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1. INTRODUCTION

The prevailing philosophy of grand unification is based on
the fact that symmetry will increase at high energies. This
finds its verification in gauge sector where the gauge couplings
join together in the ultraviolet region. However, for Yukawa
and scalar quartic couplings things are different. Here, as a
rule, symmetry tends to infrease in the infrared region. This
fact was known earlier /1s2 , however, with the appearance of
the idea of grand unification and hopes to construct a unified
theory of all types of interactions without divergences it at-
tracts now new attention’°

The aim of the present paper is to demonstrate the behaviour
of Yukawa and scalar quartic couplings in gauge theories and to
show that global symmetry has a tendency to increase in the
infrared region. This is not an occasional play of numbers and
is a characteristic feature of the given type of interaction.
Finally we briefly discuss some consequences on this fact for the
model building of particle interactions.
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we chall Coasider the lagrangian dtnsity invariant in a given
energy region under some group G being a product of local and
global groups

G=G &.G

gauge global *

We shall be interested in a global symmetry group connecting
Yukawa and/or scalar quartic couplings. It may be, e.g., a hori-
zontal group of generations or supersymmetry. .

2. YUKAWA COUPLINGS. HORIZONTAL SYMMETRY
Let us consider the renormalization group equations describing
the evolution of Yukawa couplings in a theory with the horizon-

tal symmetry. To the one loop they are

dy.

—~—L =Y [A Y2+ 3 B _Y2-Dg?l],
dL 1 L R
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where Y; and 8 are Yukawa and gauge couplings, respectively,
and L=1nQ2/;2. We limit ourselves only to one gauge coupling
essential in a given energy region. The horizontal group mani-
fests itself in the equality of different Yukawa couplings. Nu-
merical values of coefficients A;, B,,, C, and D are un-
essential here. What is important is that A, B, and D are
positive (that is always so for Yukawa interactions) and that
A; > By;. The last inequality is also true as far as the con-
tribution of a given charge to self-renormalization is larger
than that to the renormalization of another charge.

To solve eqs. (1), it is useful to introduce new variables
u, =Y?/g? . Equations for u; are

du,
= A - (D- 2
1T 2ui[ iui+j,£2i Biju’, (D-C)ig
or ' (2)
u, = ~u; (A4 + S Bju; - (D-C).
P#i

d
where -Eng———E— . If D>C, just this case is of interest/3.4/,

eqs. (2) have a set of fixed points of the type u;=const>0 or
y* =const - .~ Lo rinda them, one nas to equal the r.n.s. ot
eds. (2) to zero. We get the following hierarchy of fixed
points/5/:

1: u, = 0, V,=12,...,N,

2: u; £0, ui,“-O,
3: u1,240, ui,‘l,z-o'

. e = s+ e e s

N-1: £0, uN=0,

UigN

N: wu,#0, V
In order to establish the type of a fixed point, that is, to de-
termine whether it is stable or unstable or-a saddle-point, we
use a standard method. Despite the nonlinearity of eqs. (2) they
can be linearized in a vicinity of a fixed point. For this pur-
pose we introduce infinitesimal deviations from the fixed point
u = u. + du; , where u is a fixed point. Then we have the li-
near homogeneous system ‘of eqs. for small deviations

.
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Su; = Sy (u)duy, (3)
where matrix S depends on the type of s fixed point. The crite-
rion of infrared (IR) stability now is the negative definiteness
of solutions to the characteristic equation

Del:(S -AE) = 0,
where E 1is a unit matrix.

IR stability: A, <0.

Note that the sign of coefficient C is unessential here.

Applying this criterion to the analysis of eqs. (2), we ob~
tain the following results:

i) The fixed point of I type, u. =0, V , is absolutely IR
unstable and absolutely UV stable. In this case 8= (D-C)E and
all A, =D-C>0.

ii) The fixed point of N-th type, u; #0, Vv, 1is absolutely
IR stable and absolutely UV unstable 1f ' Dets (V) >0 , where §N)
is the matrix
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This condition is practically satisfied if A, >B,; and if fixed
points of all types exist and u; >0.

iii) All other fixed points are saddle-points. They are stab-
le along some directions in phase space and unstable along the
others. The number of stable directions is equal to the number
of negative A; and increases with the number of the type of a
fixed point in our classification.

We illustrate the above analysis by an example of the real
interaction/ 5/ Consider the Yukawa type interaction of quarks
with Higgs scalars in a standard model with SU(3) x8Up (2)x UK1)
gauge symmetry. Ignoring weak and electromagnetic interactions
and quark flavour mixing, we get the following renormalization
group equations

dyY.

- =Y [-9-Y. + 3 3Y --8g?2],
dL i#i

B (11 - 2q)g3

L ( 3n)g ,

or



1. =-u.l2. -(Zp -
u; =-u; [2u +]§13uj (3n 3, (4)

where n 1is the number of flavours in a given energy region.
We present the solutions of eqs. (4) graphically in phase

diagrams. Arrows show the direction of decreasing L = InQ2/,2.
2.1. n =const =6 . Egs. (4) become

u; = -ui[—g—ui + ] E»i 3u] —'1]. i=1,2,...,6

and have fixed points of all types.

2.1.1. Ul#'O, Uj,él=0; il=~—ll[9/2 u-~1].
The solution is shown in fig. 1. The fixed point u=2/9 is IR
stable if uj41=0 and is a saddle-point in the whole phase
space. .

2.1.2. uy 970, uj43,=0; uj=-u;[9/2uy +3u,y -1],

ug= -u,[3u, +9/2u ~1].

The solution is shown in fig. 2. The point up=u, = 2/15 1is
IR stable, points u;=0, u, =2/9 and u, =2/9 , u,=-0 are saddle-
points and the point uy=uy=0 is IR unstable.There exist solu-
tions connecting different fixed points. They are boundary solu-
tions between different sectors. of phase space The singular
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Ze1e3e w037 00 0y g =0
?1 =-u,[9/2u;+ 3u, + 3uy ~1],

Ug=—uy[3uy+ 9/2uy+ 3uy ~11,
uj = -ug[3uy + 3uy + 9/2 uy-1].

The solution is shown in fig. 3. Singular solutions connecting
fixed points form something like an umbrella standing in the
corner. IR stable point is uy= ugy =uy=2/21other points are
saddle-points and u; =0 is absolutely IR stable. There is a
hierarhy of stability. Absolutely unstable is the point uy,9,3=0,
thenujy =0 ,u, #05 uy =0, u,, 0 and flnally Uy, ;éo(and
all permutatlons of indices). T e surface of the "umbtélla" is
also IR stable and UVunstable.All solutions inside the "umbrella"
and on its surface are asymptotically free in the UV region and
outside the 'umbrella" exhibit a zero-charge behaviour. On the
surface of the "umbrella" solutions tend to the most symmetric
configurations in the IR region.

U,

Fig. 3 Fig. 4

Hence in the IR regime the most symmetric configuration in
the given phase space is realized. Appearance of the new degree
of freedom transforms the stable point into the saddle-point and
a new stable point arises with a higher symmetry.

2.2. y =const=3.Here we have

u, =-u, (9/2u; + j,éz-i 3u]. +11
and there are no fixed points but u; =0.However, symmetric solu-
tions u; =u;, and u; = u, =uy do exist and are IR stable.
2.2.1. up £0, uy, 0; u =-~u[9/2u +1].
The solutlon is shown in fig. 4.
2.2.2. uy, #0,uy=0; u1=-u1[9/2u1+3u1+1]
ug=-uyl3u; +9/2uy+ 1],
The solution is shown in fig. 5.



Hence, even in the absence of fixed points (the surface of
the "umbrella" reduces to the point) solutions are driven to the
most symmetric configuration in the IR regime. In the UV regime
we always have a zero—charge behaviour.

The horizontal symmetry - quark flavourlpermutation symmetry

in this case — increases at low energies /5. a
i

|

Fig. 6

Fig. 5

3. YUKAWA COUPLINGS. SUPERSYMMETRY

Eqs. (1) describing the evolution of Yukawa couplings are
not the general ones. In some cases, e.g., for the set of coupl~
ings and fields, where the supersymmetry can be realized, there
are possible also nondiagonal terms of the type Y.'YE . We shall
not give the general analysis of this situation. The characteris-
tic feature of IR and UV behaviour are the same. Instead, we
consider an example where supersymmetry is realized as an IR
fixed point of renormalization group equations.

3.1. Let Y, =u; g, where g is the gauge and Y, are Yukawa
couplings. One loop equations for u; are ¢

u1=-u1[2u% + u% + u§-3] + uzu%,

. 2 2 2 2
Ug=-usfluy + 2uy + u3 - 3} + ujyuz,

u3=—:%[%m%-p%ug+2u§—3L

(5)

Supersymmetry is realized here as a fixed point SS: uj=u,=1 and
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an extended supersymmetry as a fixed point ESS: uI;uZ-u 3 =1.The
phase diagram for eqs. (5) is shown in fig. 6. There are also
some fixed points of other types. The fixed line (u} =u, =1,
u3 - arbitrary) is IR stable and on the line and in the whole
phase subspace u;, 4 2.0 absolutely IR stable is the point
Up=uy = = 1. Hence supersymmetry is realized as an IR stable
line and éhe extended supersymmetry as an absolutely IR stable
fixed point.

The situation considered in this example is general. Super-
symmetry as well as the extended supersymmetry are always IR
stable. Consider supersymmetric theory which contains one arbit-
rary Yukawa coupling (or several couplings equal to each other).
When it is equal to the gauge coupling we get the extended super-
symmetry. The one-loop equation is

3 2
lDL =aY -bYg , a>0.

dL

Then for u =Y2/g2 we have

. b-¢
b = -2aufu -

1.

h A
Without any limitation we put ;?f;- 1.We have two tixed points

u, =0 and u, =1.The solution is shown in fig. 7. The property

of IR stability of the fixed point 62 =1 corresponding to the
extended supersymmetry follows from

u the positivity of coefficient a ,

that is a characteristic feature of

the Yukawa coupling. Hence the extend-

1 -— ed supersymmetry relative to the
ordinary supersymmetry is always IR
stable and hence UV unstable.

0l_=—=—"_ -

2
Fig. 7 g

4. SCALAR COUPLINGS

' The one-loop equations for Yukawa couplings considered above
are independent of the scalar one. As for the scalar couplings
their behaviour depends strongly on the choice for Yukawa coup-
lings. The general analysis of scalar interactions is too compli-
cated. However, when some kind of symmetry like supersymmetry



connecting the scalar coupling with gauge or Yukawa couplings
is realized, equations for scalar charges have common features
which we shall discuss now.

Let us consider an example of one scalar field noninteracting
directly with the gauge field. Then the equation of evolution
in one-loop order is

4h  n? s gnzyYioyrvd (6)
dL i ! i1

where a,8,y >0 that is a characteristic feature of the scalar
interaction. Solving this equation together with eq. (1) and
substituting h =yg? we get the following equation for v:

p=~{av? + Briu, -:yEu"i’+Cu]. 7N
1 i
For appropriate values of coefficients and the choice of u; the
fixed points y; =const can exist so that ,_ >,_ and »_gg.From
the positivity of g it immediately follows that v, is IR stable
and v_is IR unstable.No conclusion follows about the existence
of any kind of symmetry and its IR stability or unstability. How-
ever, usually v _ >0 and symmetric solution corresponds to a
positively defined scalar potential. This means that among v,
and v~ only v, can be associated with the svmmetric solntion
It is just so in supersymmetric models. Supersymmetry is IR
stable not only for Yukawa couplings but also for scalar ones,
i.e., it is an absolutely IR stable fixed point in the whole
phase space.

To illustrate the behaviour of the scalar coupling in phase
space we consider again the quark coupling with the Higgs field
and Higgs self-interaction. In addition to eq. (4) from eq. (7)
we have

. 2 2
Vo= -[4v” +1203u; -36Zu. + 2011 _:.?23..;1),,]. (8)
1 1

4.1. n=const=6.Eq. (8) becomes

v=-[4v?+ 12v3u, —-362'ui2 +140]
1 1

and have two fixed points v, = const.

4.1.1.0 0, =05 0 =-[40? + 144].
The solution is shown in fig. 8. IR stable fixed point v, = 0.

4.1.20 07 #0, u,4,=0; p =-[42+12vu ~36u2 + 14,],

u =—u[9/2u -1].

The solution is shown in fig. 9. An absolutely IR stable point
isu=9/2, v 0,1 , an absolutely IR unstable point is u=0 ,
v=~3,5. All other points are saddle-points. Along the v axis
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d into two parts and only the upper

the phase space is divide : )
one is the region of attraction of the IR stable point. The re

gime of asymptotical freedom is possible only in tht? area
0 <u < 2/9 bounded by the singular solution connecting p01r.1ts
v =0 and v ~0,1,0nly on this solution it is consistent with

positivity of the scalar potential.
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Fig. 8 Fig.

4-].3. ulz* 0, ui 1'2-"-02;

?;'=-—[4u2+12u(u1 +u2=<-=36(u1 +ug )+ 1401,

ny =-up [9/2u] +3uy -1],

u'2 =-—u2[3u1 +9/2U2—:1]. . . .
The solution is shown in fig. 10. IR stable is a thlgk point on
the upper "wing". The upper "wing" is also an AF region with the
positive potential. It is IR stable ar}d [y ur.\stable. ‘

4.2. n=const=3. Here there are no fixed points for uj .

4.2.1. 4. a¢. Tnis case is the same as 4.1.1.

6.2.2.u7 20, w21 =0; » =-{4? +180 +120u -360°],

u =-u[9/2u ~1].

The solution is shown in fig. 11. IR stable is the point u=v=0.

There is no AF regime here.
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5. EQUATIONS WITH VARYING COEFFICIENTS

Examples of the charge evolution considered above are valid
Sily in a limiied energy interval. when considering the whole
energetic scale, some coefficients become variables due to the
change of the effective number of particles taking part in the
interaction. For example, the number of flavours n effectively
depends on @ If we assume nconst and increases with energy
when we pass through the threshold of creation of new particles,
we come to the coupling-constant behaviour which is a combina-
tion of that depicted in figs. (1-3) and (4-5).

5.1. n #const. The evolution of Yukawa couplings is described
by eq. (4).
5.1.0.u; £0 »U; £ 1= 0. The solution is shown in fig. 12. The

singular solution disappears in the IR region remaining stable.
5.1.2.u £0,u, = 0.Instead of fig. 2 we have the be-

X 1,2 7. % DiAl,2 ; : .
haviour shown in fig. 13. The fixed point tends to zero remain-
ing IR stable.

?.l.3.u1’2’3',£0 » Ujy
haviour shown in fig. '}
to sweep inside.

Some deformation of the picture will be caused also by taking
into account higher loop corrections in the renormalization
group equations. The fixed points will not disappear but will
take the form Y =u; g° 4+ v, girg.It will not be essential in
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1.9.9= 0.Instead of fig. 3 we have the be-
Aﬁ'%he center of the '"umbrella" is likely

o

/

u1
u
L
] ‘\_
92 _ u,
Fig. 12 Fig. 13

Fig. 14

the UV region due to the AF of the gauge coupligg, but will
change the quantitative behaviour in the IR region. However,
symmetric solutions will exist and will be UV unstable and IR
stable. In the case of exact symmetry like supersymmetry, the
fixed points will not change their form even when allowing for
higher loop corrections.

6. DISCUSSION

The general conclusion of the above analys%s is that Fhe
global symmetry increases in the infrared region. Effective Yu-
kawa and scalar quartic couplings tend towards the most symmet-
ric configuration in the IR regime. If the fixed points exist,
the trivial one is always UV stable and the IR stable point
u; 40 is the most symmetric one. All other fixed points are
saddle-points.
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This leads to constraints on the model construction in the
theories of grand unification. If we assume the equality or
approximate equality of Yukawa and/or scalar quartic couplings
in the far UV region, at the "unification point", they will not
go away from each other in the IR region, in the region of mo-
dern energies. If quarks obtain their masses via the Higgs mecha-
nism, these masses are proportional to the Yukawa couplings.
Hence, if the quark masses are close or equal at the unification
points, they will not give the spectra observed at modern ener-
gies in the simplest cases with one or two Higgs doublets.

Present hopes to construct a unified model of all types of
interaction are associated with the extended supersymmetry.
Supersymmetry is of a special importance when constructing a
theory without divergences. It is usually assumed that this
symmetry is exact only at very high energies (10 15.1019 Gev)
and for lower energies the extended supersymmetry is broken.
However, we have seen that both the supersymmetry and extended
supersymmetry are UV unstable. Hence if the symmetry is broken
strongly, i.e., by the coupling constants, we shall not come
to it at high energies., This fact leads to strong constraints on
the pattern of the (extended) supersymmetry breaking, which
should be clearly broken to get the observed spectra of elemen-—
tary particles. The symmetry breaking should be only ' soft
i.e., by operators of dimension less than four, e.g., ¢ or ¢

The author is indebted to D.V.Shirkov and A.V. Radyushkln for
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HudpakpacHas YCTOHYMBOCTE M IIo6GajlbHAasg CHMMe TPHA

PaccMarpuBaeTcs nmoBegeHHe WKABCKHX H CKAalfADHbIX 4YeTBEpPHLIX
3bbeK THBHHX 3apAOOB B KalHUGPOBOYHLIX TEOpHAX. [eMOHCTpHpyeTcH
HanmHuHe GHKCHPOBAHHBIX TOYEK, B KOTOPHX Ha3BaHHHeE 3apsigsl Npomop-—
IHOHAaNbHH KanH6posouyHOoMY, IlokasaHo, 4TO GHKCHPOBAHHHIE TOYKH,
oTBeyawmHe HauGojlee CHMMEeTPHYHHM KOHbHrypaiuuaMm, HHbpaKpacHO
ycToHuHBR U YABTpadpHoyIeTOBO HeycTOHUYHMBH., CymepcHMMeTpHA H pac—
mIHpeHHasa cynepcHMMeTPHA TakKxe peayH3ywrcs,kKak HK ycroituuBhe
duKcHpoBaHHbe TOUKH. OTMeuaeTcs ofmasa TeHOEeHLHUA BO3PaCTaHMA
rnoSansHOH CHUMMETPHM B HHppakpacHoli ob6nacrtH. O6cykpawTcsa clen-
CTBHA 3TOoro dakra Onsa mocTpoeHus Mmomeliedl 6osibmoro obbegUHeHUA
B3auMopaeiic TBHH .,

Pabora BbmoniHeHa B Jla6opaTopHHM TeopeTHuecKOoM &u3MkH OUAH.

Npenpunt 06veAMHEHHOrO MHCTHMTYTa AAEPHHX MccneaoBawwii., flybra 1982
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Infrared Stability and Global Symmetry

The behaviour of Yukawa and scalar quartic couplings in gau-
ge theories is examined. The existence of fixed points where
these couplings are proportional to the gauge one is demonstra-
ted. It is shown that fixed points corresponding to the most
symmetric configurations are infrared stable and ultraviolet
unstable, Supersymmetry and extended supersymmetry are also re-
alized as IR stable fixed points. We note the general tendency
of increasing global symmetry in the IR region. Consequences
of this fact for the grand unification model bu11d1ng are
briefly dlscussed

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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