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1. Introduction

In superspace, supersymmetric Yang-Mills and supergravity
theories reveal quite different geometric structures as compared
with those seen at the component level. Standard gauge potentials
in superspace carry too much degrees of fresdom even in the fixed
gauge end for this reason cennot serve as the fundamental quanti-
ties. In any self-conteined superfield gauge theory they appear
as composite objects constructed from a lesser number of uncongt-
rained superfields, prepotentials. The prepotentials proved to
be very useful concept. Being directly related to the physicel
field content of a given theory, they provide an adequate reali-
zation of its minimal invariance group and hsnce can be considered
as natural carriers of the corresponding intrinsic superspace ge-
ometry.

At present, the complete prepotential formulations exist for
the N=1 Yang-Wills 1,2 and supergravity/3’4’5’6/ theories and,
at the linearized level, for their N=2 counterparts /1:8/ ‘){ The
gtandard strategy to search for prepotentials is ae follows. One
starta with the ordinary differential geometiry in superspace/1o/
and then solves proper constraints on covariant sirengths, cur-
vatures, torsions, etc. It is not so easy to guess what are the
adequate constraints in one or another specific case, because
of lack of general procedure .

Another approach, which seems to be more universal proceeds
directly from exposing the minimal invariance group and intrinsic
superspace gecmetry of a given theory. Once these are established
relevant prepotentiale are expected to naturally arise within thise
framework as objecte with a clear group and geometric meaning.

Such a program has been carried ocut throu§2 g7ly for the N=1 super-~
' have shown that the

underlying geometry of minimal N=1 supergravity is the complex

geometry of real superspaceTR" 4-’- {_X—M) @/" —é/‘i} embedded

gravity as yet. Ogleveisky and Sokatchev

*)The quantities suggested in/9/ as the prepotentials of complete
N=2 supergraviiy seem not to be true ones as they are still aubjected
to certain constraints.




as ¢ hypersurface into the complex chiral superspace (E 4(2 rv'|:
:{x;‘j@"‘@. The geometric role of corresponding prepotential H (1.9,9)
is to specify this embedding:

"= H"ec,05), Rexf=oc™ 6= 0% (g9 6p=84. Y
The minimal invariance group of N=1 supergravity is the super-
group of general analytic coordinate transformations of C“iz
(its divergenceless subgroup in the Einstein case /4/). By
the identificetion (1.1), it has & natural realization on
{.I'_m’e’: 5/‘ H h(xp,'é)} . In the case of nonminimel N=1 supergravi-
ties 'IRJ\H’ is embedded into a larger complex superspace ([ 4.
having two gpinor dimensions in addition . These extre spinor
coordinates, being restricted to R“ 4 constitute, to7ether with
H"'(x,sjé) , the full set of relevant prepotentials /. It is
espential that in both cases, minimal and nonminimal, the pre-
potentiels appear primarily ss the coordinates of certain complex
superspaces.

1t is unknown which superfields play the role of prepoten~-
tials in gauge theories with N = 2 (except for N=2 electrodyna-
mice) and which geometries are associated with them., No clear geo-
metric interpretatiQn exists even for the N=1 Yang-Mills prepo-
tential \/" (-1',9,5)( L is the index of adjoint representation of
the gauge group). At the same time, in order to unmask the mini-
mal geometric structure of higher N gauge theories (and super-
gravities as well)it is necessary before to clearly understend
the geometry of the text-book N=1 case.

This analyeis is performed in the present paper. We demonst-~
rate that the intrineic superspace geometry of the Nml Yang-Mills
theory reveals a close similarity to that of minimel N=1 supser-~
gravity., We start with the complexification G-c of the gauge group

and define the extended chiral superspace (1:4*'”!‘3::{1‘,26!"@_':}
(i=4,... M), ¢ where N-‘»’-OLL,YYIG
coordinates on . The Na1 Yang~-Mills theory turna ocut to be -
sociated with the dynemics of embedding of TR into ¢4+ﬁr2.
The Ne} prepotential V“(_X)G,g) coincides with va\‘e,_“ restricted
toR V It is introduced by the equation (2.11a) analogous to the
first of eqs., {1.1) and has a simple meaning: it parametrizes the
cosst space . Kef@f‘ remaing arbitrary and does not influ-
ence the dynemics, 8o that 4|2 . actually reduces to the
queotient G' . The fact that V"(.r,a,é) takes values in the

C
coaetG G allows the N=1 Yang-Mills theory to be interprefed as a

and (@‘" are local complex

5 Ty,

o

generalized nonlinear (3 ~-model. Hence, the powerful method of
Cartan differential forms/11'14/ may be applied to the construc-
tion of relevent invariants and other geometric objects.

The organigetion of paper is as follows. In Sect. 2 we pre-
gent the geomeiric derivaticn of the N=1 Yang-Mills prepotential.
It goes in the same way for the cases of rigid and local super-
symmetries ‘. In Sect. 3 the corresponding Cartan forms are defi-
ned end it is explained how tc construct from them the standard
geometric characteristics of the Nm1 Yang-Mills theory which auto-
matically respect the conventional kinemstic constraint8/15/. Ve
begin with the cese of flat geometry on.]Ft4 4 and then extend
our study to the case of couplings with Na1 supergravity. In
Conclusion we indicate soms consequences of the proposed geometric
plcture and meke an attempt to reelize whet would be the analog
of the complex group G;C in the cass of N=2 Yang-Mills theory.

2. The geometric derivation of the Nel Yang-Mills prepoctential

1. We begin with definition of the complex group Gc .
Let be a compact M-dimensional group with generators

Lo/ i
E ‘(‘L=:{,"'-M). In the basis where Tl’ are hermitean they satisfy
the commutation relations

] [T»L’TL]:LQ“M "[’8, (2.1)
Cf’ being real totally skew-symmetric structure constants. G—Q

is defined aé the group with _complex generators r[zL s which
constitute, together withTR"E (‘TL‘*)T the following Lie algebra:

LTLL ;TL"L]=L Cék@ruf , [T )Tgk]"": CLLG-FKP (2.2a)
T—l—zi ,T&k.]: 0 (2.2v)
or, in terms of hermitean generstors
LTL \T‘ﬂ = C_(LQT-Q
[Te, A= ke
(A6, ARJ=-icktT

*)
Letpe B8 Fesulte of this Section have elready been published as o

ogous ¢ i
Lo Rosly 78 67?&1 P-4 onsideration has independently been given by

(2.3)




where

L . y
T :TZ _\_T‘i. AL= L(\—‘-}‘L_v—\-nri> ' (2.4)
Besides, the group parameters associated with TL, TK are assumed
to be mutuelly conjugated., It is seen from (2.2), (2.3) that
has (locally) the structure of the direct product G- G X G
with GZ and K (G-) generated, respectively, by ]4‘- and‘T't
The initial group G. with generators ‘T'L appears in this pro-
duct as a diagonal, the remaining generators A span the real
M-dimensional symmetric coaet space ¢ .

It is worth noting that the group G-c‘ ig noncompact. In par-
ticular, if G- SUQ’I) then G—c SlLn, C,) . Due to noncompact-
ness of G- eny ite unitary repreeentation is infinite~dimen-
sional, for this reason ganerators 'T" A‘l may be simultaneously
chosen hermitean (‘T’L , To” muttially conjugated) only provided
they are represented by 1nfinite-dimensional matrices. Our conc-
lusions do not depend on a choice of representation, so in what
follows we may consider TL A hermitean without loss of
generality.

Let us treat G- as a Riemannien menifold and introduce,
in a v1cin1ty of ite identity element, local coordinates (P‘-
@‘ (ﬁ‘_%’ using for definiteness the exponential parametriza-
tion of H
ehTk kT _

A L

% (& ?Q 84_004) 3&@0 e e

(Ke‘?h”k-k'lm ‘?hAk)

Note that Rﬁ‘(’kand Im k parametrize, respectively, the sub~
group G- and the coset G.C/G- . Now we define the superspace
(E(*le playing the fundamental.role in further consideration.

It is the direct sum of ordinary chiral N=1 superapace@ “{Z”G'}
and the group
manifold:

@‘H’Mlz {‘xm @/1 } ¢4\2 @ G- (2.6)

Since the left and rlght superspace coordinates :[ Gﬂ nd
.IE (xZ)’f 6 (@4) are related by P-parity, it is natural
to accept the same convention- for (P ?’R

C?Zé—-?‘?‘: Re® -P-»Ke v I\m‘("' -Im(f" (2.7)

(2.5)

GZ regarded as a complex M-dimensional

Az
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Correspondingly, if TL are scalars, A" must be pseudossalarss
. P .
L [ (—'f_ P . . P
T Ty TE5TE AL

Clearly, (2.8) is the automorphism of the algebra (2.2), (2.3).
The next step is to define the ection of the group GQ in

Q42

the group of left nonlinear translations of group coordinates @4‘,

(eb
3,(0) 3.)= 9, (ele )

- AL, (2.8)

can naturally be implemented in this superspace as

(2.9)
3R(7‘K\ gR(ﬁl) 3o (&% \)@)
where A AK ()\4) are group parameters. To promotie global
transfomationa to the local ones we assume that 2 are

arbitrary enalytic functions given over the superspace Q’_‘IZ:

?U -.-:)\‘ (x, 94) )t =(X ){"._,, A*R(.IR 6?~> . (2.10)
The gauge group this defined constitutes a semi~direct product
with the supergroup realized on C @ ¢+ the Lie bracket of
their two arbitrary tranaformatione is a gauge transformation of
the type (2.9). As is implied by the relation {(2.2b) the left and
right components of the gauge group G-(c,,c GZc.;,X G'F-&c commute
with each other so that at the initial stage the “left" and nright"
worlds are entirely disjoined (though conjugated).

2. We wish to show that G'eoc is the invariance group of
H=1 Yang~Mills theor;y/ 1,2 and that the lstter naturally emerges
after extracting a special hypereurface ([‘_“N This hyper-
surface is the real superspace {xm 6'“ 5’“} Just
ag in the case of N=1 supergravity 6/. in esmential difference
is that it possesses now purely internal degreee of freedom
besides those representied by the axial superfield H (‘x e @)
(1.1), because of additional bosonic dimensions in Q: ”’2

Accordingly, the embedding conditions {1.1) should be supple-
mented with 2M conditions

C \/U = R Y ry

o) Tt =Vi@ed) PRe@=Ux008). (2.11)
Ve v

whers and U are real pseudoscalar and scalar pupsrfieldds.

Their transformation propsrties in G(’.oc are uniquely determined

by those of (P (PR given by eqe. (2.9). These superfields span,



c

respectively, the coset spaceG/G and the subgroup G' . Hence,
they are of the Goldstone type with respect to the corresponding

< ions G then UY(X,6,8)
G— ~transformations. We want to be unbrokens en e,
should be made to have no dynamical manifestations. To achieve
this, one may proceed as in standard nonlinear O -models (aee,
GeBe 13,1 ) and require the theory to te invariant under the
right gauge G’ -tranaformations: -

L (OTRVRAR) L o (TR G AETEL s

where ;\€= 'APGI,@,é) are M real puperparameters. Then U"(:I,@,G)
represent purely gauge degrees of freedom. From the geometric
point of view, the invariance under (2.12) means that different

-directions in ¢4+Ml2 are indistinguishable; the dynamics 194
required to depend only on the position of the hypersgrface_lR4l
with respect to directions spenning the coset space G'. In
other words, it i1s the quotient (I:“’" what does really en-
ters after allowing for the gauge freedom (2.12).

Upon imposing the natural gsuge condition

Ut (x,6,8)=0

we are left with M pseudoscalar superfields (\/L(x‘a\e) which

“live" in cosets Gc G- and transform under Ur€sc according to the
. . : . Ju-i&/

geperic formula of nonlinear realizaticns t

o R TETEAD) oVt oVt o KT e

(2.13)

with ?\2_ as in (2.6). The transformation law of matter super-
fields @(x)e,é) can be then defined following general prescrip-
tions of régs./11-14/,

R
Pl pd)=e KU P ep).

where TP are a proper matrix representation of G -generators
{(indices of the representation are suppressed).

Now, let us demonstrate that the law (2.14) is actually equi-
valent to the standard tranaformation law of the Nel Yang-Mills
prepotentialh’?/. To this end, we first exploit the automorphism
(2.4) of the algebra (2.3) to rewrite (2.14) in another forms

ot GAETE T A v, coviak kT e

(2.15)

P e

il

'

The next siep is to eliminate the factor exp _{'\‘KeT'e} from eqs.
(2.14), (2.14*) that.yields the one more possible form of the -
transformation of Vi (1,9)5)1

kb kAN 9.\ kAR - fp1kenk kk) /hik
Pinally, passing to the complex generators TIZL ,T‘i (by the for-~
mula (2.4)) end teking into account their commutativity we ob-
serve that eq. (2.15) is equivalent to the following one:

. \k -k bk ykenk e

L -2 - —- ¢ L
e M e VEL e ‘AR(‘Z = 2V T; (2.17)
(or with TI;:- ingtead ofrTZ' )e But this is just we are siming at
because r‘z_ fulfill the same commutatlion relations as ‘T’L
while the structure of V' in (2.14) does not depend on & par-
ticu}ar choice of generatorg and is determined solely by their
commutation relations.

In fact, the standard form of the Ne! prepotential tranafor-

mation law (with r[”’ in place of '—12' ) is recovered by asubstitut-
ing for AL in (2.16). its particular representation:

A= (T (_T—£==L1:\£=O>‘

£
This choice is non-self-conjugated, in accordence with the pi‘o-
perty that any finite-dimensional representation of the non-com-
pact group G-c' is non~unitary. By the identification (2,18a)
or the conjugated one

L = b -1
Agz_.i.t‘\'lt. (TZL’:‘O) TK—:’TL>
eny represgentation of G- can be/extended to that of the whole GC.
‘Then, using the generel connection between representetions and
nonlinear realizations one may relate any matter superfield
with the standard nonlinear transormation law (2.19) to the supsr~

<
fields transforming in G'ro linearly, according tc the represen-
tations (2.18s), (2.18b):

- s vkak =
CE(I@.&FQ‘ VEA, b@Epse VT k@(x.@ﬁ)

D x88)= e VFA r‘i P @c,e,é)=ekak@(r.@.5) =
= eZ vah @‘/_@xa)g)

(2.18a)

(2.18b)

(2.19)



k=
@L@c 0,6)= e’ @ (e 58), @R/@r'efé)=€( T L§R@fﬂ§)-

These relations can be interpreted as describing the transition
from the rc¢al basis in the group space of G;cto its complex left
and right bases, in a perfect analogy with the connection bet-
ween real and complex bases dn superspace ). The relations (2.19)
were known earlier 6 17/, but cur consideration renders to them
a clear group-theoretical meaning. Note that the substitution of
(2.18a) or (2.18b) in the basic law (2.14) yields the transfor-
mations of the N=1 Yang-Mills prepotential in the form given by
Siegel end Gates /6 s

e TR o-VETE_ Y LN Sl
v )\L*Tk \/"T’lz Vk/ﬁ"_k e; KE?F. (2.20)

Also, the invariance under the right gauge 6; -trangformations
(2.12) reduces to the well-known freedom of complexifying the
prepotentials

€'—VLTL—>-€WLT( -]‘=c CNRTk (2.21)

€2V‘;|:C= QW*-“?}Q eW"'T'lz. (2.22)

Tq summarize, we have derived the N=1 Yang-Mills prepoten-
tialb/LCX,@,e)from gimple geometric and group principles similar
to those constituting the basis of the Ogievetsky-Sokatchev for-
mulation of minimal N=1 supergravity . In previous studies,
the tranaformation rule of V' and VU iteelf either
were simply postulated /1,2/ or appeared as a solution of proper
congtraints on’covariant strengths/15/. The undexrlying cgmplex
group structure of the N=1 Yang-Mills remained implicit becauae
the generators of G} appeared always in their partlcular form
(2.18). Pinally, we notice that the noncompaciness of C; has
no explicit dynamical manifestations at the level of physical
components. This is because the C}F symmetry is spontaneously
broken from the beginning to the compact symmetry with respect to

f
*) To avoid a possible confusing, wWe note that no correla-
tion existes between choices of bases in C;C end in superspace.

G} and, beaides, the Goldstone fields amsocisted with this break-
ing are purely gauge' degrees of freedom {they are contained in

the superspin zero part of \/L Jo In the W.Z. gauge, the

(i? 6; ~trangformations have the form of ordinary gauge -
trangformations and so are completely hidden. On the other hand,

in any supersymmetric gauge they appear independently. Thus, the
C;a/(;—invarianco can be thought of a8 the consistensy condition
between ordinary gauge invariance and manifest supersymmetry.

3. The Cartan form anslyeis of the N=l Yang-Mills theory

1. Wo have shown above that the Na1 Yang-~Mills theory, from
the group-thaoretic point of view, is 8 kind of the generalized
nonlinear (3 modsl *, Indeed, \/L(g‘b 8) takes the values in the
coset G;E/G: and hence is the Goldstone supsrfield (exp{fgh/ A }
is nothing but the corresponding "chiral field"). Therefore, re-
levant invariants and other geometric objects should have an ade-
quate expression in ths universal language of Cartan differen-
tial forms which is of common use in theories with the nonlinearly
realized symmetry/12”14/. In the present Section we consiruct
the Cartan forms of the N=1 Yang-Mills theory and show that they
provide a convenient general basis for analyzing the dynamical
structure of this theorye.

The basic forms in the present case are spinorial ones, they
are introduced by the relations

_‘ kpk .
\.VA (Dd*tvé)eLVkAiL@eAe*_Q.eTe) LQ 31)
VD, B ) VML L (LA TG B,

Here,igﬂ, , are ordinary coveriant spinor derivatives (they
nay correspond to the flat ae well ap curved geometries oﬂ“(

and29- Q} L11L ka (1}4) are spinor connections on the group

|€oc 3

*)An ogous fact for ordinary gauge theories has been esfab-~
lished in In the supercase, the similarity with nonlinear G mo-~
dels 13 even more transparent and striking.



k (.‘2 YR e ‘k-—r
A AL 1 )k Q# o{féj“%ﬁ Lﬂb

(3.2)

——p ke .
u;; AT UL okth 3

Their rcle is to compensate the necommutativity of differential
operators ,80(, “bo! in the l.h.s. of (3.1) with elements of gauge
éx;oups GAF ) ero , respectwely. We shall see below that ?}4
can be constructed from b"@?’ e)alone.
It is easy to check that under the gauge group (2.14), (3.2)
the object C(_')“ -9‘94 and their conjugates display the standard
transformatlon propertlea of Cartan forms:

SKITE sikeTe - .
_§L KT _;L'( ‘K ie kb7 fﬁ e‘*k('f’p

o~ .3)
— e(-.e _L O € Ol = =)l
G —e KT, & KT 4e“'"/a,,e“<1”.’3

k.

As follows from (3.3) and the commutation relations (2.3), C‘%( R
&—)oz transform homogeneously:

(,Otf‘\L LKT CJEA{ "‘K&T( (3.4)
@01/4{ k€l "tAt - ke !

and can be interpreted as gauge-covariant epinor derivatives of
the prepotentiall/* (2,6,5) The remaining forms —\Z. °< . ._Q." are
the connections on the coset apaceG—/@ 1 they transform accord-
ing to the inhomogeneous law (3.3). These forms define the gauge-
-covariant spinor derivatives of matter superfields @@"9'5):

V. P@,65)= (Dy+i . P"’(’)@@(oa)
VP @)= (D, +L51 =0 & (2,8,8).

Now, let us come back to the discussion of the status of
gauge superpotentialslzf,?)o'.( . Fortunately, there is no need to
agsociate with them independent degrees of freedom. These super-
fields can be taken composite by imposing the manifestly covariant
constrainte of the inverse Higgs phenomenon :

(3.5)

10

e
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e Bt n st e ah

The equations (3.6) are algebraic with respect to U;f , D»R .
therefore they can eagily be solved to give

Bf= 4 o 2VEiT} 5e 2vitTt

(3.73)

SR _ 4 2Vt [ ‘Z\/t (3.70)
o= S K. :

Uy =% D, e

(in deriving (3.7), we have taken advantage of the automorphism

(2.8)). After substituting (3.7) back into the basic relation (3.1)
we are left with the spinor connections on the coset& G-:

k kp
0 = = Qt Tt 4 VTk,b' eV T . (3.8)

kepk
Gt Tt- 4 vkpk & -VETR,
,O_ = L2, Z)e

These are the fundamental quantities, of which all the geometric
characteristics of the theory can be built up: invariants, cova-
riant strengths, etc. This can be done following the standard
procedure of refa. 10'15/. We find it instructive to repeat the
derivation in the context of the proposed geometric interpre-
tation of N=1 Yang-Mills theory.

2., Till this point our consideration proceeded in the same
way both for rigid and local supersymmetrles. Now, we need the
explicit form of spinor derivatives a( v We begin with the
flat case and choose the real basis in superspace =

—.{x 9“ e’t.}ln this basis:

%ac 50% @/) .80( ’36“'“@2)‘% (3.9)

»{-a,(\é}}‘— {%oo() f}: 0 (3.108)
{$d7%ﬁ3=ZLCa)x} =2 G:;}gm _ (3.100)

’ Z( (3.5) sa-

Then, the gauge-covariant spinor derivatives Z

tisfy the commutation relations
{% 7 \7F73= . Fogs (3.11a)
{_\7:( qﬁj’%: LT:;F (3.110)
{TZ(‘ Vﬁ}: 2;(24—_{1)0(. =2 G:)ﬁ v (3.11¢)

11



where E(ﬁ E(} ‘2 are the G-algebra valued differential
2~guperforms

t_j_(f: %"“QF-‘— %}Qo(+ "'{SLA\QJg} (3.12)
Fé{}éf—‘-&gﬂ_}+§f2,+[_{jz. if} (3.13)
'O""ﬁ’ ,Z($9‘ + Dy L i f82,, —QU

The covariant strengths Ei F;<§ transform in G;Qpc homoge-~
neously, by the law similar to (3.4). Subgtituting the explicit
expressions (3.8) for the form%.Sz.U‘ MEng into (3.12), (3.13)

yields
F r 0 (3.15)
oAp = 2B
that ere just the constraints placed on the strengths in the tra-
ditional approach starting from the gauge potentials in super-

gpace . The guantity _J:L is the vector connection:

“$

Vgt Lv*—A
‘Q'o(ﬁ"‘L G _Sl = Ca'-r 2,9‘)0(/3 (3.16)
where Nt
’Z‘Z(FE ¢ 6;} =% (% «h{)fvé-n{@é R}) ?;-34317)
The comp051te gauge superfleldizsl (E( ) transforms under

G;poc according to

-4 1 ac -4
DM: 3 O\L}Qv‘m%c‘(&}g}'* "";8 O‘(}J;m gc()z')\g) (3.18)
thereby ensuring the standard transformation law for.SZLyn
AR tt trd pten
'(L:M:-_e K ;QMQ_LK 4 ‘K QMe,‘k Tt (5.19)

which is quite similar to the laws (3.3). Note that one more
conventional constraint, on the strength with mixed indicies/15/:

= By« By Qi {0y Y206 Q= O 020

12

(3.14)

>
~

-

e

v iy v g A

S

i e i,
— T - m‘e‘l——‘*

is fulfilled in the present approach identically, by the defini-
tion (3.14).
Let us now define the three-index form

Voou =V px L (D), Q.
o (B0, 26)= 0 B Fom

where ‘Zé is the spinor gauge~covariant derivative in the adjoint
representation of é;

V %ﬁ-\- u\-_-Q}, 1 ' (3.22)

and the commutator or anticommutator is chosen depending on whether
even or odd is the form on whlch.c7 acts, It is easy to see that
under the transformations (3.3), (3.19) the strength (3.21) un~
dergoes the homogeneous transformation:

= ‘V*tr\-' \: "‘Kt‘Tt (3.23)

+

(3.21)

ij

This strength and its conjugate F}svn naturally arise when spi-
nor gauge-covariant derivatives Taé,
vector one VZ; (3.11¢):

1 V% . Vinl= L Eim ’ (3.24)
{_iji; 5 ‘;;M:1=:i Fik’hﬂ‘

Using the relations (3.15), one may check that E;}E? ga-
tisfy the equations

[?}5 are commuted with the

FO‘PP=—FP°‘}5 (3.25)
v FF"}’ V5 feap= 0

The first one implies that E(FP can be represented as

Ripp= 3 apWp= 3 [PE2y - q f].cm

Then, the second equation yields

Vo( Wﬁ = 0. . (3.28)

(3.26)

13



By passing to the right basis in the group space of G;c aceor-
ding to the second of formulas (2.18)

2 hf"!k L - kf—v!z
W; = e\/ Wf,@_ VET (3.29)

this condition im reduced to the ordinary chlralltJ condition

2‘)0.1\/*_«7}) - eViTE %4 Wﬁ sV hTk_ oF (3.309

A direct calculation utilizing the explicit expression for the
formiz_ (3.8) gives

4 pep, (Ve g2V T
P TZl ﬁ
‘This coincides with the standard expression for the covariant spi-

nor strength of the N=1 Yang-Mills theory/T’z/. Using the connec-
tion (3.29), one easily establishes also the form of \m/' :

. (3.31)

H

W.’-;.’LV"(V Lﬁ-évk'ﬂa e\/k'rlz] : (3.32)
pzi HLTp

Now, we discuss the couplings to matter., In ordinary non-
linear realizationa/ll_l4/interactions of matter fields with the
Goldstone fields are introduced as feollows. One starts with o
Lagrangian invariant under the vacuum stability subgroup and then
replaces the ordinary derivatives by the covariant ones. In our
case, the vacuum stability subgroup is the group of rigid G trans-
formations. Therefore, in order to implement the couplings between
matter superfields themselves and with the prepctential VILGX & 5)
in the menner invariant under the whole group €oc. it is suffi-
cient to make the change{@d %d }-ﬂp[{? p ?M} in some
superfield Lagrangian having global G symnetry. However, sometimes
it is more convenient, to bring beforehand superfields into the
right or left G -bases according to the relations (2,139). All
the geometric characteristics constructed above cen be recast.
into these bases by formulas of the type (2.19):

L = ..kk
{7 vi3-eV" T g,

R = = _ _vk=b ‘
‘{Z. 1‘7‘5\&7"5}: e\/ Tk{?ﬁ,\%‘%}e VET (3.33b)

— vkTk
v, )VM}Q (3.33a)
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(here, the differential operators are assumed to act on everything
to the right of them) The explicit form of covariant derivatives
in the left basis is as follows

£ Tl LT SUmL M A wliei(s.
Va'é —-%0( ﬂgf"r“, v, -290?’ i RN ﬁd,aﬁzz(l Fi3-34)

wichéﬁdL given by eq. (3.7a). These operators are related to
the corresponding quantities in the right basis by complex conju-
gation., The covariant strengths in the complex bases can be ob-
tained by commuting relevant covariant derivaziyes between them-
selves; they all are expressed through 19' ZB:R (3.7) and have

a more simple appearance as compared with those in the real basis
(cf. expressions (3.32) and (3.33)). Covariant derivatives tz} .
VoCR do %t contain dependence on AV (,2 6 E) 80 one may

impose on 2’ 4 ordinary chirality conditions /6’7/;

5, &=0—~ E-¢ = )

- - (3.35)
1 it n —
In the real basis, these constraints look porelcomplicated:
v, L I_ VT T
Vi ®'=0 > P-e € (3.36)

@L'O —> @u —VLTL@K

3, Now, let us discuss in short the case of curved geometry
on‘HZfl . We restrict our consideration to the standerd minimal
Einstein N=1 supergravity 4'6/. To repeat the above analysis, one
needs ﬁgg fo%%gging commutation relations between curved counter-

. 20,2
parts ét%( R D . a of flat superspace derlvativesls’ 4 1/;

{5_50( 7<,f’S Rd ( )
R 3.37
EYRONE zb%za =208,

[ ﬁﬁf] u’f‘bx I(XPP%E—R" P

A}



By passing to the right basis in the group space of G}C acecor-
ding to the second of formulas (2.18)

emnn D hf‘ E.-—~ - k‘—TE
W; = e\/ WPQ VAT (3.29)

this condition is reduced to the ordinary Chlralltj condltion

% Wf» —e\/ Tk V Wﬁ -V TE-—— 0. (3.309

A direct calculation utilizing the explicit expression for the
form_gz_ (3.8) gives

&g__ - k\—ﬁ&
o ZVET 2.\/
W= F DRET B e

‘This coincides with the standard expression for the covariant spi-
nor strength of the N=1 Yang-Mills theory/T’z/. Using the connec-
tion (3.29), one easily establishes also the form of \m/' :

(3.31)

W.’;—..’LV"(V Lﬁ-évk‘rk e\/k—rk} : (3.32)
pzit KLTp

Now, we discuss the couplings to matter., In ordinary non-
linear realizaticnﬂ/11_14/interactions of matter fields with the
Goldstone fields are introduced as follows., One starts with a
Lagrangian invariant under the vacuum stability subgroup and then
replaces the ordinary derivatives by the covariant ones. In our
case, the vacuum stability subgroup is the group of rigid G trans-
formations. Therefore, in order to implement the couplings between
matter superfields themselves and with the prepctential V"QI‘Q‘E)
in the menner invariant under the whole group Coc. it is suffi-
cient to make the change{?}d %al }-4-{!7 p pm} in some
superfield Lagrangian having global G symmetry. However, gometimes
it is more convenient, to bring beforehand superfields into the
right or left G -bases according to the relations (2.19). All
the geometric characteristics constructed above can be recast.
into these bases by formulas of the type (2.19):

_— -vEFk b=k
77 PS VT (2‘ M}QVT

v (3.33a)
{Vk Bk ok vEFk . —V‘ZTE (3.330)
oL 3 é{.‘Viﬂj}=:€3 4:Q§\£Z? I%:}

g

(here, the differential operators are assumed to act on everything
to the right of theml The explicit form of covariant derivatives
in the left badis is as follows

4_, . ) AL_.“_ =/ L\ Nma — e =3,
Z —2)0(+c'gf‘77“’ 17'( _,80.() Pé"=9"% (e ﬁd,aﬁlz(l Fi3.34)

withzéﬁdL given by eq. (3.7a). These operators are related to
the corresponding quantities in the right basis by complex conju-
gation, The covariant strengths in the complex bases can be ob-
tained by commuting relevant covariant derivaziyes between them-
selves; they all are expressed through 29' 29:2 (3.7) and have
a more simple appearance as compared with those in the real basis
(cf. expressions (3.32) and (3.33)). Coyvariant derivatives ‘2} R
VD‘R do $ contain dependence on AV (,5( (] E)

7 4 ordinary chirality conditions /6’7/:

80 one may
impose on

5, &=0—~ F-¢ = )
‘84 @2‘ 0 —= SEE‘ c€£ (g Br)-

In the real basis, these constraints look Pore‘complicated:
VAR OL I_, VT I
. = - =
Vo{ @ O @ = g (3.36)
I I_
7 Pl=0— P's

._\//L-T-L q?
R
3. Now, let us discuss in short the case of curved geometry
on.ﬁaﬁl . We restrict our consideration to the standard minimal
Einstein N=i supergravity/4— /. To repeat the above analysis, one
t £ ing commutation relations between curved counter-
g : lat derivatives/5’20’21/;
parts ‘Do( » 5 N a of flat superspace

{2 By Ry oo
'{fbo( ‘S 2»6,,(}86"—: Lbo(ﬁ '
(B 3}9]

(3.35)

T D5 |

T~ T2 D5 ~Raps



where the symbols T N R denote components of torsion and ourva-
ture (the latter takes values in the algebra of Sé@‘C) ) and the
conventional constraints/5’2o’21/ are taken into account (we ba-
sically use the notation of Ogievetsky and Sokatchev/S/). For our
purpose, it is necessary to know explicit eXpressions for the

components Ro(}.“’ ‘T‘ ¥ /5,20,21/:

« Bf
=4 °
Rdj’,a’é"ztexa' Cps ™ ASGPXBK (3.38)

- - N ——
Ty IR ( @
l RN d = R

where E is one of the basic superfields of minimal N=1 super-
gravity. Also, we will use the Bianchi identity /21 :

Ry si vevRy o =—ST N (3.39)
‘Pf’rs J’,ff‘alﬁ (8 G"F},S ‘Y 0(|Pf)5

All the basic gauge-covariant quantities of the flat case,
except for 159(02(3.21), are generalized tor\ghg\’cury_gd superspace
simply by means of the change%’( \30«7\ Q"”%o(,ga'/ ;ba. in corres-
izr;ilzng formulas, The strength F)—Sa(,(

gets a minor modifica-

"F‘: A~ ’%' r~ Y o~ g —— (3.40)
AL ™ Sz VA . _Q + K . . . T

ﬁ & ﬁ ol AX f L f,o(o(ﬂa,*'t. ‘};Pé( 521),

Uging the relations (3.,37)-(3.39), one may be convinced that

Fﬁo‘&( enjoys the same properties (3.25), (3.26), (3.28)
as F . in the flat case. A simple calculation yields for
*potet

i = €7 Fpa = _ykeok o kok
Wy, =S (v .CR)(@Q’V 1 eVT) (3.41)
which simplifies in the right G-c-basis to

WJRZ e\/krr!z {/\—cfg e_\/krr-lz —
T ke == kr“v
:‘gf (@“&('%R)(ezv Tk,b eZV ‘k> (3.42)

the well-known expression

ol
N z—
(B, 7k vimk s bk
« Wy = & wW,e” 1< 0).
Thus, we have demonstrated that all the necessary quantities

of the N=1 Yang-Mills theory can be obtained algorithmically,

~
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starting solely with the structure relations (2.1) and the stan-
dard nonlinear reali2ation formulas (3.15 supplemented by the co-
variant constraint (3.6). Perhaps, it would be interesting to
relate this formalism to the Levf'superform approach advocated by
Schwarz/22;23/ as the most adequate geometric language to deal
with hypersurfaces in complex superspaces.

Finally, we note that, with respect to the right gauge group
(2.20), all the covariant objects in the real G;C-basis‘transform

just as in GCDL , but with arbitrary superfunctions A"Cx’a,@')

instead of K" . The corresponding quantities in the right
and left complex G.Q— bases are invariant under this gauge group
(this property is checked with the help of representation (2.22)).

4. Conclusion

The above consideration suggests several interesting new pos-
gibilities for the N=1 Yang-Mills theory. First, the fact that
this theory is a kind of nonlinear G -model on the group GC
raises the problem of constructing the relevant linear QG -model,
with G'c as the vacuum invariance group., As any unitary repre-
sentation of Gc' is infinite~dimensional such a G -model should
neturally give rise to infinite-dimensional field multiplets. In fact,
uging general theorems on the relation between linear representa-
tiomm and nonlinear realization/“/, one may construct out of
V:'(_x\a\-é) alone any representation of G'C'including the unitary
ones, provided those contain an invariant of the subgroup G. The
possibility of constructing such composite linear G“-multip;l.ets may
be gonsidered as the group~theoretical argument in favour of exis-
tence of the dynamical phase with unbroken G‘C-symmetry in the
N=1 Yang~Mills theory. An interesting point is the inevitable pre-
gence of G-invariant (i.e.,"colourless") states in these multiplets.

Another line of thinking concerns the geometric analogy bet-
ween the N=1 Yang-Mills and N=1 supergravity. A natural conjecture
is that these theories admit a unification within a larger theory
of the Kaluza-Klein type. One may treat Re‘e“-z‘?'i as an
independent coordinate like X™ in eq. (1.1), choose the base
real superspace to beR“*"H:{x’” %‘:’6)"5/"‘} instead of
‘R and construct a 4+M-dimensiona\l extension ‘of minimal N=1
supergravity by embedding _]R4*MH into Q:<+M‘2. The standard
theory is expected to be reproduced as the lowest order in a pro-
per expansion in .

17



However, the most exciting task is to extend the geometric
picture described here to higher N gauge theories, at least to
the case 'of N=2. The necessity to complexify 6} in the N=1 case
can be related to the fact that the fundamental superspace of
N=1 supersymmetry is complex superspace dj‘ 2 . Its true N=2 ana-
log seems. to be a superspace bosonic coordinates of which form a
quaternion ?4 . So, in the N=2 case one may, instead of the
extension TL-—»{TC’LTI‘} , try the extension of the type

TI‘-—@ "T'Ia’q,;‘®"r£§_” }, where CL" (L= 1,2,3) are imaginary '
quaternion units transforming as a triplet with respect to the au-
tomorphism group SU(2) of N=2 superalgebra. The corresponding pre-

potential should then acquire an additional triplet index., That

is just what happens in the N=2 electrodynamics/7/. The elucida-

tion of the minimal geometric structure of the N=2 Yang-Mills

theory may essentially help in exposing the analogous structﬁre

of N=2 supergravity.

It is & pleasure for the author to thank Profs. V.I.Ogievetsky
and Yu.I.Manin, and Drs, A.S.Galperin, A.A.Kapustnikov, V.V,Mo-
lotkov, E.S.Sokatchev, and K.S.Stelle for interest in the work and
fruitful discussions.
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WeaaHos E.A.

BHyTpeHHARs reomeTpma N=l-cynepcuMMeTpuuHoit Teopuun
Axra-Munnca

E2-82-858

N=1-cynepcummeTpuunaa Teopua AHra-Munnca cOOpMynUPOBAHA aHAMOM UUHO
MuHMManbHoit N=1-cyneprpasuTauyun 8 noaxoae Orueneyxkoro-Cokauesa. flokasaHo,
4TO BHyTpeHHen reomeTpueilt N=1-Teopuu fAvra-Munnca ABNAETCA KOMNJIEKCHaA reo-
METPUA BNOKEHMA BEWECTBEHHOrO CYNepnpocTpaHcTDa Rﬂ4;txm,9#,§# =(9M)*}

B pacumpeHHoe KoMnnekcHoe cynepnpoctpancToo C 4% M'z-(xﬂﬂ 9”::9“,¢i}G=L".ML
rpe ¢&‘~ noKasbHole KoopauHaTel Ha rpynne G° (Komnncxcmwukau&h Kanuﬁgoaouﬁoﬁ
rpynnet G),M=dimG. NpenoTeHunan =]-Teopun oTompgecTansaeTca ¢ Im¢ L , Or-
paHuueHhol Ha runepnosepxHocTs R 414 . O npuHumaeT sHauenus B daxTop-npocT-
pavctee G¢/G, noatoMy N=1-Teopuio AlHra-Munnca MOWHO MHTEpPNpPeTHpPOBaTb Kak
obobueHHyio HenuHeltHyw o -Moaens. OnpeacneHst cooToeTcTayouue dopmpt KapTaHa

¥ NOKa3aHo, KakK C uX MOMOWLI CTPOUTL FCOMETPUUECKME XapaKTEpUCTUKKM Teopuu.

06CYyHAAOTCA HEKOTOPHE HOBHIE BO3MOMHOCTHM, BuTEKaoue u3 NpefsokeHHONn QopMy-
nMPOBKM .

-

PaBota BunonxeHa 8 JlaBopaTopum TeopoTuueckomn duanku OUAU.

'

NpenpunT O6beAMHEHHOrO MHCTUTYTA AAGPHHX WccnedoBaHwi. [lybua 1982

lvanov E.A.
Intrinsic Geometry of the. N=1 Supersymmatric
Yang-Mills Theory

£2-82-858

The N=1 supersymmetric Yang-M!11s theory is formulated analogously to the
minimal N=1 supergravity In the Oglevetsky-Sokatchev approach. The intrin-
sic superspace geometry of tho Nw=! Yang=Mills is shown to be_ the complex
geometry of embedding of the real superspace R4l L {xm, gn TH _(9m*+] .into
the extended complex ona C+MlZa [x™, 0fw0hgl), (=1,..,M), ¢, being local
coordinates on the group 0°, the complexification of gauge group G, and
M= dimG. The N=1 Yang=MI1ls prepotential is identified with Im¢l re-
stricted to the hypersurface R4#4 .It takes values in the coset G¥G, SO
the N =1 Yang-Mills thoory can be Interpreted as a generalized nonlinear o
mode!. The corrasponding Cartan forms are defined and they are applied to
the constructlon of ralavant geomotric objects. We discuss also some’ new
possibllitles following from the suggested formulation of the theory.

The Investigation has bean performed at the Laboratory of Theoretical
Physlcs, JINR.
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