


As is known’/Y, the Mach principle is only partially reflec-
ted in the general theory of relativity. At each point of
a space, the acceleration of a freely falling reference frame
is given by the general distribution and motion of matter. Yet,
if we try to accelerate a probing body relative to such a frame,
its inertia turns out to be in no way associated with the dis-
tribution of matter beyond the body. In contrast to this, in
the general relativistic theory of the locally anisotropic
space—time and gravitation, the distribution and motion of mat-
ter manifest themselves in a freely falling reference frame.
The anisotropy of a space—~time in such a reference frome, as
well as the inertia of a probe, depend on their localization
and motion relative to the external matter. In this sense, the
Mach principle is better reflected in the general relativistic
theory of the locally anisotropic space—time and gravitation.

The special relativistic theory of the locally anisotropic
space-time has been developed in refs.’23/ the general theory
being outlined in/4,5/ The underlying idea was that the space-
time has not the Riemannian, but the more general Finslerian/®/
geometry, the metric of the curved, locally anisotropic space
of events being given by 'the formula/
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where g, (x) is the field of the Riemannian metric tensor;
r=r(x), the scalar field that determines the magnitude of the
local anisotropy; v;=v;(%), the vector field of locally prefer-
red directions in the given space-time, and ulul—-gikv iy k =
The flat anisotropic space with the metric/2/

dx .- vdx e
ds = [L—-Q—ulj—-—* )2 \/ dx % ~ dx® (2)
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is tangential to (1) at a given point. Here r and ¢/ are the va-
lues of the corresponding fields at a given space-time point.
The Riemannian and pseudo-Fuclidean space—time turn out to be
the particular cases of spaces (1) and (2) at r=0.

In Einstein”s theory of gravitation, the field of the Riemann
metric tensor is given by the distribution and motion of matter.
In the general relativistic theory of the locally anisotropic
space~-time and gravitation it is natural_to proceed from the
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assumption that the motion and distribution of matter determine
not only gy (x), but also the local space-time anisotropy, i.e.,
the fields r(x) and v; (x).The second-order field equations,which y
relate g (%), r(x) , v{(¥) and their derivatives to the motion ’
and distribution of matter, have been found in’/%/. Below, expres-
sions for some of the observables will be obtained.

Formula (1) determines the metric of the locally anisotropic o
space of events referred to an arbitrary reference frame x1 . ;

i

There arises the question of how one can determine the apparent
spatial distances and time intervals from coordinate incre-
ments dxli.
Let us first establish the relation between the proper time
at a given referencevpoint/7/ and the coordinate x°. To do this,
we consider, as usual, two infinitely close events that take
place at the given point. Such events will have the same values
of spatial coordinates. Assuming that in (1) dxl=dx2=dx3=0
and bearing in mind that ds=cd, we find ’

2
/2 om—terate
ar= L[ 0372 g0 dx°. (3) ,'
¢ 8o ”

In order to determine the spatial distance between two in-—
finitely close reference points, we call attention to the fact
that the equation of propagation of a light signal in the lo- i
cally anisotropic space of events has the same form as it has -
in the Riemannian space-time of the general theory of relativi- .
ty 2

g, dxldx¥=0. 4)

This enables us to apply a procedure similar to that used in
ref. ’® in the general theory of relativity to determine the
spatial distance.

Consider two infinitely close reference points A and ‘B with
space coordinates x% and x%.dz?% respectively. A light signal sent 1
from point B at the moment of the coordinate time x° 4 dx9,, re— !

aches point A at the moment x° and, having been reflected,will i
return to point B at the moment x°+ dxls,. Proceeditg from (4), .
one can calculate the coordinate time interval between the send- I

ing and arrival of the signal

[ [ — (%© <] _ 2 . » a; B
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The corresponding interval of the proper time is found using
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The spatial distance d between A and B is equal to cAr/2
and we finally obtain ,

at® =7, gax%ax P, %)
where
" [wf‘ .
YGB = goo' ydB ’ (8)
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It is interesting to note that the space geometry at the given
reference frame turns out to be Riemannian, determined by the
quadratic form (7) with the metric temnsor (8), whereas the geo-
metry of the space of events (1) is Finslerrian.

The contravariant three—dimensional metric tensor ;aB cor-
responding to the metric (7) can readily be written if we take
iﬁto account (8), (9) and the relation ~g‘l(~gBy+g0Bgoy/g00)=§7.
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The _element of the spatial volume is given by dv =
= V7 dx !dx%dx®, where # is the determinant of the spatial metric
tensor (8).

Let us now turn the question of synchronization of the coordi-
nate clocks (i.e., clocks showing the coordinate time x° ) that
are placed at two infinitely close reference points A and B, In
other words, we wish to determine Ax° the difference between
the times told by these neighbouring clocks corresponding to si-
multaneous events at A and ‘B. Since the equations of propagation
of a light signal in the locally anisotropic space and in the
Riemannian space are of the same form, the determination of the
simultaneity of events and the algorithm for calculating Ax°
in the locally anisotropic space literally repeat the method for
clock synchronization /8/ in the general theory of relativity.
Namely, the time told by the clock at point ‘B, which is between
the moments of signal sending and its arrival at B, is simulta-
neius with the moment x° at A, Thus

dxa
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