarasov O.V., Shirkov D.V. Teor.Mat.Fiz., 1979, 38, p. 15.
11. Bogoliubov N.N., Shirkov D.V. Introduction to the Theory of Quantized Fields. Nauka, Moscow, 1976; Wiley- Intersci., N.Y., 1980.
12.Mc Kane A.J., Wallace D.J. Journ.of Phys., 1978, A11, p. 2285; Drummond I.T., Shore G.M. Ann.Phys., 1979, 121, p. 204.
12. Dowker J.C., Critchley R. Phys.Rev., 1976, D13, p. 224.
13. Bateman H., Erdelyi A.Higher Transcendental Functions, v. 1, uc Graw-Hill, N.Y., 1953; Nauka, M., 1973.
14. Gradateyn I.S., Ryzhik I.M. Tablea of Integrals, Series and Products. Nauka, M., 1971; Academic Preas, N.Y., 1961.
```
Кубышин D.A.
Поправки к асимптотической формуле для высоких порядков
теории возмущений
Разработана техника вычисления поправок по \(1 /\) п к асимптотической формуле для n -го члена ряда теории возмущений на примере скалярной безмассовой модели \(\phi_{(4)}^{4}\) с внутренней симметрией \(\mathrm{O}(\mathrm{N})\). Получена первая поправка для \(\beta\)-функции.
Работа выполнена в Лаборатории теоретической физики ОИяИ.```

