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1. Introduction 

In euperspace, supersymmetric Yang-Mills and supergravity 
theories reveal quite different geometric structures as compared 
with those seen at the component level. Standard gauge potentials 
in superspace carry too much degrees of freedom even in the fixed 
gauge and for this reason cannot serve as the fundamental quanti­
ties. In any self-contained superfield gauge theory they appear 
as composite objects constructed from a lesser number of unconst­
rained auperfields, prepotentials. The prepotentials proved to 
be very useful concept. Being directly related to the physical 
field content of a given theory, they provide an adequate reali­
zation of ~ts minimal invariance group and hence can be considered 
as natural carriers of the corresponding intrinsic superspace ge­
ometry. 

At present, the complete prepotential formulations exist for 
the N•1 Yang-Mills 11 • 2/ and supergravity/3,4,5, 6/ theories and, 
at the linearized level, for their N•2 counterparts / 7 ,b/ *). The 
standard strategy to search for prepotentials is as follows. One 
starts with the ordinary differential geometry in superspace/10/ 
and then solves p1·oper constraints on covariant strengths, cur­
vatures, torsions, etc. It is not so easy to guess what are the 
adequate constraints in one or another specific case, because 
of lack of general procedure • 

Another approach, which seems to be more universal proceeds 

directly from exposing the minimal invariance group and intrinsic 
superspaoe geometry of a given theory. Once these are established 
relevant prepotentials are expected to naturally arise within this 
framework as objects with a clear group and geometric meaning. 
Such a program has been carried out throu'h only for the N•1 super­
gravity as yet. Ogievetsky and Sokatchev 4 ,5/ have shown that the 
underlying geometry of minimal ~·1 supergravity is the complex 

lR L.I-4 f, .., 14 - "} geometry of real supers pace ::::. -~ ) e,-) efl embedded 

•r~e quantities suggested in/9/ as the prepotentials of complete 
N=2 supergravity seem not to be true ones as they are still subjected 
to certain constraints. 
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as P. hypersurface into the complex chiral supers pace <J:~ (2 = 
={x2,~l· The geometric role of corresponding prepotential H""(x.,e,'O) 
is to specify this embedding! 

1 m Hm -) D "" I'VI t:>.P C'lff ce~<)t z;.,.ti e!i 
\'Y) Xz_:: . (.X.,e,e > r-e.XL = x_ ' VL = V' ' :L =: VR, = . 

The minimal invariance group of Nm1 supergravity ia the super­
group of general analytic coordinate transformations of a=~IZ 
(its divergencelesa subgroup in the Einstein case /41). By 

( 1. 1 ) 

the identification (1.1), it has a natural realization on 
.(.:x:.!"\e~ ~ H11(x,~Y,e)}. In the case of nonminimal N .. 1 supergravi­
tiea "JR414 is embedded into a larger complex superepace <[-4 /1. 
having two spinor dimensions in addition/91. These extra spinor 
coordinat~, being restricted to lJ<:.-4 H constitute, to,ether with 
HI'WI(_.x,e,e) , the full set of relevant prepotentials 61. It is 
essential that in both cases, minimal and nonminimal, the pre­
potentials appear primarily as the coordinates of certain complex 

supers paces. 
It is unknown which superfields play the role of prepoten­

tials in gauge theories with N:: 2 (except for N=2 electrodyna­
mics) and which geometries are associated with them. No clear geo­
metric interpretation exists even for the N•1 Yang-Mills prepo­
tential Vi. (.:r,~,e)< L is the index of adjoint representation of 
the gauge group). At the same time, in order to unmask the mini­
mal geometric structure of higher N gauge theories (and super­
gravities as well)it is necessary bet-ore to clearly understand · 
the geometry of the text-book N•1 case. 

This analysis is performed in the present paper. We demonst­
rate that the intrinsic euperspace geometry of the N•1 Yang-Wills 
theory reveals a close similarity to that of minimal N•1 super­
gravity. We start with the complexification trc of the gauge group 
G and define the extended chiral auperspace. ([~+MI~::{.r4~~"',~'} 
( i. = i,. . . M) , c where M = oLi..m G and Cfi t. are local complex 

coordinates on ~ • The Na1 Yang-Hills theory turns out to be ~­
eociated with the dynami~s of embedding of lR414 ~nto (f4+M ': 
The N•1 pre potential VL(x 18,6) coincides with Irn: If£ restricted 
tolR~~ It is introduced by the equation (2.11a) analogous to the 
first of eqs. {1.1) and has a simple meaning! it parametrizes the 
coset space(Tj/~ • ~~~ remains arbitrary and does not influ­
ence the dynamics, so that q:~+M/2 actually reduces to the 
qu.otient_(~~4+MI}IG-. The fact that VL(x,e,e) takes values in the 

cosetG/G allows the N=1 Yang-Mills theory to be interpreted as a 
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generalized nonlinear () -model. Hence, the powerful method of 
Cartan differential forms/ 11 - 14/ may be applied to the construc­
tion of relevant in~ariants and other geometric objects. 

The organization of paper is as follows. In Sect. 2 we pre­
sent the geometric derivation of the N•1 Yang-Mills prepotential. 
It goes in the same way for the cases of rigid and local super­
symmetries*>. In Sect. J the corresponding Cartan forms are defi­
ned and it ie explained how to construct from them the standard 
geometric characteristics of the N•1 Yang-Mille theory which auto­
matically respect the conventional kinematic constraints/151. We 
begin with the case of flat geometry on ~414 and then extend 
our study to the case of couplings with N•1 supergravity. In 
Conclusion we indicate some consequences of the proposed geometric 
picture and make an attempt to realize what would be the analog 

~-c of the complex group ~ in the case of N•2 Yang-Mille theory. 

2. The geometric derivation of the N•1 Yang-Mills prepotential 

1. We begin with definition of the complex group G-C • 
Let (T be a compact M-dimensional group with generators 

'\i., (i.==:l;·· M). In the basis where T i. are hermi tean they satisfy 
the commutation relatione . ~ l 

[Ti Tk]= LC"k T , (2.1) 
·kt ., 

C" being real totally skew-symmetric structure constan.ts. G.C· 
is defined as the group with M complex generators 12 L • which 
constitute, together with~~= (~~)t the following Lie algebra! 

lTl ~Jr.]~i.c.~k~t:f r,l. Tk]=LC.~Hl'f (2.2a) 
') 'L,LJ<.) fit. fi:. 

rT.: lsk.]= o (2.2b) 
L L ") fl.. 

or, in terms of hermitean generators 

l T l. T "-J == t. c.il~. t T e 

\_l'c: A~ j ~ L <:3H Al 
lAl. ) Al]==-l. c.~lr..t Te, 

(2.3) 

•Js~~~esults of this Section have already been published as a 
letter/~~~~~-6Analogoue consideration has independently been given by 
A.A.Rosly I. 
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where 

\~=~l-\-\~ ) A~= t.tt~-rr~). <
2

•
4

> 

Besides, the group parameters associated with ~~. ~~k are assumed 

to be mutually conjugated. It is seen from (2.2), (2.3) that ere 
has (locally) the structure of the direct product G-c.=- ~. ~ cr~. 
with GL.and GR~(.~)t generated, respe?tively, by1;.'- andT'-'-· 

The initial group G with generators Tl. appears in this pro­

duct as a diagonal, the remaining generators )\k span the real 

M-dimenaional symmetric coset apace crc;l(r • 
It is worth noting that the group ~c is noncompact. In par­

ticular, if G = SU(. h.) , then G-c= SL. (!',C.) • Due to noncompact­

neas of (rC any ita unitary representation is infinite-dimen­

sional, for this reason geperators ~~, Ak. may be simultaneously 
..,..,.~ ... 

chosen hermite an ( IL '- 1 
I~ mut~ally conjugated) only provided 

they are represented by infinite-dimensional matrices. Our conc­

lusions do not depend on a choice of representation, so in what 

follows we may consider '"fl , Ak hermitean without loss of 

generality. 
Let us treat ~c as a Riemannian manifold and introduce, 

in. a vic.ini ty of its identity element, local coordinates ~i. , 

tt'i. = ('fL' )t~ using for definiteness the exponential parametriza-

tion of G 1 L L 
• (Ok.'Tfl(. • ln kr-n\ I:; 

~c('eL,'e~'r::· ~.t.. l'f.£.) jll ('e~Z-) =e" (~ 'L. e l ~R ~ == 

e ~ (Re 'eLk'\' It+ 1.~ ce_'tr. Ak). 
(2. 5) 

Note that Re'f'Lk and Il'l"' ~ k parametrize, respectively, the sub-

group G and tl:e coset r;.c/ G- • Now we define the superspace 

<[.-<+111Z playing the fundamental .. role in further consideration. 

It is the direct sum of ordinary chiral N=1 superapace [412={.:t..f'(9Jt, 
/\ , zf 

and the group tr~ regarded as a complex M-dimenaional 

manifold: 

tr4+MIZ-:::: {:xLM,e!, ~.:} ==- ([.qz 6) G~. (2.6) 

Since the left a~d ri~t auperapace coordinates ~~~, ~~ and 

.:r.;:=- (.x.~l, e: = (C>L )t are :r;:elated. by P;-pari ty, it is natural 

to accept the same corlvention·· for ce_'-, 'f,t i 

<ef A <f~ Re 'e.: R.,. F-.€ ~~ ".ltv~ <e,~ _1:.,.. _ T <e i (2. 7) 
,....., .... £.1 L ..LI'l'\~ 

4 

l 

1 
I 

\ 

I 
1 
l 
' 

Correspondill8ly, if T i. are scalars, AL mua t be paeudosaalars 1 . 
1;_.:~T~ T~~Tl. A~J,.,._AL. ., , (2.8) 

Clearly, (2.8) is the automorphism of the algebra (2.2), (2.3). 

The next step is to define the .action of the group (T~ in 

~4+MI2 • ~c can naturally be implemented in this superspace as 

th~ group of left nonlinear translations of group coordinates ~'-·, 
~LI 
~ - I 

~L(i\,) ~Ll'll.)- SL(~O~).,)) 
~fl.(AF..) 3~t (r~) = ~~ ( <e~(ce~<>-~)), 

(2.9) 

wh~re /ti , Xtt= (fi~ )tare group parameters. To promote ~lobal 
(r transformations to the local ones we assume that /\~ are 

arbitrary analytic functions given over the superspace ([4/2, 

A.i ~ )~ (.xL,6,) ').~::: (~~ )t = A.:f?.. (.:t:~ ;e'fl..) . (2.10) 

The gauge group thus defined constitutes a semi-direct product 

with the supe:t•group realized on :::tz"'", e: : the Lie bracket of 

their two arbitrary transformations is a gauge transformation of 

the type (2.9). As is implied by the relation (2.2b) the left and 

right components of the gauge group Gt~>c. = Gzf4, X G-r. me:. commute 

with each other so that at the initial stage the "left" and "right" 

worlds are entirely disjoined (though conjugated). 

2. We wish to show that G~oc. is the invariance group of 

N•1 Yang-Mille theory/1 • 2 I and that the latter naturally emerges 

after extracting a special hypersurface in QL4+MI2 • This hyper­

aurface is the real superspace ~~ (-< = {.z."", e.ul $14} just 

as in the case of N•1 supergravity/.c(- 6 1. An essential difference 

is that it possesses now purely internal degrees of freedom 

besides those represented by the axial auper!ield J..l"' (X >e, B) 
(1.1), because of additional bosonic dimensions in (C4+MjZ 

Accordingly, the embedding conditions (1.1) should be supple­

mented with 2M conditions 

a) Im tej= vt:~je)e) 'P) Re.CfL~== u~~ ,e,if)' , . 
(2 .11) 

where v~- and ul. are real pseudoscalar and scalar auperfields. 

Their transformation properties in(;~ are uniquely determined · 

by those of ~i • ~~ given by eq~. (2.9). These auperfielde apan, 
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respectively, the coset space (!//G and the subgroup G • Hence, 
they are of the Goldstone type with respect to the corresponding 
~ G . G -transformations. We want to be unbroken; then UL(..x,e,e) 

should be made to have no dynamical manifestations. To achieve 
this, one may proceed as in standard nonlinear CJ-models (see, 
e.g./13, 16/) and require the theory to be invariant under the 

right gauge G -transformations 1 

e~ (u"-'lk+ vF-Ak) ~ e~ (uhrk+vkAk) e~) ere. (2.12) 

,e ,er -) · -where ;\ :::. /1 ~,.x,e,e are M real superparameters. Then Ut(..::r,e,G) 
represent purely gauge degrees of freedom. From the geometric 
point of view, the invariance under (2.12) means that different 
(J -directions in ([ .:;+H 12 are indistinguishable 1 the dynamics is 
required to depend only on the position of the hypersurface~4 14 
with respect to directions spanning the coset space~lf~. In 
other words, it is the quotiente£~+ 11 12/G what does really en­
ters after allowing for the gauge freedom (2.12). 

Upon imposing the natural gauge condition 

ULl.x,e,e)=O (2 .13) 

we are left with 114 paeudoscalar superfields VL(.x,e,e) which 
"live" in cosets G-YG and transform under Gbc. according to the 
ge~eric formula of nonlinear realizations/ii-i4/: 

e~ (Re}fT~+~"A~Ak)etVkAk=e~V;kAk e~Kf(~~yrf (2.14) 

with A~ as in (2.6). The transformation law of matter super­
fields sP~1E>,e) can be then defined following general prescrip-

tiona of rtlfs/11 - 141 
I e -e 

~,e,e) ==e~ K (v,;l.)l pcx,e ,e), c2.15) 

-p 
where T are a proper matrix representation of G -generators 
(indices of the representation are suppreased). 

Now, let us demonstrate that the law (2.14) is actually equi­
valent to the standard transformation law of the N•1 Yang-Mille 
prepotential/1 •21. To this end, we first exploit the automorphism 
(2.4) of the algebra (2.3) to rewrite (2 •. 14) in another form: 

;_ (Re)~ ~ _ T -f- Ak) -i. vitA~ _ . vlkAk . kerr, P e L. ·jj\'\ :L e n = e (. e~ .l (2.14' > 
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The next step ie to eliminate the factor exp~;KfT'e} from eqa, 
(2.14), (2.14 1 ) that,yielde the one mot•e possible form of the 
transformation of Vl.(x,e,~) 

· Ub_,k.,.,~ ~ \k.A~) 2.vkAk _·to_,k,.,k ]j \kAk) . Vk 
e~ \.e."L, -\-_lyY\"L e" el,l..."t'IIL.'- l'll'Z_ =-e2,VA.(2.16) 

Finally, passing to the complex generators ~ ,j ~(by the for­
mula (2.4)) and taktng into account their commutativity we ob­
serve that eq. (2.15) is equivalent to the following one: 

. \ b IT"' k - 2 v k<·:-y k . \ k <T1 ~ -2 Vi.. IT L 
e~."L 'L e IL e-t/\f:. 'L. =e 4 (2.17) 

(or with~~ instead of1L,l. ). But this is just we are aimi~g at 
because ~'" fulfill the s.ame commutation relations as 1~ L , 

while the structure of Vt. 1 in (2.14) does not depend on a par­
ticu:ta.r choice of generators and is determined solely by their 
commutation relations. 

In fact, the standard form of the N•1 prepotential transfor­
mation law: (with TL in place of 1L,l.) is recovered by substitut­
ing for)\'- in (2.16), its particular representation: 

A~= '-I'- ( TLL =I ~ , T ~ =- 0) . (2.18a) 

This choice is non-self-conjugated, in accordance with the pro­
perty that any finite-dimensional representation of the non-com­
pact group Gc. is non-unitary. By the identification (2.18a) 
or the conjugated one 

AL -· - .t-n\L p..- -~ ( \l.=O '"TL='Tl.) 
L. ' ~ 

(2.18b) 

any rep1·eaentation of G can be' extended to that of the whole GC. 
'Then, using tho general connection between representations and 
nonlinear realizatione/11 1 one may relate any matter superfield 
with the standard nonlinear tranaormation law (2.15) to the super­
fields transforming in G~ linearly, according to the represen­
tations (2.18a), (2.1Sb): 

rF. I· -) L v~A k - _ v~tc-r k ;r.. 
--rL .._x.,e,.e = e 1(. 4c.x,6),e)= e ' '±'(:(,e.~) 

. ~-k vk-k 
~~(x.~.~)-=elV AF-cp8",e,e)==e I ~(x,(i),e)== c2.19) 

= ez vklk ~L (..z,O>,e) 

7 



~I • _Ak.-~ 
<]?L c_x,e,e) := e' ~ T ~ (~p;§) 

I 

I ·i-k ~R..Qr,&,e)= e' ~:T P~<.x,s,~. 
These relations can be interpreted as describing the transition 
from the real basis in the group space of GC to its complex left 
and right bases, in a perfect analogy with the connection bet­
ween real and complex bases ~n superspace*). The relations (2.19) 
were known earlier / 6 , 171, but our consideration renders to them 
a clear group-theoretical meaning. Note that the substitution of 
(2.18a) or (2.18b) in the basic law (2.14) yields the transfor­
mations of the N=1 ·Yang-Mills prepotential in the form given by 
Siegel and Gates 161: 

e L >.kTk -v~tTk -vk.~~ k . Ke<:;-7 f 
L. e =e e' , 

. , k -k. vk -k v~t-'Tk ,· k e, f (2.20) e l 1\!t. I -e T = e. €. . 

Also, the invariance under the right gauge Er -transformations 
(2.12) reduces to the well-known freedom of complexifying the 
pre potential: 

e-V~Tl. -WtTt -vt:Tc: . ,kT' _,....e_ =e_ -e.,LA li!' (2. 21 ) 

2 v~<-rl _ wt.kTR. wk~1 k e - e e · (2. 22) 

Tq summarize, we have derived the N=1 Yang-Mills prepoten­
tialV'~~~~,B)from simple geometric and group principles similar 
to those constituting the basis of the Ogievetsky-Sokatchev for­
mulation of minimal Na1 supergravity /4,5/. In previous studies, 
the transformation rule of \fL and VL itself either 
were simply postulated / 1•2/ or appeared as a solution of proper 
constraints on covariant strengthe/151. The underlying complex , -
group structure of the N=1 Yang-Mills remained implicit because 
the generators of ~~ appeared always in their particular form 
(2.18). Finally, we notice that the noncompactness of (r~ ~as 
no explicit dynamical manifestations at the level of physical 
components. This is because the (Tc symmetry is spontaneously 
broken from the beginning to the compact symmetry with respect to 

'"IT;;" av~-ld-a possible conf~sing, vie note that no correla­
tion exists between choices of bases in ~c and in superspace. 
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~ and, besides, the Goldstone fields associated with this break­
ing are purely gaug~ degrees of freedom (they are contained in 
the superspin zero part of Vi. ). In the w.z. gauge, the 
G:c_/6 -transformations have the form of ordinary gauge G -
transformations and so are completely hidden. On the other hand, 
in any supersymmetric gauge they appear independently. Thus, the 
cr)lcr-invariance can be thought of as the consistency condition 
between ordinary gauge invariance and manifest supersymmetry. 

3. The Cartan form analysis 

1. We have shown above that the N•1 Yang-Mills theory, from 
the group-theoretic point of view, is a kind of the generalized 
nonline~r C) model*) • Indeed, V l (.X/) 1 0) takes the values in the 
coset r;.c( (i- and hence is the Goldstone auperfield (exp {2 L vkAk] 
is nothing but the corresponding "chiral field"). Therefore, re­
levant invariants and other geometric objects should have an ade­
quate expression in tha -universal langUage of Cartan differen­
tial forma which is of common use in theories with the nonlinearly 

realized symmetry/12- 141. In the present Section we construct 
~he Cartan forma of the N•1 Yang-Mills theory and show that .they 
provide a convenient general basis for analyzing the dynamical 
structure of this ·theory. 

The basic forms in the present case are spinorial ones, they 

are introduced by the relations 

-L vkAk( . " l vkAk . e e .e e . e Dct T l ~ )e = L(0..:A -+_SL,./T )::l..O.CJ( 
(3.1) 

· v~Ak(- -f?.) ·vkAk 1,-eAe -e e -n e-.._ l>.;_~ ~ i.lt el = L. \_UJat + sz.~ I): l. ~Ot' • 

Here, ~o(, lJQ(. are ordinary covariant apinor derivatives (they 
may correspond to the flat aa well as curved geometries on~~li ) 
and (.9-,':::~L.iT:i. 'l~rt.:::J{Jf)f .are spinor connections on the group 
rc.,... "' t..,uCf \J;,.c 
\)j ecc. ' 

*)An~ogous fact for ordinary gauge theories has been estab­
lished in/18/. In the superoase, the similarity with nonlinear u mo­
dels is even more transparent and striking. 
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1.1 ·llt.,...k' _·1k,.,-,k k k .,k-.-.Jc. 

?J; =-='AL.. 'L. "71:>-te <.AL. IL ~ t'J T ~~-~A '" ;,(. '- voe: -+ -. e ~ ~ ~ '- " " <3.2) 
-t> I • ~~ <T"k. -1:1. ·lk..,, k c....l • "'\k.<'Tik, - . )Rij'7k v; = e_' AR_ ~~ ?J-; e-,1\~ R +t-e_ll\~ I_IC:. .[)df'el/'~ 'R • 

Their role is to compensate the necommutativity of differential 
operatorslJo(.,l),;t in the l.h.s. of (3.1) with elements of gauge 
groups Go , ~".,.e. , respectively. We shall see below that ~L. , 
- 17 "lD C. O"j.. DC. • _ .-
(9.:.,... can be constructed from vl (.:r,e,e)alcme. 

cl It is easy to check that under the gauge group (2.14), (3.2) 
the object cvj . ~~ and their conjugates display the standard 
transformation properties of Cartan forme: 

SL' =e} KeTe n o-; keye J i KeTe~ -d<er-:-~1 f 
o<. _.~. '-..< =- -+- + e a e 

L u<- ().3) 

-I ( keTe n -~ keTe .:i ~ Ke,.e ~ e-ikeTr 
.JL or == e J.'-,;.c e + L e. .(_I.,.(' • k. 
As follows from (3.3) and the commutatio~ relations (2.3), ~o( , 

r 'k transform homogeneously: 
VVO/. 

t 1 t. .Ke e ·ker;-re 
c.J~A ==- el T UJjA-l e' 1 <3.4) 

-t 1Ai · J<.f'.-nf -t t -t keT.P 
W01 =e' 1 W.;tA e 

and can be interpr~ted as gauge-covariant epinor d~riva~~es of 
the prepctential Vl(.x1l>\B). The remaining forms .J2.~ , _Q_~ are 
the connections on the coset space~~tr : they transform accord­
ing to the inhomogeneous law (3.3). These· forms define the gauge­
-covariant spinor derivatives of matter superfields ~~~~,'GJ: 

~ ~C=t,e,9)=- (~co{+l..sL~If) ~c~,61 '6), 
- m - Gc;l\ . - e m e) ?F.. "' Vc;;t~Gcz,61,e)=- ovO<'+l~ 1 ~(-7,B,«?'.J· 

(3.5) 

Now, let us come back to the discussion of the status of 
gauge superpotentials~,~~- Fortunately, there is no need to 
associate with them independent degrees of freedom. These super­
fields can be taken composite by imposing the manifestly covariant 
constraints of the inverse Higgs phenomenon/19/: 

GJj ~ Q~: o. (3.6) 
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L. -F. 
The equations (3.6) are algebraic with respect to~ , ZJ-Oc , 
therefore they can eaeily be solved to give 

?a.~ ~ - z. vt-rt 2 vtlt 
vol = -r e. 1.. 27~ e :L. 

1 .... R _ A 2 vtTt . 1=>.- -2 vt'T'1/ v Ot- ""[ e ~ uOte.. 

(3.7a) 

(3.7b) 

(~n deriving (3.7), we have taken advantage of the automorphism 
(2.8)). After substituting (3.7) back into the basic relation (3.1) 
we are left with the spinor connections on the coset(;~~~ 

_a_ _ _a-l Tt _ ~ -VkTk ~ vk1 k 
ct.- ol - '""[€ DUe>£ e_ (3.8) 

J2_ - nt it= .i.eVkTk·~ ~-VkTk. 
c)( - ~L-,;t L .Uo< -c: 

These are the fundamenta~ quantities, of which all the geometric 
characteristics of the theory can be built up: invariants, cova­
riant strengths, etc~ This can be done following the standard 
procedure of refs./10 •151. We find it instructive to repeat the 
derivation in the context of the proposed geometric interpre­
tation of N•1 Yang-Mills theory. 

2. Till this point our consideration proceeded in the same 
way both for rigid and local supersymmetries. Now, we need the 
explicit form of spinor derivatives ~, ~. We begin with the 
flat case and choose the real basis in superspace lK,<;'Ii' = 

M ol. -j1. =-{X , S ,e ;.,r.In this basis: 

~ . ,r;y,-\ -- ? . 
<;Do£.=- o ep(. - '" lP & Jo( , »o(' == -'de~ + l. e_e fir).,(' (3.9) 

~l)o( \ ~,1 =- .[ ~o(, ~ j}:::: 0 
(3.10a) 

(3.10b) {~o<) 'b.fo ~ ~ 2 ~ @'J.,(1 == 2t· sot) 'd~. _ 
Then, the gauge-covariant spinor derivatives~, t?o? (3.5) sa­
tisfy the commutation relations 

{ ~ , ~ ~= L fo<f> 

{ \70l, t?j.~= l. f~ t 
{ v;.' ~y.)= 2~cfJ-t-..IL).,() = 2~ d; ~' 

11 
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(3.11c) 



where r~ft , ~ ~ , j2_ . are the G-algebra valued differential 
2-superforms /" D(j& 

t,.~ :l:Jo(Q_'+ ;&JQ.,t+ l {Q..o<\Q_,} 

F~ ;=-:b;tSL-;+2>}Qoc+~ {SLe< )~} 
_(L .A ( - - - ) 

(3.12) 

(3.13) 

(3.14), 

r~.f~ 2. ~.2..;-t-~jQ~_,_ t.{-Q.,~.,SL;.1 c. 

The covariant strengths ~1 , f.;lj. transform ;i.n Gf.t,c. homoge­
neously, by the law similar to (3.4). Substituting the explicit 

expressions (3.8) for the forms...Q..o{ , ..Q..j. into (3.12), <:l.13) 
yields 

~!-' =- F~J= 0 
(3.15) 

that are just the constraints placed on the strengths in the tra­
ditional approach starting from the gauge potentials in super­
space/iS I. The quantity ~ . is the vector connection: 

~ 

SLrJ.e:~-i. 6,7e..1L =e~ vt:Ac(Pf+ ?J-"' . .o.: vtAt 
T r M lo(_p '- , 

(3.16) 

where I'< I 

'1o. _ · ~~ d_t( -R- ~ ·{ ,-!<:,) ~~(}\--;:.- 0 17) 
~; ~ L !.:>~} ~= 2 \.~1} -t-bj~+L 72<.,~ Jj=.f\Si.lJi+~~L). 

The composite gauge superfield 7.9-,.., (_::t
1
6l,B) transforms under 

~~oc according to 

"'" t 0! cG "" ,,'l- Qc.-1 "\ .-1 a c~"\ 'iJ ac-j '\ o 18) 
vm. =- c f.L,"~vflt\ <' c~'--).~1+ To V'~fll-)"M (l a~)·~J · 

thereby ensuring the standard transformation law for ...Q.l'l'): 

..Q.~=-e~ kt'T't_Q_~~;_ktl~ 1 e3 Kt.r!J~~iki'"rt<3.19) 
which is quite similar to the laws (3.3). Note that one more 
conventional constraint, on the strength with mixed indicies/15/: 

E . -=- 2} S2... + q;;-. .s2.. ~l r52... g:.1_2 . ~..,. ,.., = 0 o.2o) o<J 0( ., oUJ &>£.. '\' ~l j'J l.f.:>.<.J ~'-l'W\ 
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. i' ~, 

{[' 

~ 

lJ 

q 

is fu~illed in the present approach identically, by the defini­

tion (3.14). 
Let us now define the three-index form 

'J?O( =-~ SL.fO<- L Cff1;tSLJ = 
(3.21) 

= i6;: (~.Q.~-d~Q_,sJ=-L G;: l},M, 
where ~ is the s~inor gauge-covariant derivative in the adjoint 

representation of tr : 
~ = ~~"'" i.lJly' } (3.22) 

and the commutator or anticommutator is chosen depending on whether 
even or odd is the form on which~ acts. It is easy to see that 
under the transformations (3.3), (3.19) the strength (3.21) un­
dergoes the homogeneous transformation: 

I ·kt \; Ft~ =- e~. rr fy..Me=-l Ktrrt (3.23) 

This strength and its conjugate ~~~ ~urally arise when spi­
nor gauge-covariant derivatives~· t?~ are commuted with the 

vector one \7~ (3.11c): 

l ~' \?I'V\] = i. Fo(WI 

L \70(, t?~1= L ~M ~ 
Using the relations (3.15), one may check that ~~JP 

tisfy the equations 

f~, f-= - fto( j 

~ Fpv }' -t- V} FaN _p = 0 · 
The first one implies that ~} f can be represented as 

(3. 24) 

sa-

(3.25) 

(3 .26) 

c ·- d.E -W-- d.E r~crn . /'"::¥) na") 0.21> 
ro~pp - 2 olP f'- 2. .,~., L v .J'-Kj>- L lJII Jrj>~'- , 

Then, the second equation yields 

~ w;, =- o. (3.28) 

13 



By pasoing to the right basio in the group ,space of G-C. accor­
ding to the second of formulas (2.18) 

-~ Vl>.Tk.- -V#t.Tk 
W;. =-e W;e <3.29) 

this condition is reduced to the ordinary chirality condition 

-~ vk.'T~ -- -VkTk 
~~ w; =- e , ~ wfo e = o. o.3o-} 

A direct calculation utilizing the explicit expression for the 
form ..Q..ol-(3.8) gives 

W·F--:::. _l_]J"'~ tezvkT~b· ezvklh). (3.31) 

f 2.1.. Ol\: J 
I 

This coincides with the standard expression for the covariant spi-
nor strength of the N=1 Yang-Mills theory/1 •21. Using the connec­
tion (3.29), one easily establishes also the form of V\(JS 

-· A ot r- -VkTb vkTk] 
W;=.zi.. \l ~ L rye e · (3. 32) 

Now, we discuss the couplings to matter. In ordinary non­
linear realizatiom/11- 1·4/interactions of mat~er fields with the 
Goldstone fields are introduced as follows. One starts with a 
Lagrangian invariant under the vacuum stabi~ity subgroup and then 
replaces the ordinary derivatives by ~he covariant ones. In our 
case, the.vacuum stability subgroup is the group of rigid G trans­
forma tiona. Therefore, in order to implement the couplings between 
matter superfields themselves and with the prepotential lfLlx,G,~) 
in the manner invariant under ~he whole group G~o C.. it is suffi­

cient to make the change[2J.<,2)DI:d""}...,..[~, ~, ,;>~ in some 
superfield Lagrangian having global G symmetry, However, sometimes 
it is more convenient, to bring beforehand superfields into the 
right or left G -bases according to the relations (2.19). All 
the geometric characteristics constructed above can be recast. 
into these baseo by formulas of the type (2,19): 

{
t?L -L ~L -VkTk. _ VkT~ 
cl. 1 V'o('., ~3=-e ·{~,~ 

1
PM-t}e (3.33a) 

f17,t \?~ t?.~}=evkTk..fr> n or:>} -VkTt o.JJb) 
'\. D{. l ol"' M '\_ ~\ Vo[ 

1
v,_, -E:_ 

14 

(I 
~ ;I 

I 

' ;i 

(here, the differential operators are assumed td act on everything 
to the right of them~ The explicit form of covariant derivatives 
in the left basis is as follows 

~L::: ~"" ~lzrfiri., Pf=~o<- 17LM= 'd~ ~_ ~t>tfoil}i ~·f'-o.J4) 
l' J 

with~ I. given by eq. (3.7a). These operators are related to 
the corresponding quantities in the right basis by complex conju­
gation. The covariant strengths in the complex bases can be ob­
tained by commuting relevant covariant derivatives between them­
selves; they all are expressed through 'l5t<.4 , ?J-j- (3,7) and have 
a more simple appearance as compared with those in the real basis 

-'­(cf. expressions (3.32) and (}.33)). Coyariant derivatives~ 
~R do ~ contain dependence on VL(_::r,E:i,tf) so one may 
impose on ~L, ~~ ordinary chirality conditions 16 ,7/; 

• ~ ;;t:;I ~I I 
U "/ "±: = 0 --"" = Cf> r X (!) ) 

o< L.. L L~-',"'-
(3. 35) 

b~ P~=o ~ P~~ ce~c_x~,e~). 
In the real basis, these constraints look fore

1
complicated: 

- I ·-· \7;( ~ =-0 _,. g?I=eVlTl~I 

~ mil_ i+.ii _ -Vc:T~ rnli 
vo( ~ - 0 ~ '.±: - e 't'R_ 

(3. 36) 

3. Now, let us discuss in short the case of curved geometry 
on ~~14. We restrict our consideration to the standard minimal 
Einstein N•1 supergravity/4- 61. To repeat the above analysis, one 
needs the fo~ing commutation relations between curved counter­
parts~ ,,[)

01 
, lSa. of flat superspace derivatives/5,

20
•
21 1 1 

{~ ,~1=- Ro<J "-- rv 

{ ;bo( 'Z> j 1=- 2~ o:_p l)~;;: 2~ ~o(Ji 
( 3. 37) 

r""' ~ J ~ ~ ~ -L'JJo~., lfp; = -1< ,1;2)r- J: ,r;lS<f-Rt1(.rJ 
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By passing to the right basis in the group space of ~C accor­
ding to the second of formulas (2.18) 

-~t vkT k. - - v~tTk W;. =-e w1e <3.29) 

this condition is reduced to the ordinary chirality condition 

-~ v'k.'T~ ·-- -VkTk 
't)~ W; =-e. , ~ Wfo e. = 0. o.3o.} 

A direct calculation utilizing the explicit expression for the 
form ..Q..ol-(3.8) gives 

W·p..-:::. j_ZJ"'~ tezvkr~b- e2Vk!k). <3.31) 

' 2.1.. "'~ } 
I 

This coincides with the standard expression for the covariant spi-
nor strength of the N=1 Yang-Mills theory/1 •21. Using the connec­
tion (3.29), one easily establishes also the form of V\(~ 

-· A ot r- -VkTb vkTk] W;=-2 i.. \l ~ L rye e · (3. 32) 

Now, we discuss the couplings to matter. In ordinary non­
linear realizatiom/11- 1·4/ interactions of mati(er fields with the 
Goldstone fields are introduced as follows. One starts with a 
Lagrangian invariant under the vacuum stability subgroup and then 
replaces the ordinary derivatives by ~he covariant ones. In our 
case, the.vacuum stability subgroup is the group of rigid G trans­
formations. Therefore, in order to implement the couplings between 
matter superfields themselves and with the prepotential vicx.~.~) 
in the manner invariant under _:!:he whole group G~c c.. it is suffi­

cient to make the change[~...c.~.;t:Oitl}...,..[~, ~, vtoj in some 
superfield Lagrangian having global G symmetry, However, sometimes 
it is more convenient, to bring beforehand superfields into the 
right or left G -bases according to the relations (2 .19 ). All 
the geometric characteristics constructed above can be recast. 
into these bases by formulas of the type (2.19): 

{
\7L -L ~L -VkTk. _ VkTk 

cf. 1 V'o(., ~ 3=- e . :( ~ '~ ) l?k-t}e.. (3.33a) 

f-v.~ p~ \?.~}=evkTk.rn n -r;,l -VkTt o.J3b) 
'\. ""- , o1 " M -\.. ~, v o(, v,., 5-e. 
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(here, the differential operators are assumed to' act on everything 
to the right of them).. The explicit form of covariant derivatives 

in the left basis is as follows 

~L:: ~~ +t <r{iTi., 17f=2o<' 17L~ d~ I. a-~j.,l~ ~·:ro·34 > 
l. J 

with~ !. given by eq. (3.7a). These operators are related to 
the corresponding quantities in the right basis by complex conju­
gation. The covariant strengths in the complex bases can be ob­
tained by commuting relevant covariant derivatives between them­
selves; they all are expressed through 'l!tt.L., i'-}- (3.7) and have 
a more simple appearance as compared with those in the real basis -, 
(cf. expressions (3.32) and (}.33)). Coyariant derivatives~ 
'?t.R do ~ contain dependence on VL(.::t,ES,tf) so one may 
impose on ~L, ~~ ordinary chirality conditions 16 ,7/; 

- ;=t:;I r l) '/ "::f: = 0 __,... ;h = Cf> I r ::t C't ) ~ L ~L L ~~?L 
(3. 35) 

boe( P:::: 0 ~ P~~ Cf[ (_x~ ,e~). 
In the real basis, these constraints look pore 1complicated: 

f7 if\ I rf\I V£ T'- I 
v;<~ =0 ~ 'j:' =e ~ (3. 36) 

\/ mil ;nn _ -VC:T'- rnli 
vo( '::1:: =.: 0 ~ '::t: - e 't' R. 

3. Now, let us discuss in short the case of curved geometry 
on ~~14. We restrict our consideration to the standard minimal 
Einstein N•1 supergravity/4- 61. To repeat the above analysis, one 
needs the fo~ing commutation relations between curved counter­
parts~ ,l)

01 
, ~a. of flat superspace derivatives/5,

20
•
21 1 1 

£~ 1 ~1=- Ro<J "-- rv 

{l>o( '£) j1=-2~d:; l)C\=::2~~o(_fo 
( 3. 37) 

[
"-' rV J ~ ,...,_, . ~ -
lJo~., lfp; = -1< ,1;2)r-~ ,1;lS<f- R~.r; 
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wherf' the symbols T , R, denote components of torsion and ourva­
ture (the latter takes values in the algebra of SL(2 ,C.) ) and the 
conventional constraints/5• 20 •~ 1 / are taken into account (we ba­
sically use the notation of Ogievetsky and Sokatchev/51). For our 
purpose, it is necess~ry to know explicit expressions for the 
components I( '<T'lf • /5,20,21/: 

'l.'f ,'(&' I o( _f f 
R - ~ -o<J, r.s-- z. (E.,(r t1,. "\- E."a·Er~) R o.3s) 

~~11 =-i Eo(~~; R , ( :§'o(_ R ==- o), 
where ~ is one of the basic superfields of minimal N=1 super­
gravity. Also, we will use the Bianchi identity 121 1: 

R ,......_ ,....__ o.39 > 
~,fj,rs.,. R.r,fj,ol~=--l)p( ~,p;,s-l)d" 1<"~j.s · 
All the basic gauge-covariant quantities of the flat case, 

except for ~~~(3.21), are gener~lized to~h~ur~d superspace 

simply by means of the change2>~ ,~p( ,dQ ........ ~..< ,~,( ):/)0.. in corres­
ponding formulas. The strength ryo< . gets a minor modifica-
tion: o( 

\)o<o{ ::~Q~c(- L llo(O(Qf-t- L"TJ~:tQr-r ll}~otc?J4 (3.40) 

~ng the relations (3.37)-(3.39), one may be convinced that 
~~o(O( enjoys the same properties (3.25), (3.26), (3.28) 

as fs~ . in the flat case. A simple calculation yields for 
,::-; .T _ o(Ec< j-> 2' the well-known expression 
•vQ( - I fo<Ol -

-;:::::; - .L(_"'-o<,..._. -)(,.... -VkTk vkT~) 
'vVot - 2 i.. \7 ~ + R ~e e. 

(3.41) 

which simplifies in the right Ere-basis to 

W""' F._ vkTk ~ -vkT~ 
01- e w01 e 

_ .1_ (lJ""' o< ,....._ ·-) ~ 2. vt Tk N" -2VkTk) -.z · :tJ + R e 1Sr e 
'- o( IJO< 

(~ W.F- -: e.vk. Tk. 8; rc-W - vkrpk ) 
ol. 01 v.,( 01 e = 0 . 

(3.42) 

Thus, we have demonstrated that all the necessary quantities 
of the N=1 Yang-Mills theory can be obtained algorithmically, 
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starting solely with the structure relations (2.1) and the stan­
dard nonlinear reali~ation formulas (3.1) supplemented by the co­
variant constraint (3.6). Perhaps, it would be interesting to , 
relate this formalism to the Levi superform approach advocated by 
Schwarz/22 ; 23/ as the most adequate geometric language to deal 

with hypersurfaces in complex superspaces. 
Finally, we note that, with respect to the right gauge group 

(2.20), all the covariant objects in the real Gc-basis transform c . 
just as in CTto~ , but with arbitrary superfunctions JlL(~,e,ti) 

instead of V(~ • The corresponding quantities in the right 
and left complex ~~-bases are invariant under this gauge group 
(this property is checked with the help of representation (2.22)). 

4. Conclusion 

The above consideration suggests several interesting new pos­
sibilities for the N=1 Yang-Mills theory. First, the fact that 
this theory is a kind of nonlinear d -mo.del on the group Gc. 
ra;ises the problem of constructing the relevant linear C) -model, 
with tfc as the vacuum invariance group. As any unitary repre­
sentation of c;~ is infinite-dimensional such a ()-model should 
naturally give rise to infinite-dimensional field multiple.ts. In fact, 
using general theorems on the relation between linear representa­
tiom and nonlinear rea.liza.tion/11 1, one may construct out of 
\(Lr~ e e) alone any representation of tr~including the unitary 
I~ \ I 

ones, provided those contain an invariant of the subgroup G. The 
possibility of cons~ructing such composite linear~

0

-multiplets may 
be considered as the group-theoretical argument in favour of exis­
tence of the dynamical phase with unbroken CYc.-symmetry in the 
N=1 Yang-Mills theory. An interes~ing point is the inevitable.pre­
sence of G-invariant (i.e., "colourless") states in these multiplets. 

Another line of thinking concerns the geometric analogy hat­
ween the N=1 ·Yang-Mills and N=1 supergravity. A natural conjecture 
is that these theories admit a unification within a larger theory 
of the Kaluza-Klein type. One may treat R~ <e}. = cec: . as an 
independent coordinate like .x_""' in eq. ( 1.1 ) , choose the base 
real superspace to be 1<,-I'+MI<t = fx.."' 'e~ ef. e.f} instead of 

.{ 1./ \: ' ) ) • 
~ ~ and construct a 4+M-dimensional extension of minimal N=1 
supergravity by ep:~bedd:img lR"~' -tM I{ into <[<+M 12 • The stand.ard 
theory is expected to be reproduced as the lowest order in a pro-
per expansion in G?~. . 
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However, the most exciting task is to extend the geometric 
picture described here to higher N gauge theories, at least to 
the case ~f N=2. The necessity to complexify {; in the N=1 case 
can be related to the fact that the fundamental superspace of 
N:1 supersymmetry is complex superspace (["'12 • Its true N=2 ana­
log seem~ to be a superspace bosonic coordinates of which fo1~ a 
quaternion 1241. So, in the N=2 case one may, instead of the 
extension Ti -'>{T'., i. Tit.) , try the extension of the type 

~~ ...... {Tk, 9,.'-®T~--- }• where qi- ( i. = 1,21 J) are imaginary 
quaternion units transforming as a triplet with respect to the au­
tomorphism group SU(2) of N=2 superalgebra. The corresponding pre­

potential should then acquire an additional triplet index. That 
is just what happens in the N=2 electrodynamics/7/. The elucida­
tion of the minimal geometric structure of the N=2 Yang-Mills 
theory may essentially help in exposing the analogous structure 

of N=2 supergravity. 
It is a pleasure for the author to thank Profs. V.I.Ogievetsky 

and Yu.I.Manin, and Drs. A.S.Galperin, A.A.Kapustnikov, V,V,Mo­
lotkov, E,S.Sokatchev, and K.S.Stelle for interest in the work and 
fruitful discussions. 
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11saHos E.A. 
BHyTpeHHRR reoMeTpH/1 N=1-cynepCHMMeTpH4HOH reopHH 
.RHra-MHilnCa 

E2-82-858 

N=J-cynepCHMMCTpH4Ha/1 TCOPH/1 .RHra-MHnnca C$OPMY11HpOBaHa aHanorH4HO 
MHHHManbHOH N=J-cyneprpasHTBLIHH B nvAXOA·e QrHeOCLIKOro-CoKa4eBa. noKa3aHO, 
4TO BHyTpeHHCH reOMCTpHCH N=J-reopHH .RHra-MHnnca RDDRCTCR KO~nneKCHa/1 reo­
MCTPH/1 B110lKCHHR BCUICCTBCHHOrO cynepnpocrpaHCTDa R414.,;!Xm, (JP.,ifP. =((JP.)+J 
B paCUJHpeHHOe KOMnneKCHOe cynepnpOCTpaHCTOO C 4+ Ml 2 •(X~, 8.(: = (} Jl. ,<f{l(i=l, ... M), 
rAe </>IL - DOKanbHbiC KOOPAHHaTbl Ha rpynne 'Q0 

( KOMn11CKCH$HKaLIHH KanH6poB04HOH 
rpynnbl G), M = dim G. npenoreHt.~Han l'J al -reopHH OTOlKAecrsnReTCR c Im 1> L , or 
paHH4eHHoH Ha rHnepnosepxHOCTb R 414 • OH npHHHMDeT 3Ha4eHHR a $aKrop-npocr­
paHcrse G c I G, noaroMy N =1-reopHIO flHra-MHnnca MOH<HO HHTepnpeTHposaTb KaK 
o6o6t~~eHHYIO He11HHeHHYIO a-MOAenb. QnpeAC11CHb1 COOTDCTCTDYIOUIHe $OpMbl KapTaHa 
H noKa3aHO, KaK C HX nOMOl!lbiO CTPOHTb reOMCTPH4eCKHe xapaKTepHCTHKH TeOpHH. 
06CYlKAaiOTC/1 HeKOTOpble HOBble B03MOH<HOCTH, DbiTCKDIOUlHe H3 npeA110lKeHHOH $OpMy-
11HpOBKH. 
' 

Pa6ora BblnOnHeHa B Jla6opaTOPHH TCOPOTH4eCKOH <)lH3HKH 011fll1. 

npenpHHT 06'beAHHCHHOro HHCTHTYTO llAepllbiX HCC11eAOBaH11H. AY6Ha 1982 
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The N=l supersymmetric Yang-Mills theory is formulated analogou~ly to the 
minimal r~=l supergravity ln tho Qglovotsky-Sokatchev approach. The intrin­
sic superspace geometry of tho N•l Yang-Mills is shown to be the complex 
geometry of embedding of tho real suJerspace R414 ={xm,(JP.,/TP. =((JP.)+J .into 
the extended complex one C4+~ti2. lx , ot-oP.,¢{1, (i=l, ... ,M), cf>i. being local 
coordinates on the group 0°, tho complexlfication 'of gauge group G, and 
MadimO. Tho N•l Yang-Mills prcpotential is identified with Im<l>t re­
stricted to tho hyporsurfoco R 41+ • It takes values in the coset ac;a. so 
theN •I Yang-Mills theory cnn be Interpreted as a generalized nonlinear a 

model. Tho corresponding Cortan forms are defined and they are applied to 
the construction of relevant geometric objects. We discuss also some' new 
possibilities following from tho suggested formulation of the theory. 

Tho lnvoetlQ!Itlon has boon performed at the Laboratory of Theoretical 
Physics, JINn. 
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