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It has been established for a variety of quantum-field models 
that the coefficients of the perturbation theory (PT) for the Green 
functions, anomalous dimensions,JB -function (or Gell-Mann-Low func­
tion), etc.,show the asymptotic behaviour of the type (see, for 
example, refs,/1,21): 

JH1)= L. )n c-1)~ <1 > ,_ 
l. I oH. j31'L= Af'L tt.n. C(t+ -81../n+ 0(1/n.'kJ). <2> 
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the functional integral determining the Green function in the n-th 
order of PT by the steepest descent method by analogy with an ordinary 
integral. The classical solution of the equation of motion corres­
ponds to the saddle point. A partial proof of this method for the 
l~ttice theory is given in /JI. If we suppose thatj9 -function is 
analytic in coupling constant 1 in the complex plane cut along the 
negative real axis (as it takes place in the case of anharmonic os­
cillator/4/), we may write the dispersion relation 

0 /, , I 

~ (a)=__!_. J aiM, .f('J) da1, (J) 
.r 4 ~~t-oo 'J'-lj 1 

where disc j9(-1)= .JU-t;+i.O)-j(-'j-iO) and }C-9-±io) is the analytic 
continuation of the functional integral, determining the Green func­
tion, from the positive semiaxis to the negative one through the 
upper or lower half-plane. The discJBC-J) can be also evaluated by 
the calculation of the functional integral by the steepest descent 
method /5 ,G/, If the asymptotic formula for discp f:-g) at tj~+O 

is of the form -A 1 <J -ot a. (4) 
d.it,c_p(-J)=-iBe 1 (J.+g / t-O<t/JJ, 
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we can substitute it in (J) and obtain (2) with 

B D O((ot-i) c = -_, -o =a._.+ . 
2%A"" ' t ... 2 (5) 

Up to now only the leading asymptotic term (:1.. e., the numbers C, A, d 
has been calculated in quantum field the9ry. But for example, in the 
case of the ~C~) model the comparison of the asymptotic coefficients 
(:i..e.,the coefficients calculated by eq. (2) in the leading approxi­
mation) forn=2,),4,5 with the exact ones shows that the asymptotics 
does not set on in the fifth order in f 111. The analysis of anharmo­
nic oscillator enables one to make a conclusion that the situation 
improves considerably if the corrections -81 /n and 12 /n 2 

in (2), 
which have been calculated in /S/ and /9/, are taken into account. 
That is why the calculation of the corrections in the realistic field 
models is of some interest. The values of -8~,12, ... may be used to app­
rox~mately restore the function JBC1) from several exact coefficients 
and the asymptotic formula (see ret./101). 

The main purpose of this work is to give an account of the tech­
nique of calculation of the coefficients cti in formula (4) and to 
calculate a.:f for massless scalar model 'Pc~J • The feature differing 
this model from the anharmonic oscillator is the presence of ultra­
violet divergencies and the necessity of renormalizations. 

1. General formulas and method of regularization 

Pollowing/1 •2/ we shall examine the scalar model with action 

5 4 N 2 ~· N 2 2 I 
Sr:I('J= dx[-z£(a)llfi) + -~ (f! tpi) J + S [co; a.] 

i=1 "} 1.=1 T d 

(6) 

, 
in the four-dimensional Euclidean space. Here S C!p; 1] contains the 
counterterms which provide for subtraction of the ultraviolet diver­
gencies, 1 is the renormalized coupling constant, .f is the para­
meter of renormalization 

$'rrp; 91: Jdx[:! (tpr/ (r/ «7_(_t) + c/ cl3 (.fJ+ ... )+ 

~ ('J~'Pi/('l"c,J.rJ+ ... )+ fcpJc1d.tCfJ+ ... )] · 
(7) 

By substituting tp(XJ-+VCr.J/fi it can be shown that for amallf 
the saddle point solution is determined py the part of the action 
without counterterms. Por the JB -function defined in a standard way 
1111 the discontinuity on the cut discpC-g.J (9->0) is determined 
only by the disc GCit)(p.l~t-g.J if the terms O(f~) in (4) are neglected. 
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G(~) is the four-point Green function including weak-connected and 
disconnected diagrams. It is defined by the functional integral as 

C~) p; Pz ~ " 
G (.r-;;}., ... , /.A~ ; ~) czYrJ a(~ p,J Ti1 ... i,. = 

I. J'~ n.-1 "1 

~ 4 ,4 4 (II) 

= JJln J~ (t£/m.lJm J,D/lf~< G.;_1 •.. i4 (t/1,···, y~,;1); (8) 

(4J (4J f " -SrtpJ 
Gi~ ... i4 C1JH···,"t~t;1)= GiKCyl<;a->= -J. 5n!O'ficx;nlfi/':f~<Je ; 

0 X l<=l 

Jo = s 0 1> !pi (:X:) ea'f [ -! 5 d:c ( a)l 'fi) 2 J . 
Here Ti

1
.,, .;_

4 
stands for the 0 (II) rotation-group tensor: 

T: · - .1 ( s. · 8. · · + 8 · · d' · · + G · · 81 · ) t~ ... 1.4- 3 tt "z "3 t~, -tL t3 tz "4 "'1"4 >~z t3 • 

To regularize the theory we shall operate in the space of di­
mension d=4-:2.E instead of the four-dimensional space and replace 
the constant CJ· in (6) by the functlOn ~E(::x:;g-J which is suffi­
ciently smooth in X , vanishes a~ l:r.l~ oo , is regular in E. and 

It ntu::ayo +he. nrd n+ 0.: fJ ~: n Rnrl RAti Rf'i A~ thP. ~Ondi ti OnF2 
d • q 

~£(x;1>1£=o=~ ~E(x;~)/9-=o=O. (9) 

In virtue of the local character of counterterms, the results 
of the calculatione in PT with such a regularLzation after the tran­
Sltion to the limit £~0 will not be different from the results 
obtained by any other method (for example, by the dimensional regu­
larization), Let us consider for example the 4-point Green function 
in the one-loop approximatLon for Nm1 

(4) s d 4 { 5 J d 
G (1f~<i1)= J:r1rCx;1)n.~1 t1 0 C1fn-x)+z dx1 dx~· 

2 4 
·~£(xi;9') ~E(xi/.;1) {r] ~0 (~n.-xt>n ll 0 (}fm-xA-)· 

h.-1 m=3 

• c.6!c:x:c:x:2 )+ scxc::r~>jc<2~H+ permutations of v~~.J + ••• 

where fX. 2 CfJ is the factor from (7), ~ 0 (:x:) is the free propagator. 
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After the subtraction of divergencies, the integrand in brackets is 
finite, and we may put E = 0 and our result will not differ from 
the one obtained with ~£(jC;~)=1:const, Let us note that with such 
a regularization the term with the derivative of the field in (7) 
must be rewritten as follows: 

s rJd:r [all ( 1E (x; 1') 'f'i(x))] 2Cz (r). 

We shall use the arbitrariness in the definition of the function 

t£~;~ to choose it as 
4-J 

~£(x;t)=t(/:_-r:~.) . (10) 

Then, it can easily be verified that the function 

- · ) dtz-! 
( tn ) • (x) = U · -./3J( rl/ 2 -!) ( ~ . 
Tt t " r ~ 't !+ x'- ' 

(11) 

z 
where u.c. stands for the arbitrary isotopic vector with ui =! • is 
the solution for the saddle-point equation obtained by varying the 
regularized action with negative coupling constant (-'j}(J>Dl The 
action calculated on the solution (11) is finite and at a-+4 (11) 

/1/ 
turns out to oe tne so~ut~on usea oy ~~patov· · , 

The conventional version of dimensional regularization with cons­
tant 9'£ (X;~): 1, was used to calculate the leading term in the asym­
ptotic formula in/121; in this case, however, the exact solutions for 
the equation of motion are not known. Moreover, the initial theory is 
invariant with respect to the 0(5) group which rosy be realized as a 
linear transformation group by making the stereographic projection 
onto the sphere s~ in five-dimensional Euclidean apace. The tran­
sition to the space of dimension d and the co-ordinated introduction 
of the function (10) make the theory OCcJ·H) invariant thereby consi­
derably simplifying the calculations. With other regularization 
methods irrelevant to the dimensional regularization the equation of 
motion has the exact solution (11) with d •4, but the 0(5) inva­
riance disappears. 

When expanding the action around lf'c (X) the spectrum of the 
operator of quadratic fluctuations has the zero eigenvalues aeso­
ciated with rotational invariance in the theory and the eigenvalues 
proportional to £ and associated with translational and scale in­
variance since the latter ls violated by the regularization. To cor­
rectly calculate the•functional integral we shall use the Paddeev-
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Popov method. First of all we shall pass to the space of dimension 
d= 4-2£. , substitute in (8) the representation of the unity(eee 

.A.ppendi.x) and then replace the coupling constant f by the function 

Cfr.Cx;1;Xo,A)= ~4-J C/E (X~Xo ;~)' 
where 1eCx;g-)ia determined by eq. (10). 

We shall carry out the calculations in the scheme of momentum 
subtractions at the symmetrical point ~ 2 ; the Green functions will 
be considered in the regime of symmetrical aeymptotice with respect 
to momentum Pn. ' (pn. + p,.,t)~=l,p: /3 . At the subtraction pointy'-= 

Cpn.+p171 )!t (n,tn,k=t,2,3,~). The constants in counterterms (7) are 
given in Appendix. 

2. Expansion around saddle point solution 

sd To facilitate the calculations, we shall operate on the sphere 
in the d+i -dimensional space with coordinates 11/ 

d+! = ~ _ xz_J. ~ z_ 1 
lJI 2 , 1d+J.- - 2 - , w 'ltl(-l , jt•!,Z, ... ,a, 

!+X X +! ot=1 

( ) 
d/Z-1 

l{'i(X) = .!;X% . 1p"('l)' 

where ~(l) is the function defined on the sphere. 
Fulfilling the expansion around the classical solution in a 

standard way/1 • 21, we obtain 

Cit) - rJ+It+N -A(E)/'j 00 3-3d J 
~Gin (yn;-t)=~1 2 e SaA il Sa x0 • 

0 

S CN-J.) 11-J. ,f. O 
· d 'lr(1.+U11 ) l'· . [-]_l[6]1 ; 

tJ. ... t" ~9 /9=0 

4 2 d/:l-1 

pi1···i4 [-yrJ=,!]J. L + (1fn.; Xo ya J (uin + ~e Yin (aen)) · 

( 12) 

(13) 

. eM O;tr +'fi a;r[1fJ) &rf (- .1 S + q Si~'- + gS; + ... ) ; 

AS=- Sd.nc~ [V! ~ (i-l)~ifi("~JffciJ+ t Cy[cl>/J. 
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The terms tJ,A(E), 'lr are presented in Appendix, U.,: is the iso­
topic vector in (11), the argument aeh of the function V' corres­
ponds to the point C"jfi:X0 )/'). in the d -dimensional Eu;(idean space, 
dStd is the volume of integration over the sphere S • The terms 
s;,2 ' s ~ are the coefficients before q and 1 in the expansion 
of counterterms, aJ'6'[1f'"J arises from the expansion of B1 cr <see 
Appendix) around the clae~ical eolution(11fc)t=U.£.lfc defined on the 
sphere cvc=V3d(d/1.-f)l(-l). The generating functional lcel is equal 
to 

f s I' Cd+N) Z [ B] = J 
0 

Q 't>'tf"i o ( S d.n.. c1 ¥C:lJ ~ C'lJ} 

. eoep [- $:t + 5 dnc~ e~ (lJ 'll'i (!) +s: J . 
(14) 

Here S~ is the part of counterterms independent of 1' 
~s "2. A2 S:t'z dJLc~ lJ'i('lJ[(8iJ-uiuj)(-~ )+uiu} (-l.- c/(J/2.-1))Jf} ('lJ (15) 

is the part of the initial action square in quantum fluctuations~ 
The symbol ~(~J stands for the eigenfunctions corresponding to the 
zero Ctz7

) and proportional to E.(~~~G(=l, ... ,c/t!J eigenvalues of the 
operator of quadratic fluctuations (see ref.I1, 21),L2 is the angu-

'·. J.ar par-.; OI -.;ne u-r:.. -aJ.meneJ.onaJ. .uapJ.ace opera-..or. 
To calculate the leading asymptotice (4) by the steepest descent 

method we have to limit ourselves to the term quadratic in fluctua­
tions in the expansion of the action around the saddle eolution(thie 
term is independent of ~)(see ref./1/).To obtain the corrections 
to the leading aeymptotice, we have to expand ~[1yJ in 1 , 1. e., 

carry out perturbation calculations around the classical solution. 
Used as a propagator is criJ(pC!,l1

)) ' the function of propagation of 
the fiel1 1JT in the external field lp'c , which depen~e on p(!, ~ 1)= 
~ Zae lcl , the distance between the pointe ~ and 1: on the sphere, 

which is invariant with respect to O(d+t) transformations. The pro­
pagator has the longitudinal and transverse, wit~ respect to the 
isotopic vector U.;, (see eq. (11)), components G and GT satis­
fying the equations determined by Sz : 

A2 L 
(-Ll'- dCci!Z-!)] G (p(l: "i

11
))= ~ (i~ l 11

)-L. ~;('I')~'; ('~ 11); 
o( (16) 

A2 T T 
-L~, G(p(l~l 11))= a(l~:l11)-~ (% 1)~r(z 11). 
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These equations may be solved either by the Fock method of fifth 
parameter (see ret/ 13/) or by presenting G.L and G T to be a series 
in spherical functions of the d+i -dimensional space (seeref./1/} 
and using the addition theorem for the Gegenbauer polynomials and 
the generalized Dugoll equality (see in Appendix). Eventually we get 

d! ~j d~ 
L r( -rJ r:: :1e c-r __ d+~ c r 

Gcp>= J ..... ctJH>h c ~.sr;e a! c-p) Ar2-dh> t Cp>], 

r r(d-iJ d c~;.t :t. 
G (p)=- . - ~d+I)/2 [ dS Cs c-p)Js=o + d-T J 

where C~ is the Gegenbauer function (seeret.f14/},and C£=-(d-1)/~+ 
VCd-l)21t,+dCdl2-i)'::i-4E./5+0(E 2). We shall present also the expres­
sions of the propagators GL and GT in the external classical field 
at E =0 : 

GLCpJ=b[ J.p':..t _L_- 3pltr t:£._ 3+1p -.1..pJ. 
BX 2 1-p z 2 s ' 

({(p) = -L..z [ i+p _j_ - fAt ~- fy6 J 
R9r 2. 1- P 2 • 

3. Calculation of the first correction to the asymptotics 

To calculate the first correction to the leading approximation 
of the asymptotic formula for disc Gi~II)(1J11 ;-f) , we have to retain 
the term proportional to 1 in the expansion of ~[ljTJ (see eq. ( 13)) 
in coupling constant. The integrals contributing to corrections to 
asymptotic formula (4) can be pictured in the form of diagrams. 

The Feynman rules in the case N•1 are represented in fig. 1, 
Go(P) is the free propagator of the initial theory (6). The diag­
rams depicted in Fig. 2 a-e contribute to the first correction at • 
Moreover, the diagrams Ft,F2 ,F3 arise from the expansion of liS in 
(13). The double line in Fig. 2 d-e corresponds to the functions 
arising from the expansion of det (o,p6+fi a.f~DyJ) and thE: product 
of 1r(ae~)in (13). The counterterms must also be represented as a 
series in ~ • All the contributions are computed with the help of 
the formulas given in 114/ and /15/. 

Let us consider the calculation of F3 in detail. We did not 
succeed in direct calculation of the integral 

SdD-J cJ.n!d [ G Cp (l, l 1
))] 

3
• 
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(a) G-cp> 'l' 
~II (d) 3f(~-1) X 

(b) G0 Cp> l' l." (e)llf(f-4) ~ 
(c) 1f'c !~ (f) 1 X 

Fig. 1. IJ 

(a)f! co (d) 

(b)Fi~ (e) 0 
'"""'-

(c) f3 ~e~ (f)~w-e'""-3~--+2 -B ... 
Fig. 2. 

That is why we represent f3 
w (2) w 

in the form F3=F 3+F 3 , where F3 
corresponds to the diagrams in Fig. 2,f. It can be easily shown by 
definin~ on the sohere the free orooa~ator Gn(P)of the initial theorv .. 

i r(~J 
G CpJ = Cl.!z 

0 2 z yr (l.-p) d/2-1 

(f) 
that F3 .i.e fim.te for £::.0 and can be calculated with another 
regularization. For example, we may write the integral in the form 

S 
1 _ 5i Z <f2-1 i-« dlz-1 

dJ2.J dlrJ ... - JLJ.lLJ-1 Ci-p ) dp •.. =_g_ _Q.L lim 5 (1-p2) dp 
-1 d u-~«-"0-l. .. , 

and then take the limit £=0 • Finally we obtained the following 
values of the constants in asymptotic formulas (2) and (4): 

Cl= N/2+3 

( = N+8 1(5/:z) 
9 rC";4J 

·A= Hr~ ; 
' /j0-11 211+1 _11-1 

2 ,.- 3 6 Jr 6 W· 

fiX(> [ N+2 >-'(2.)- N+2 C _ 11+14 J 
!/(2. 7 6 E ~ 
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Here CE= 0.577216 ••• is the Euler constant, '71C2)=-0.937 • •• 
is the derivative of the Riemannian zeta-function, the factor W is 

VI= 5-dx K 4 Cx) ;;r 3+ CN+BJ/3 
1 ' 0 

where Ki (X) is the modified Bessel function. The expression for C 
coincides with that obtained in 11 • 2/ (the only difference is in 
the form of writing). Our main result is the value of the coeffi­
cient a.! in (4): 

a = _ N 'J..,. l.ON+ 36 C + 3N z.,. 2,8N+~Oit /n 3 _ #-r8 :; z + 
i 6 E 36 4 6 36 J[ 

z 
5N+22 ~ + 1-3/J - 22&11- 2000 

9 3~0 

2 
"'+1011+36 
z C#+8J + I 1 +I .z +I 3 ; 

.~z oo 

I - l. N +1011+3& Sd 3+(11-rS)/3 K4 /J. 
1-- W 6 X X 1 (;x;)-c.n (X/2) ; 

0 

I =-!:f.:!j 3 ()Dsd x4+(N+8)/3113 ) fdlj eiX(Y"f), 
~ 9 <JC!W 0 X ll.j (X "J J. +~jJl. 

r "lz+f~ . - £ .... in({+ 1J%J]; 
L 60(t+~ZJ !Z i+ 'j"' 

oD S-rCN+8)/3 Z s 4 J4 
I = i ~ S dx x K1 ex) d '1

1 
tjz · 3 w zsr o 

. f4/J (ix CIJ11f1J+ i:r(llz 1J~,)) [ GLCpC!~,~))+ N_it GrCpCl
1
,'l.z))], 

u. + "1:) u + 1f;) 

where the factor gr: 0.749 ••• arises from the two-loop counterterm 
(see in Appendix), the points ~i and ~1. on the sphere $lj corres­
pond to the points Y.t and "it in the four-dimensional Euclidean spa­
ce, th~ 4-vectors Y, Y.fl ..;,_ satisfy the relations 1>'1= /oJ1t= /ll,l=i, 
CDi ( Y.t llz)=-j. After simplifications the integrals I 1,I2

,I
3 

may be 
computer - calculated numerically. The Table presents the numerical 
values of the constants C,a1 , -81 (see formulas (2) and (4)) for 
certain N. 
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Table 

The values of the factor C and coeff~ts ctt,R~ 
in the asymptotic formulas (4) and (2) 

Isotopic 
Number N 1 2 3 4 7 10 I 

c 1.097 0.543 0.249 0.107 0.00644 0.284•10-3~ 

a.~. -12.6 -14.8 -17.1 -19.2 -26.5 -34.4 

It -4.7 -4.b2 -4.76 -4.2 -2.1 1.6 

Acknowledgement. The author is indebted to D.V.Shirkov, 
A.A.Vladimirov, D.I.Kazakov, O.V.Tarasov for informative discussions • 

Appendix 

To integrate over the rotational variables 
introduce N -1 values 'Zrs : 

Ui, , we shall 

u _ 21rs u. _ 1-o.z 
s- i~'!-.z. ' N- .f+~z C s = i, z, ... , tJ-1 J . 

We substitute the following representation of unity into eq. (8): 
oO 00 oO d/ 
S r J S ,_~, (lcJJ(Sd 2-.z .zx" 

i= dil J d x0 d 1r o X ~ 1.fi0X+X0 )Ul t JU.-2)· 
-oo -oo -ao (!+X } 

(s xz-1. ) 8oi-J.) ( '· S 'I dJ:z-J. 8 d.rcpiO:r+x0 )ui d/2.,.2 ...L- cJx 11 • 
(H:rZJ d-r2 

\Pi (AX+Xo) vis 1 .z Jtz+t) dd Beep; ll,xo, 1r]; 
' (HX) 

v~,s (7r) = Gu- UtUs/C!+Ut~); Vfl,s (?r) =-Us 

s,t=i,2 1 ... ,11-!. 

Here ~ is the scale and Xo is the translational parameter , 8 
is the matrix of the size Cd+fl)x(,J+IJ). Its components may be ob­
tained by differentiation of the arguments of 3 -functions with 
respect to X0, ~ and )- • 
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The constants in counterterms (7) in our renormalization 
scheme are as follows: 

C( ( )=- N+-8 _t_ S ct<
1
p =- 11+-8 rCZ-d/.2) 1 r2(d/.:J.-1) 

~:~ 6 (zx)d p%(q~-P)2 6 rcd-2) 1.6 :~rdlfl • 

. (tz )2-d/.2; 

OJ (2.) 
eX 3 (JJ = ri. 3 C,J +- rl.3 fJJ ; 

z J" 2 z .2 
O(m( )= 11+2611+108[_1_ S p )=N+-:Z611+i08(« (uJ)· 

3 lJ4 36' (tt)(J p:t(9f4-p)2. (N+I)R- Z;r ' 

(:l) -- 4C5N+-2Z) I 5 Jrip d'k ,.. 
0(3 f.JJ- 36 (Z.Jr p:a p2 k"(~1p-p-k)Z(714 -kJ! 

3 ft __ Lf(5N+22) { [ 1 r (~-E) f(i+:l£)r(h2E)l_ (!L) + 5']; 
- 36 21 zx4-.?.E rcz-u> r(.?.-3£) c:~ 9ft :Jr 4 

• _ld Jd r _ f ul- N+Z ~ 1 ~- 1 ( ~ ll• a D~ = 
~ '.1, !8 (U)Zd ~~ J pt p; (11)~-p!-p~)Z 

_ N+z 1 (.!L )2
£ r 3c1.- EJ rCi+ 20 ., 

- TB 2 9 
.?r

4
-%£ q~ (1-2£) r(3-U) E 

di (j4J = 0. 

z :t 
Here CJ.r and q1J4 are the momentum subtraction points, q.P=JI , 
~:J = 3,14 ~If , factor 1' is 

4 ( z 
T= 1,. J d P 2 ..&! 95/cPJ = o. TLt9... en . 

3r p"C?Jf-p) p" 
The constants 'lJ and A(£) in (12) are: 
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. d+Nca-z )d+! z 
1J=[-V3Qd d(d/z-1)] 2 fd+1. [3<icd/2-1)J; 

d+i 
SLd = 29r T /r(d;l); 

A(E) = t .n..d [ ~ (~ -1)]2.. 

d JL.d ia the surface of the sphere S , A (E) characterizes the 

action calculated on the classical solution cpc (SCtpc]- $ 1[Cfc]= 
AC£J/rt). 

The generalized Dugoll equality is 

f c.zn.+.zvJHJh. r(n+.t~J ChJ(n.+>~Jo-=-~~Cf+JIJ?rrci4+-2'1J. 
n=o (11.-jl) (rt+ ZY+.JI) r(h+!) -ut!9t'jl r(JHJ 

Let us consider the integral along the circumference of the 
radius N+l/Z ( tJ is integer) in order to derive this equality: 

s 
Cu"+ l) 

~ ('l+iJ)?r 

'l-)4 
.f 
~:J["l 

rc~+:zvJ rl1. 
rc~+-:tJ 

We may evaluate lt with the help of the theorem of residues and then 
take the Lmit N-'loo and obtain the previous equality. For Y=l/:1. 
this equality is given in 1141. 
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Ky6b1WHH IO.A. 
nonpaBKH K aCHMnTOTH4eCKOH $OpMyne AnA BbiCOKHX nOPAAKOB 
TeOpHH B03M~eHHH 

E2-82-915 

Pa3pa6oTaHa TeXHHKa Bbi4HcneHHA nonpaaoK no 1/n K aCHMnTOTH4eCKOH $OpMyne 
AnA n-ro 4neHa PAAa TeOpHH B03My~eHHH Ha npHMepe CKanApHOH 6e3MaCCOBOH MOAe­
nl1 ¢(\) C BHyTpeHHeH CHMMeTpl1eH O(N), nony4eHa nepBaA nonpaBKa AnA 

{3 -$yHKijl111, 

Pa6oTa BblnonHeHa 8 na6opaTOPI1H TeopeTH4eCKOH $11311KH O~R~. 

npenpi1HT 06oeAI1HeHHOrO HHCTHTyTa AAePHbiX 11CCneAoaaHI1H. Ay6Ha 1982 

Kubyshin Yu.A. 
Corrections to the Asymptotic Formula for High Orders 
of Perturbation Theory 

E2-82-915 

The technique for calculating the corrections in 1/n to the asymptotic 
formula of the n-th term of the perturbation expansions is developed using 
the example of the scalar massless ¢f4) model with internal symmetry O(N). 
The first correction of the {3-function has been obtained. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, J I NR. 
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