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I . INTRODUCTION 

The prevailing philosophy of grand unification is based on 
the fact that symmetry will increase at high energies. This 
finds its verification in gauge sector where the gauge couplings 
join together in the ultraviolet region. However, for Yukawa 
and scalar quartic couplings things are different. Here, as a 
rule, symmetry tends to in~rease in the infrared region. This 
fact was· known earlier /l,2/ , however, with the appearance of 
the idea of grand unification and hopes to construct a unified 
theory of all types of interactions without divergences it at
tracts now new attention/3/. 

The aim of the present paper is to demonstrate the behaviour 
of Yukawa and scalar quartic couplings in gauge theories and to 
show that global symmetry has a tendency to increase in the 
infrared region. This is not an occasional play of numbers and 
is a characteristic feature of the given type of interaction. 
Finally webriefly discuss some consequences on this fact for the 
model building of particle interactions. 
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energy region under some group G being a product of local and 
global groups 

G = G gauge~ILGglobal 

We shall be interested in a global symmetry group connecting 
Yukawa and/or scalar quartic couplings. It may be, e.g., a hori
zontal group of generations or supersymmetry. 

2. YUKAWA COUPLINGS. HORIZONTAL SYMMETRY 

Let us consider the renormalization group equations describing 
the evolution of Yukawa couplings in a theory with the horizon
tal symmetry. To the one loop they are 

d v. 2 2 
----.!... • Y. [A. Y~+ ~ B .. Y. -Dg] 
d L 1 1 1 i .;, i 1J 1 

~--Cg3, 
dL Q ·L: .. :: . .l-i' 

;,.-,:·· i: 
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where Yi and g are Yukawa and gauge couplings, respectively, 
and L =lnQ 2jl.l2. We limit ourselves only to one gauge coupling 
essential in a given energy region. The horizontal group mani
fests itself in the equality of different Yukawa couplings. Nu
merical values of coefficients A i , B .. , C , and D are un
essential here. What is important is tHat A , B , and D are 
positive (that is always so for Yukawa interactions) and that 
Ai >Bki· The last inequality is also true as far as the con
tribution of a given charge to self-renormalization is larger 
than that to the renormalization of another charge. 

To solve eqs. (1), it is useful to introduce new variables 
u i "'Y? I g 2 . Equations for ui are 

d ui 
'"' 2 u. [A. u . + I. B .. u. - (D-C)] g 2 

1 I I j " j I J J -dL 

or (2) 

u. 
I 

-u. [A. u. + I. B .. u.- (D-C)]. 
1 I I j " j I J J 

d 
where · ... cg2 -:i:2 . If D > C , just this case is of interest /3,4/, 

dg 
eqs. (2) have a set of fixed puints of the type u.-const>O or 

" n . ,. 1 
Y.~ .. const· g~. 10 r1na cnem, one nas co equal cne r.n.s. or 
eqs. (2) to zero. We get the following hierarchy of fixed 
points /5/: 

1: u i .. 0, V i .. 1,2, ... , N , 

2: u1 Ia· 0, uif. I .. 0' 

3: ul,2,; 0' ui(.l,2-o. 

. 
N-l:ui(.N(.O, UN=O, 

N: ui f: 0, Vi. 

In order to establish the type of a fixed point, that is, to de
termine whether it is stable or unstable or·a saddle-point, we 
use a standard method. Despite the nonlinearity of eqs. (2) they 
can be linearized in a vicinity of a fixed point. For this pur
pose we introduce infinitesimal deviations from the fixed point 
u ... ii. + l)u. , where ii. is a fixed point. Then we have the li-

t 1 1 1 • • 
near nomogeneous system of eqs. for small dev1at1ons 
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o ui '"' S ij ( u) 8 u i , (3) 

where matrix S depends on the type of s fixed point. The crite
rion of infrared (IR) stability now is the negative definiteness 
of solutions to the characteristic equation 

Det(S- AE) = 0, 

where E is a unit matrix. 

IR stability: Ai < 0. 

Note that the sign of coefficient C is unessential here. 
Applying this criterion to the analysis of eqs. (2), we ob

tain the following results: 
i) The fixed point of I type, u. = 0, v. is absolutely IR 

I ,1 

unstable and absolutely UV stable. In th1s case S = (D-C)E and 
all A;=D-C>O. 

ii) The fixed point of N-th type, u i ,f 0, Vi is absolutely 
IR stable and absolutely UV unstable if Dets<NI >o , where s(N) 
is the matrix 

(
AI. B·· I 

•• 1J 
R .• 

(N) s = 

\ 'J AN I 
This condition is practically satisfied if A; > Bki and if fixed 
points of all types exist and iii > 0. 

iii) All other fixed points are saddle-points. They are stab
le along some directions in phase space and unstable along the 
others. The number of stable directions is equal to the number 
of negative A; and increases with the number of the type of a 
fixed point in our classification. 

We illustrate the above analysis by an example of the real 
interaction/51. Consider the Yukawa type interaction of quarks 
with Higgs scalars in a standard model with SU c (3) x SU L (2) x Uy(l) 
gauge symmetry. Ignoring weak and electromagnetic interactions 
and quark flavour mixing, we get the following renormalization 
group equations 

d Y. ,. 2 2 
---!.... • Y. [-iLY. + I. 3Y. - 8g2], 

d L 1 2 1 i .j i I 

...!!JL "'-(11- ..?..n)g3, 
dL 3 

or 
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u. = -u. [.lLu. + I 3u. - (..&..n -·3)], 
I I 2 1 j .;.. j J 3 

(4) 

where n is the number of flavours in a given energy region. 
We present the solutions of eqs. (4) graphically in phase 

diagrams. Arrows show the direction of decreasing L =lnQ2/ IL2· 
2. I. n = const = 6 • Eqs. (4) become 

. 9 . 
Ui = -Uj[-Uj + . ~. 3U j -1], 1 .. },2, •.. ,6 

2 J 'f' I 

and have fixed points of all types. 
2.1.1. u 1 ,;.o, ui,;. 1 =0; u=-u[9/2u-1]. 

The solution is shown in fig. I. The fixed point u ... 2/9 is IR 
stable if u j.;.I = 0 and is a saddle-point in the whole phase 
space. 

2.1.2. u 1, 2 =IO. ui,;.1,2 = 0; ~ 1 = -ud9/2ul +3u 2 -1] ., 

u 2= -u 2[3u 1 + 9/2u 2 -1]. 

The solution is shown in fig. 2. The point u 1 = u 2 = 2/15 is 
IR stable, points u1 .. o, u 2 =2/9 and u 1 =2/9, u 2=0 are saddle
points and the point u1 =Uz = 0 is IR unstable. There exist solu
tions connecting different fixed points. They are boundary solu
tions between different sectors. of phase space. The singular 
- ~ , ..... ~ -
~U.LU.~.LV&.J. 

Tn _ ..._ _, '1 
ul-u2 Lg L~ g~auL~o 

u 

21g L-----:::~ 

4 

0 gZ 
Fig. I 

~:·1. 3 . u 1,2,37' 0, uj,;.1,2,3=0; 
u 1 = -u 1 [ 9/2 u 1 + 3 u 2 + 3 u 3 - 1]. 

u 2 = - u2 [ 3 u 1 + 9/2 u 2 + 3 u 3 - 1] ., 

U 3 = - u3 [ 3 U 1 + 3 Uz + 9/2 U 3-1]. 

u 

2/g u 
2 

The solution is shown in fig. 3. Singular solutions connecting 
fixed points form something like an umbrella standing in the 
corner. IR stable point is u 1=u 2 =u 3 =2/21,other points are 
saddle-points and u i = 0 is absolutely IR stable. There is a 
hierarhy of stability. Absolutely unstable is the point u 1 , 2 , 3=0, 
then u 1, 2 • 0 , u 

3 
.,;, 0; u .I = 0, u 3 =I 0 and finally u 1 2 .;,o (and 

all permutations of ind1ces). T~'e surface of the "umbrefla" is 
also IR stable and UV unstable.All solutions inside the "umbrella" 
and on its surface are asymptotically free in the UV region and 
outside the "umbrella" exhibit a zero-charge behaviour. On the 
surface of the "umbrella" solutions tend to the most symmetric 
configurations in the IR region. 

u1 

u 

u3 

g2 
Fig. 3 Fig. 4 

Hence in the IR regime the most symmetric configuration in 
the given phase space is realized. Appearance of the new degree 
of freedom transforms the stable point into the saddle-point and 
a new stable point arises with a higher symmetry. 

2. 2. n· .. const=3. Here we have 

u. = -u. [9/2u. + I 3u. + 1] 
I I I j I= j J 

and there are no fixed points but ui = O.However, symmetric solu
tions ui =Ui and u 1 = u 2 =u 3 .do exist and are IR stable. 

2. 2. I • u 1 f. 0, u 2 3 = 0 ; u .. -u [ 9/2 u + 1]. 
The solution is shown in fig. 4. 

2. 2. 2. u 1 2 =1 0, u 3 = 0; iJ. 1 = -u 1 [ 9/2 u 1 + 3 u 1 + 11 ·· 
' u 2 = -u 2 [ 3 u 1 + 9/2 u 2 + 1]. 

The solution is shown in fig. 5. 
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Hence, even in the absence of fixed points (the surface of 
the "umbrella" reduces to the point) solutions are driven to the 
most symmetric configuration in the IR regime. In the UV regime 
we always have a zero-charge behaviour. 

The horizontal symmetry- quark flavour,ermutation symmetry 
in this case - increases at low energies /5 . 

.. u3 
....... 55 

u 

0 
u 

Fig. 5 Fig. 6 

3. YUKAWA COUPLINGS. SUPERSYMMETRY 

Eqs. (I) describing the evolution of Yukawa couplings are 
not the general ones. In some cases, e.g., for the set of coupl
ings and fields, where the supersymmetry can be realized, there 
are possible also nondiagonal terms of the type Y. y ( • We shall 
not give the general analysis of this situation. The characteris
tic feature of IR and UV behaviour are the same. Instead, we 
consider an example where supersymmetry is realized as an IR 
fixed point of renormalization group equations. 

3.1. Let Y i .. ui g, where g is the gauge and Yi are Yukawa 
couplings. One loop equations for Ui are 

• [ 2 2 2 2 u 1 = -u 1 2u 1 + u 2 + u 3 - 3] + u 2u 2 , 

• 2 2 2 2 
u2= -u 2[ui + 2u 2 + u 3 - 3] + ui u 3 , 

(5) 
. 1 2 1 2 2 
U3 =- u3(-ui +-U 2 +2u 3 -3]. 

2 2 

Supersymmetry is realized here as a fixed point SS: u 1 ~u 2 =1 and 
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an extended supersymmetry as a fixed point ESS: Ut=u 2cu 3 =1.The 
phase diagram for eqs. (5) is shown in fig. 6. There are also 
some fixed points of other types. The fixed 1 ine ( u I = u 2 = 1 , 
u 3 - arbitrary) is IR stable and on the line and in the whole 
phase subspace u 1 2 3 ~ 0 absolutely IR stable is the point 
u 

1
"' u

2 
.,. u = 1. Hence super symmetry is realized as an IR stable 

l1ne and t~e extended supersymmetry as an absolutely IR stable 
fixed point. 

The situation considered in this example is general. Super
symmetry as well as the extended supersymmetry are always IR 
stable. Consider supersymmetric theory which contains one arbit
rary Yukawa coupling (or several couplings equal to each other). 
When it is equal to the gauge coupling we get the extended super
symmetry. The one-loop equation is 

dY 
dL 

3 2 
=aY -bYg a> 0. 

2 2 
Then for u = Y /g we have 

ti b-e 
-2au[u --]. a 

h ,. 
Wlthout any 11m1tat1on we put .::__::..l.We have two t1xed po1nts 

a 
iii~ 0 and u2 • l.The solution is shown in fig. 7. The property 
of IR stability of the fixed point ii 2 '"'1 corresponding to the 

u 

"'--1 

01~. 
Fig. 7 

4. SCALAR COUPLINGS 

gZ 

extended supersymmetry follows from 
the positivity of coefficient a , 
that is a characteristic feature of 
the Yukawa coupling. Hence the extend
ed supersymmetry relative to the 
ordinary supersymmetry is always IR 
stable and hence UV unstable. 

The one-loop equations for Yukawa couplings considered above 
are independent of the scalar one. As for the scalar couplings 
their behaviour depends strongly on the choice for Yukawa coup
lings. The general analysis of scalar interactions is too compli
cated. However, when some kind of symmetry like supersymmetry 
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connecting the scalar coupling with gauge or Yukawa couplings 
is realized, equations for scalar charges have common features 
which we shall discuss now. 

Let us consider an example of one scalar field noninteracting 
directly with the gauge field. Then the equation of evolution 
in one-loop order is 

dh --dL 

2 2 4 
= ah + /3h ~ Y. - y~ Y., 

1 i 1 
(6) 

where a, 13, y > 0 that is a characteristic feature of the scalar 
interaction. Solving this equation together with eq. (I) and 
substituting h =vg2 we get the following equation for v: 

Ji = -{av 2 + 13v~u. - y~u 2 + Cv]. 
i 1 i i 

(7) 

For appropriate values of coefficients and the choice of u i the 
fixed points v:l: .. const can exist so that v+ > v_, and v _ ~Q.From 
the positivity of a it immediately follows that v+ is IR stable 
and v_is IR unstable.No conclusion follows about the·existence 
of any kind of symmetry and its IR stability or unstability. How
ever, usually v + ~ 0 and symmetric solution corresponds to a 
positively defined scalar potential. This means that among v+ 
and v_ only v+ can be associated with the svmmetri r !'lnl11t-i nn 

It is just so in supersymmetric models. Supersymmetry is IR 
stable not only for Yukawa couplings but also for scalar ones, 
i.e., it is an absolutely IR stable fixed point in the whole 
phase space. 

To illustrate the behaviour of the scalar coupling in phase 
space we consider again the quark coupling with the Higgs field 
and Higgs self-interaction. In addition to eq. (4) from eq. (7) 
we have 

• 2 
v = -{4v +12v~u. 

• I 
I 

2 2 
-36~u. + 2(11-·-n)vl. 

j I 3 

4. I. n=const-6.Eq. (8) becomes 

;; =--[ 4v 2 + 12v~u. -36~ u~ + 14v] 
i 1 i 1 

and have two fixed points v± =-const. 
4. I. I. u i = 0; v = -( 4v 2 + 14v]. 

(8) 

The solution is shown in fig. 8. IR stable fixed point v+ = 0. 
4.1.2. ul r o. uill =0; y =-{4v2+12vu -36u2 + 14v1. 

u =-u(9/2u -1]. 
'fhe solution is shown in fig. 9. An absolutely IR stable point 
is u = 9/2 , v :.0,1 , an absolutely IR unstable point is U=O , 
v :~3,5. All other points are saddle-points. Along the v axis 
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the phase space is divided into two parts and only the upper 
one is the region of attraction of the IR stable point. The re
gime of asymptotical freedom is possible only in the area 
0 S. u -;:;_ 2/9 bounded by the singular solution connecting points 
v,.; 0 and v - O,l.Only on this solution it is consistent with 
positivity of the scalar potential. 

'Y 

0.1 

)l O~,r ~ 6_\ 

0 v+ 
g2 

") c:: I ___.,., ..J-

~--~~ 
-L..3 

Fig. 8 Fig. 9 

4.1.3. u 12 "0, ui~ 12 =0; • . ' 2 !':=-(4v2+i2v(ul +U 2 -36(u 1 +U2 )+14v1. 
PJ -=-UJ [9/2u1 +3u 2 -11. 
u2 = -u2 ( 3 u 1 + 9/2 u 2 - 1]. 

The solution is shown in fig. 10. IR stable is a thick point 
the upper "wing". The upper "wing" is also an AF region with 
positive potential. It is IR stable and UV unstable. 

4.2. n=const=3. Here there are no fixed points for Ui 
4.2.1. ui,.. o. This case is the same as 4.1.1. 
4.2.2.ull'O• ui"l=-0; ~ =-(4v 2 +1Rv + 12vu -36u

2L 
u = -u[9/2u -1]. 

on 
the 

The solution is shown in fig. II. IR stable is the point u = v =0. 
There is no AF regime here. 
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v 

u~ 

Uz 
o. - / f 

-4.5 

Fig. 10 Fig. II 

5. EQUATIONS WITH VARYING COEFFICIENTS 

Examples of the charge evotution considered above are valid 
..:,,.i, .:.,. a :;__;_lii~Leu energy interval. When considering the whole 
energetic scale, some coefficients become variables due to the 
change of the effective number of particles taking part in the 
interaction. for example, the number of flavours n effectively 
depends on Q • If we assume n.; const and increases with energy 
when we pass through the threshold of creation of new particles, 
we come to the coupling-constant behaviour which is a combina
tion of that depicted in figs. (1-3) and (4-5). 

5. I. n "const. The evolution of Yukawa couplings is described 
by eq. (4). 

5.1.J.u1 "0 ,ui"r=O.The solution is shown in fig. 12. The 
singular solution disappears in the IR region remaining stable. 

5.1.2. u 1 2 "Q, ui,,I 2'" O.Instead of fig. 2 we have the be
haviour shoWn in fig. \3. The fixed point tends to zero remain
ing IR stable. 

5.1.3.u 123 "0 ,ui~l 2 :O,Instead of fig. 3 we have the be
haviour shown in fig. 14'. '9fhe center of the "umbrella" is likely 
to sweep inside. 

Some deformation of the picture will be caused also by taking 
into account higher loop corrections in the renormalization 
group equations. The fixed points will not disappear but will 

2 2 4 • • 1 . take the form Y i = u i g +vi g +.:.It wlll not be essent1a 1n 
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u, 
u 

g?. 
Fig. 13 

Uz 
Fig. 12 

u. 

3 

Fig. 14 

the UV region due to the AF of the gauge coupling, but will 
change the quantitative behaviour in the IR region. However, 
symmetric solutions will exist and will be UV unstable and IR 
stable. In the case of exact symmetry like supersymmetry, the 
fixed points will not change their form even when allowing for 
higher loop corrections. 

6. DISCUSSION 

The general conclusion of the above analysis is that the 
global symmetry increases in the infrared region. Effective Yu
kawa and scalar quartic couplings tend towards the most symmet
ric configuration in the IR regime. If the fixed points exist, 
the trivial one is always UV stable and the IR stable point 
ui ~ 0 is the most symmetric one. All other fixed points are 
saddle-points. 
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This leads to constraints on the model construction in the 
theories of grand unification. If we assume the equality or 
approximate equality of Yukawa and/or scalar quartic couplings 
in the far UV region, at the "unification point", they will not 
go away from each other in the IR region, in the region of mo
dern energies. If quarks obtain their masses via the Higgs mecha
nism, these masses are proportional to the Yukawa couplings. 
Hence, if the quark masses are close or equal at the unification 
points, they will not give the spectra observed at modern ener
gies in the simplest cases with one or two Higgs doublets. 

Present hopes to construct a unified model of all types of 
interaction are associated with the extended supersymmetry. 
Supersymmetry is of a special importance when constructing a 
theory without divergences. It is usually assumed that this 
symmetry is exact only at very high energies (1015-10 19 GeV) 
and for lower energies the extended supersymmetry is broken. 
However, we have seen that both the supersymmetry and extended 
supersymmetry are UV unstable. Hence if the symmetry is broken 
strongly, i.e., by the coupling constants, we shall not come 
to it at high energies. This fact leads to strong constraints on 
the pattern of the (extended) supersymmetry breaking, which 
should be clearly broken to get the observed spectra of elemen
tary particles. The symmetry breaking should be only "soft", 
i.e., by operators of dimension less than four, e.g., ¢ 2or ¢3. 

The author is indebted to D.Y.Shirkov and A.V.Radyushkin for 
; nt-oroct- o:~n..-:1 'ho1 n.f,1 ,.."'""""'"u ... rC"" -------- ---- ----r--- ----------- ..... 
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KasaKoB ,U.H. E2-82-880 
fiH~paKpacHaa YCTOHqHBOCTb H rno6anbHaa CHMMeTpHa 

PaCCMaTpHBaeTCK ITOBeAeHHe IDKaBCKHX H CKanHpHb~ qeTBepHb~ 
3~eKTHBHhlX sapHAOB B KanH6poaoqHb~ TeOpHKX. )leMOHCTpHpyeTCH 
HanHqHe ~HKCHpOBaHHb~ TOqeK, B KOTOpb~ Ha3BaHHhle 3apHAhl rrporrop
qHOHaiTbHhl KaiTH6poaoqHoMy. IToKasaHo, qTo ~HKCHPOBaHHhle ToqKH, 
OTBeqaw~e HaH6onee CHMMeTpHqHhlM KOH~Hrypa~HHM, HH~paKpaCHO 
YCTOHqHBhl H ynbTpa~HoneToao HeycToftqHahl. CyrrepCHMMeTpHH H pac
mHpeHHaa cyrrepcHMMeTpHH TaK~e peanH3YffiTCH,KaK HK ycToHqHBhle 
~HKCHPOBaHHhle TOqKH. 0TMeqaeTCK o6maH TeHAeH~HH B03pacTaHHK 
rno6anbHOH CHMMeTPHH B HH~paKpaCHOH o6naCTHo 06c~aiDTCH cneA
CTBHH 3TOrO ~aKTa ARH ITOCTpOeHHH MOAeneH 6onbmOrO o6~eAHHeHHK 
B3aHMOAeHCTBHH. 

Pa6oTa BbmonHeHa B lla6opaTopHH TeopeTHqecKOH ~H3HKH ORHH. 

npenpHHT 06~eAHHeHHOro HHCTHTyTa RAePHWX HccneAOBaHHH, AY6Ha 1982 

Kazakov D. I. E2-82-880 
Infrared Stability and Global Symmetry 

The behaviour of Yukawa and scalar quartic couplings in gau
ge theories is examined. The existence of fixed points where 
these couplings are proportional to the gauge one is demonstra
ted. It is shown that fixed points corresponding to the most 
symmetric configurations are infrared stable and ultraviolet 
unstable. Supersymmetry and extended supersymmetry are also re
alized as IR stable fixed points. We note the general tendency 
of increasing global symmetry in the IR region. Consequences 
of this fact for the grand unification model building are 
briefly discussed. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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