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It has been established for a variety of quantum-field models
that the coefficients of the perturbation theory (PT) for the Green
functions, anomalous dimensions,ﬁ -function (or Gell-Mann-Low func-
tion), etc.,show the asymptotic behaviour of the type (see, for

example, reta./172/):
n
Bg= pn 9", (1)
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the functional integral determining the Green function in the n-th
order of PT by the steepest descent method by analogy with an ordinary
integral. The classical solution of the equation of motion corres-
ponds to the saddle point. A partial proof of this method for the
léttice theory is given in . If we suppose that‘ﬂ -function is
analytic in coupling constant in the complex plane cut along the
negative real axis (as it takes place in the case of anharmonic os-
cillator/4/), we may write the dispersion relation

ﬁ(?)—&_‘ j ;J‘é‘_ﬁfi_ dg', (3)

where disc ﬁ(-?)“ﬁ(-g.HO)—j(—?—tO) and ﬁ(’ 140) 1is the analytic
continuation of the functional integral, determining the Green func-
tion, from the positive semiaxis to the negative one through the
upper or lower half-plane. The diac (—,) can be also evaluated by
the calculation of the functional integral by the steepest descent
method 726/, If the asymptotic formula for disg}B(-gJ at ?-’+0

ig of the form (4)

J“cﬁ(g)r-tBe 93 (i+$ L +0(3Y),
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we can substitute it in (3) and obtain (2) with

C__E-—- R 81-_-0'1.*:“_%__1). . (5)
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Up to now only the leading asymptotic term (i.e., the numbers C,A,c{ )
has been calculated in quantum field theory. But for example, in the
case of the q%k) model the comparison of the asymptotic eoefficients
(i.e.,the coefficients calculated by eq. (2) in the leading approxi-
mation) for h=2,3,4,5 with the exact ones shows that the asymptotics
does not set on in the fifth order in 7/. The analysis of anharmo-
nic oscillator enables one to make a conclusion that the situation
improves considerably if the correctiona‘gihi and'gz/nz in (2),
which have been calculated in /8/ and /9/, are taken into account.
That is why the calculation of the corrections in the realistic field
models is of some interest. The values of 4,3;"n may be used to app-
roximately restore the function JB(yJ from several exact coefficients
and the asymptotic formula (see ref./1°/).

The main purpose of this work is to give an account of the tech-
nique of calculation of the coefficients Q¢ in formula (4) and to
calculate @4 for massless scalar model (P(,') « The feature differing
this model from the anharmonic oscillator is the presence of ultra-
violet divergencies and the necessity of renormalizations.

1. General formulas and method of regularization

/1,2/

Pollowing we shall examine the scalar model with action

) _
Stpr= et S (ap0+ 2(E 911+ $Tg;q (6)
i=1 - e

in the four-dimensional Euclidean space. Here Sijp; ] contains the
counterterms which provide for subtraction of the ultraviolet diver-~
gencies, is the renormalized coupling constant, Jl is the para-
meter of renormalization
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By substituting P(x)>¥x)/¥g' it can be shown that for smally
the saddle point solution is determined by the part of the action
without counterterms. For the ~function defined in a standard way
m/ the discontinuity on the cut dlac - ) (g>o) is determined
only by the disc G (P /J« -g) if the terma 0(g2
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in (4) are neglected.



G(A) is the four-point Green function including weak-connected and
disconnected diagrams. It is defined by the functional integral as

crp
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stands for the O(N) rotation-group tensor:

Y
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Here 7—1---‘11,

=204 .
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To regularize the theory we shall operate in the space of di-
mension d=4-2€ instead of the four~dimensional space and replace
the constant @ in (6) by the function gefx ?) which is suffi-

ciently smooth in Q¢ , vanishes at Jxf>o00 , i8 regular in £ and
2 near the naint g =n f=n and aatiafiaem the conditions

9E(x;3')li=0=3' ' ?E(x;g)/g,zozo‘ (9)

In virtue of the local character of counterterms, the results
of the calculatione in PT with such a regular.zation after the tran-
gition to the limit £->0 will not be different from the results
obtained by any other method (for example, by the dimensional regu-
larization). Let us consider for example the 4-point Green function
in the one-loop approximat.on for N=1

4
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where 0(2_(‘/4) is the factor from (7), Aofx) is the free propagator.

After the subtraction of divergencies, the integrand in brackets is
finite, and we may put €=0 and our result will not differ from
the one obtained with ?E (:C;?)‘: =const. Let us note that with such
a regularization the term with the derivative of the field in (7)
muat be rewritten as follows:

(d¥z [ 3y (geCesg) P NI e, (.

We ghall use the arbitrariness in the definition of the function

%E(I;?) to choose it as . d
gs(x;g-)=7(i+xz ) . (10)

Then, i1t can easily be verified that the function
d/z-1
=y .Y 3d(d/2-1) ( (11)
(waccom s (D (20)"

2
where ui stands for the arbitrary isotopic vector with u.i=i , 18

the solution for the saddle-point equation obtained by varying the
regularized action with negative coupling constant ("?)(}>0). The
action calculated on the solution (11) is finite and at d-=24 (11)
turns out to De the BOLUTlON usea by uzpatov“'/.

The conventional version of dimensional regularization with cons~-
tant getx; )=9 was used to calculate the leading term in the asym-
ptotic formula in 12 s+ in this case, however, the exact solutions for
the equation of motion are not known. Moreover, the initial theory is
invariant with respect to the 0(5) group which may be realized as a
linear transformation group by making the stereographic projection
onto the sphere S in five~dimensional Euclidean space. The tran-
sition to the space of dimension d and the co~ordinated introduction
of the function (10) make the theory 0(d+1) invariant thereby consi-
derably simplifying the calculations. With other regularization
methods irrelevant to the dimensional regularization the equation of
motion has the exact solution (11) with ¢ =4, but the 0(5) inva-
riance disappears.

When expanding the action around (%) the spectrum of the
operator of quadratic fluctuations has the zero eigenvalues asso-
ciated with rotational invariance in the theory and the eigenvalues
proportional to € and associated with translational and scale in-
variance since the latter is violated by the regularization. To cor-
rectly calculate the: functional integral we shall use the Paddeev-



Popov method. FPirst of all we shall pass to the space of dimension
d= 4-2€£ , substitute in (8) the representation of the unity(see
Appendix) and then replace the coupling constant 3. by the function

{ -
Fe(xigiz,, )= e e (x——lzx ;3) ,
where ?’E (x; g)is determined by eq. (10),

We shall carry out the calculations in the scheme of momentum
subtractions at the symmetrical point 2 3 the Green functions will
be congidered in the regime of symmetrical asymptotics with respect
to momentum Pp 1 (Pn+Pm)2=l|p§'/3 . At the subtraction point le=

(Pn+Pm)z (n,m,k=1,2,3’l,) . The constants in counterterms (7) are
given in Appendix.

2., Expansion around saddle point solution

To facilitate the calculations, we shall operate on the sphere
Sd~ in the d+4 -dimensional space with coordinates

2 2 2
= A%pm TN I - ,
z‘}‘ 1+mz b] zd"‘i - xz.'.i ,dai zd i H J’ i,Z,...,d

gicx = 25) P,

where IP'(Z) is the function defined on the sphere.
Fulfilling the expansion around the classical solution in a
standard wa.y/1’2 , We obtain

) - dtheN o .
dise G; (yn;-9)=Rg 2 e Am/”dﬂ X de"’xo-
0

(12)
v-1) N-4
.5d v (1+u,) gii'"il;[‘ss—e-JZEGJ/6=o s
4 2 d/2-4 .
@{1'-'{4 [VJ=JL {1 + (?n' -'1’-'0)‘z (ug,* Ve Yin (21))-
A
(13)

-dot (8ps +Vg ape[y)) eop (~AS + Vg 34’/2, +g8,+..);

AS=-S§day [1/%%(%-Qu,-%(z)yf(m%(v,-z(z))zj :

The terms D,A(E),'b- are presented in Appendix, ui is the iso-
topic vector in (11), the argument wn of the function ¥ corres-
ponds to the point (yn-x,,)/',\ in the d -dimensional Euclidean space,
dQ_d is the volume of integration over the sphere S +« The terms
1'2 ’ S" are the coefficients before G and ? in the expansion
of counterterms, af.ctqu arises from the expansion of Dpe& (see
Appendix) around the classical aolution(%)iwi‘ly'c defined on the
sphere (‘1r¢=\l3d(d/z—1)9".’. The generating functional Z[B] is equal
)

t
d+N)
Z[91=—‘J-OSQ@%3‘ (§dn g voony
(14)

Y 1
reop[- 8, + §dR, ;0w (0+8)1 |
Here Sf, is the part of counterterms independent of ?,

A
2=-g-dezd%w[(SQ--u,;u‘,')(—Lz)’fuiu}(-EZ-J(J/z-i))Jﬁ(z) (15)

is the part of the initial action square in quantum fluctuations 'l’f .
The symbol "I_(z) stands for the eigenfunctions corresponding to the
zero ('ZT) and proportional to E('Z,','(,a('—'i,...,dﬁ) eigenvalues of the
operator of quadratic fluctuations (see ref. 1'2/), 2 is the angu-
iar partv oI tuwne U"':I‘» ~almenslionai. uaplace operavor,

To calculate the leading asymptotics (4) by the steepest descent
method we have to limit ourselves to the term quadratic in fluctua-
tione in the expansion of the action around the saddle solution(this
term is independent of ? )(see re:t./1 )eTo obtain the corrections
to the leading asymptotics, we have to expand @[‘tr_] in § , i.e.,
carry out perturbation calculations around the classical solution,
Used as a propagator is G{(P(i,i’)) , the function of propagation of
the field ¥ in the external field Ye » which depends on P(i‘,zl)=

;Z,( 2:( , the distance between the points ¥ and %! on the sphere,
which is invariant with respect to 0(d+1) transformations. The pro-
pagator has the longitudinal and transverse, with respect to the
isotopic vector u,; (see eq. (11)), components G" and GT satis-~
fying the equations determined by SZ H

A
[-L.:,-d(d/z—i)J G‘(p(z:z”»=a(zzz”)-gq;a'/qﬁ(z” e
1

A
‘L:, GT(P (%' ¥")= 3(2:2”)-7?1')’{(1”) ‘



These equations may be solved either by the Fock method of fifth
parameter (see ref./U/) or by pregenting GL and G' to be a series
in spherical functions of the d‘*i -dimensional space (see ref./1/)
and using the addition theorem for the Gegenbauer polynomials and
the generalized Dugoll equality (see in Appendix). Eventually we get

L ) x Cdi_l(_ ) PR S d+4 C dz-i
G (p)= —m?ﬂi[ wnxz "2 P In0m ],

r( d &
6'p)=- ?du)/z[ (e P)/s=o+ el

v
where C is the Gegenbauer function (seeref./M'/),and 8=—(d—1)/2+
V(d-j)Z/q.,.d(d/z-i)=1—h£/5+0(gz). We shall present also the expres-
sions of the propagators G- anad G in the external classical field
at €=0

CHOEES) J:AJ— phiE- 3337,

2

Opr = iy [2 A~ G LR ]

3. Calculation of the flrst correction to the asymptotics

To calculate the first correction to the leading approximation
of the asymptotic formula for disc Gin (y,n, ’,) , we have to retain
in the expansion of f[lp’] (see eq. (13))
in coupling constant. The integrals contributing to corrections to
asymptotic formula (4) can be pictured in the form of diagrams.

The Feynman rules in the case N=1 are represented in fig. 1,
GO(P) is the free propagator of the initial theory (6). The diag-
rams depicted in Fig. 2 a-e contribute to the first correction ‘14 .

the term proportional to

Moreover, the diagrams Fl,Fk,Fs arise from the expansion of AS in
(13). The double line in Fig. 2 d-e corresponds to the functions
arigsing from the expansion of det(é}s"‘@ afe’EW'J)and the product
of ﬁFTaen)in (13). The counterterms must also be represented as &
. All the contributions are computed with the help of
the formulas given in 714/ and /15/.

Let us consider the calculation of Fé in detail. We did not
succeed in direct calculation of the integral

§do; df/y L6 (pCz,en]’

geries in

8

|

[/
(8) G(p) ¥ s X

() 3%(%-1) ><
W2 4(d-1) >M
(£) Z?’_ X

Fig. 1. :

(b) Gy P ¥ ————i"

(c)Ye ¥

(a)Fy (x) (a)
sz,Q_Q (o) =-—Q
(c)FS- -e- (f)f-';o'\”e“’“3~9“"+2 ~

Fig. 2.

@) @
That is why we represent F3 in the form F3 F3 F3 , where F3

corresponds to the diagrams in Fig. 2,f. It can be easily shown by
definine on the svhere the free vrovagator GD(;D)of the initial theorv

r(42) 1
Go(P)— J+ d/z (4-p)

d/2-1

(1)

that F is finite for £=0 and can be calculated with another
regularlzation. For example, we may write the integral in the form

1

41 1~ -
dgdy.. =Ry Sa-p) dp..= ' 5"
fdngde!;..=0,ny 1_,2(4 4 P... -Q-d-Qd—ig‘_:g_.g("P) dp...

and then take the limit £=0 . Finally we obtained the following
values of the constants in asymptotic formulas (2) and (4):

o =N/2+3 ; A= 16x° ;
WM+ N-{

Lo-N - M-t
C = N+8 (%) 2% 3 € 3
I %)

N
ep [ 22 ¥l2)- L2 cp - Ml



Here Cg= 0.577216... is the Buler constant, 5(2)—-0 937...
is the derlvatlve of the Riemannian zeta-~function, the factor W ia

W= de Kicac) 23 c~+8)/3,
0

where Ki(‘x) is the modified Bessel function. The expression for
coincides with that obtained in /1,2/ (the only difference is in

the form of writing). Our main result is the value of the coeffi-
cient @y in (4):

2
__ N 10N+36 N +zs/v+1o# 3 _ w8 2
a,=- N *10N+36 N t4dN+104 M 7
1 6 Ce+ 36 &’ c T *
5H+22 g 4 ?3/«/2- 228N -2000 N2+10//+35
g 360 2w+8) T11tI2*13;
__ 4 N%in+36 3+ 0/+8)/3
P fd cx)&(x/z)
oo vy)
__ N+8 4+(/V+8)/3 3 1,:1.‘ y
Iz,‘ ] a_ ;da: x )jd 1
3
60( 11) 12 1+5¢
1 4 f’g"d 5+(V+8)/3 o 4 4
I3= W za7 )™ Kieo Jd'y, d',.

top (42 0ps)+ 2 0 ) [ K e, 3, )4 2 6 pa
Gogh) (argD) O PEANTCORGEZ]

where the factor 9= 0.749... arisesg from the two-loop counterterm
(see in Appendix), the points %, and Zz on the sphere 6”' corres-
pond to the points yi and ?z in the four-dimensional Euclidean spa-
ce, the, 4-vectors ), V¥, v, satisfy the relations Y= Igl=1Val=1,
C%(Vlvz) 3. After simplifications the integrals I, I,,I; may be
computer - calculated numerically. The Table presents the numerical
values of the constants Cal, 4 (see formulas (2) and (4)) for
certain N,

10

Table

The values of the factor C and coefficients di,gi
in the asymptotic formulas (4) and (2)

Isotopic

Number N 1 2 3 4 7 10
C  [1.097 [0.543 [0.249 [ 0.107 | 0.00644 | 0.284+1077 |
a, | 126 | -4 | 7| <92 | <265 -34.4
3, 4.7 | -4.82 | 4,76 | 4.2 | 2.1 1.6

Acknowledgement. The author is indebted to D.V.Shirkov,
A.A.Vladimirov, D.I.Kazakov, 0.V.Tarasov for informative discuseions.

Appendix

To integrate over the rotational variables u{, , We shall
introduce N-4 values Vg :

z .
= Ats _1-» . y
Ug= T3 0 W= oz (5=14,2,,400),

We substltute the following representation of unity into eq. (8):

-4 o(d) d/2-2
(= Sd?\ de o S-d/vl (S'( (Sc/ p! ¢P1(2x+xo)u¢(_;_jm)-

%4 v-1) d/2-4
§(§dxy; Az, )y (tex?) 272 d (d+2 fax 2977
¢; (Ax+,) vi,s ————7———-(:+xz) /2“) dot BLY; A, 20,01
Vi,s ) = Bus - wells /C4+Un) 5 Vs (B)=-ug ;
st=1,2,.. N1,

Here 2 is the scale and Xo 1is the translational parameter , B
is the matrix of the size (d+W)X(d+N). Its components may be ob-
tained by differentiation of the arguments of 8 ~functions with
respect to Xy, A and ¥ .
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The constants in counterterms (7) in our renormalization
scheme are as follows:

=-Nt8 4 —_N+8[(2-d
o, () /2) 1
2W="% (2x)? “p 55 ”(q )26 r(d—z))iig (d/z/zq

' (_,L_z)z—dlz ‘

1) )
g p =y (W) + k3 ) 5

A, . N%26N+108 N
o, (M) = A/+26A/+108
* 3 () P (9 -P)J “wepr zf‘))

@) __4Sw+23) dp d¢
o -
3 36 (2.71’)“5 zkz(qf p-k)2(qu—k)* =

_4 (5/v+zz ) ( 4-€) ['(4+ 26)[(1-2¢) g *
ia[ 7 2¢ r(z-26) F(2-3€) 513(2747) xhd?
0. (u)— N+2 4 1 r d D4 ddDz

VT8 (ax)* 9in

-_-!1_‘;_2 21 4“(;::‘”)2

PP gpp®

ria-e)raeze) 4
(1-26)M(3-26) €’

d;(u)=o0.

Here q\r' and 91 are the momentum subtraction points, qﬁ=ﬂz,
qij“3«/“ /14 factor T is
2
bn (QaaP)
L 4 — ,(7 —j LB 03430 [71.

The constants R and A(E) in (12) are:

12

1_d+N / d- d+4
p=[-Van, d@2-01"" (7 )" radddr-01%

| e
Q=232 /r(%);

A€ =% o404 (d-1)1°

‘Q‘d is the surface of the sphere S A(E) characterizes the
action calculated on the classical solutlon Pe (S[(pc] S E(Pc]—

A€/ g ).

The generalized Dugoll equality is

o h
2n+2y) 1) C+2Y) o thay) = ——F— cos(usy) b LCH2Y)
n=Z¢, (n—Jl)(n+zV+J4) MCh+1) sin M M f"(/vu)

Let us consider the integral along the circumference of the
radius A/-H/Z ( h/ is integer) in order to derive this equality:

S s (E+ ) 4 Nez+2v) dz
%- 4n XX [(E+H) '
Covr 1) S/

We may evaluate it with the help of the theorem of repidues and then
take the limit N=202 and obtain the previous equality. For y= %/2
this equality is given in /14
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KyBoiwmn 10.A, E2-82-915
MonpaBKK K acMMNTOTHUECKON GOopMyne ANA BHCOKUX NOPAAKOB
TEeopuu BO3MYUlEeHUMN

PaspaBoTaHa TEXHMKA BHUUCNEHMA NONPaBok no 1/n K acuMnToTHYEeCKOW (opMyne
ANA D=rO uyneHa PARA TEOPUW BO3MYWEHUI Ha npuMepe cKanapHoli GeaMaccoBOW Mofe-
m ¢(4) C BHyTpeHHe# cummeTpuert O(N), MNonydyena nepeas nonpaexa ana

B -dyHKuymm,

Pa6oTa sunonHeHa B JlaGopaTopuu TeopeTuudecKoM ¢v3ukn OURK,

NpenpuHt O06beMHEHHOrO MHCTUTYTa AAepHuX Wccnegosawmii, fAy6wa 1982

Kubyshin Yu.A. E2'82‘915
Corrections to the Asymptotic Formula for High Orders
of Perturbation Theory

The technique for calculating the corrections in 1/n to the asymptotic
formula of the n-th term of the perturbation expansions is developed using
the example of the scalar massless ¢, model with internal symmetry o).
The first correction of the B-function has been obtained.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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