


I, INTRODUCTION AND SUMMARY OF RESULTS

I.1 The study of infinite-dimensional representations of the Lie
superalgebra (LSA) osp(1,4) initiated in the preceding paper

is continued. Throughout this work the symbol osp(1,2n), n=1,2,,.,
always denotes the (unique) real form /2 of the complex LSA
B(O,n). In Kac’'s classification of real Lie superalgebras /3/
oap(1,2n) appears as osp(1,n;0;R).

the

The representations we construct have two basic properties:
(i) even generators are represented by skew-symmetric operators
( ESS z even skew-aymmetric);
(ii) both the independent Casimir operators are represented by
multiples of unity ( SCH = Schur irreducibility ).

The problem of studyin¥ representations with theae properties
has been motivated in ref./ /. Here we only want to add that, due
to isomorphism of oep(1,2n) with the algebra pB(n) of para-Bose
operators for n degrees of freedom /4, such representations can
be used for describing the system of n non-interacting para-Bose
oscillators 5.

I.2 Constructing infinite-dimensional representations of osp(1,4)
satisfying the conditions ESS and SCE is a very general problem.
We shall delimit it by two requirements, The first one specifies
which structure has the representation of the even subalgebra
ap(4,[R). To this purpose we make use of one class R of infini-
te-dimensional skew-symmetric Schurean representations of sp(4,R)
obtained by the general method of canonical reslizations of Lie
algebras /6{ In each representation belonging to R the generators
Xy of ep(4,lR) are represented by
o .

te £ 1900l mo0s, .
Here 3 are certain ordered polynomiels in nine non-commuting
variables fulfilling the canonical commutation relations (CCR)

[pd 'q@] =4, -8 [qo( 9q(3-.1 =0, [po( ,pp]=0 (1.2)
d!F= 1,2,3
1

and relations that follow from the assumed existence of qq,- :
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~17_ -2 r 8.. _ +
[poapl= 8ol s [a 9] =0, me= It L (1.20)
Further T := {t 2,..,1,2,‘} is in End €™, the set of all linear
operators on Q:

The class R is deseribed in detail in sect,lI, Here we only
want to point out that the number M of elements of the set 'L‘n
is the same for all the representations in R 3 individuael repre-
sentations differ only in the dimension n and in the form of

operators -Er .

The first limiting requirement reads: the restriction of any
representation of osp(1,4) to the subalgebra sp(4,R) is a finite
direct sum of representations belonging to R , i.e,,the even ge-
nerators of osp(1,4) are given by

\

A

fad .
= (3,x) -1
X = 2,:__‘1 § r o 909%

where the set Jy:= {‘I‘“..,’Il“} C End @Y is a finite direet sum
of sets Tp *

R IBT, (1.3a)

The second limitation requires the odd generators to have
the following form

¥
T = (1) =1
¥, = }; (AP CRT IR LT (1.3v)

where ﬂl(l) are again ordered poIynomials and A € EndC . How-
ever, unlike the set T' , there are no a priori 11m1tatlons impo~-
sed on {A i,

Compatibility of these two requirements is examined in
sect.III and is shown to be guaranteed at least for the class R
we have chosen, Moreover, it appears that the polynomials j(j'k)
uniquely determine (via the commutation i- }auons connecting
even and odd elements of osp(1 4)) the /'L ,and that the number
VY of operators AS does not depend on N On the basis of these
results we further transform the relations of osp(1,4) and the
conditions ESS and SCH to a system of conditions for the set
M= {T‘ reesTushy, e Ay} . Each solution yields via Eqgs.(1.3a-b)
a representation (0 (MN) of osp(1,4) that has the properties ESS
and SCH. The conditions determining MN are analyzed in sect.IV,
the main results being:
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(1) =& solution exists iff N is even, N22;
(ii) for a given N the solution depends on the eigenvalue 2¢ of
the second~order Casimir operator of osp(1,4), @t being ‘con-

fined to an interval K CR, For a given %€ K there is
(up to a class of equivalence transformations) aust one

solutiom if g is even and just two solutions if 2- is odd;

(iif) there is a regular R € End @M such that .Q_(R?J(NR ) if re~
garded as a representation of the complexificetion B(0,2)
of osp(1,4) is & #-representation w.r.t.the involution t»
defined on the Racah basis (see sect,II) by

B(Xg)i= Ky, B(T))i= 1Y) (144)

(iv) the restriction L (3 )Psp(4 ) equals direct sum of
two, three or four repreeentatlons from the class R, if
N=2,N=4 and N 26, respectively.

I.3 The above results represent the complete formal so]‘.ution of
the problem, The adaecuve "formal® reflects the fact that the
functions f (3,%) y 1), as well as the canonicael pairs pg,q,
themselves, are not determlned as linear operators on some speci-
fied Hilbert space ¢f.. Dueto the CCR these operators have to be
unbounded ‘and hence the missing specification, besides defining
#. and the action of operators p Ay on the vectora of 3¢, must
also ’determlng a common dense domain SC?C@ ¢ of all tlj\e gene-
rators X. 5k° Yl such that the conditions of invariance Xij_CS_,

1%C g, hold.

One can expect that there are several possibilities of choo-
sing Q_with the required properties. Anywaybe)at 1eaet30ne such g,
C L°(R”) consider-
ed in ! lies in the intersection of domains of self-adjoirnt
operators Qr P, of t.he r-th coordinate and momentum, r=1,2,3, the
operators := Q PD 3), Ppi= iP I‘D(3 satisfy the CCR and
G := D(B) ¢N 1s invarlant w.r, t. Xak’ hl given by Eqs.(1.3\a-b),
irrespective of the form of functions §,4‘L and operators T,A,

always exists: the dense linear menifold D

Another, physically more interesting choice is based on the
fact that osp(1,4) is isomorphic to the para-Bose algebra pB(2),
This is immedlately obvious if one writes Ak and bk, k=1,2,
instead of Y and Y X! respectively, Now one readily 1dent1fles
the commutatlon relations connecting even and odd generators of




osp(1,4) with those of the pB(2) (cf. below Egs.(2,1b-c)), the
ak having the meaning of para-Bose annihilation operators and the
gk of creation ones. One can then try to solve the equations

8 do =0 , k=1,2

for the "vacuum' vector" Cbo. If a unique solution existas, the cor-
responding formal representation become a fully specified repre-
sentation having <p0 as cyclic wvector. This representation has
the usual physical interpretation only if bk is the adjoint of
k’k 1,2, This is equivalent to requlrlng ‘that the representation
should be a #-representation of B(0,2) « Our formal representa-
tions satisfy this requlrement on the formel level (see (iii) of
the list of results); one may thus expect that the above construct-
ion will yield a class of #~-representations of B(0,2), Detailed
investigation of these questions and of related topics such as
irreducibility, equivalence,etc., which cannot be studied on the
formal level, is in progress. Our preliminary results, as well as
those of ref, obtained in a different framework, confirm that
the vacuum vector exists at least for several lowest values of N.
On the domain g,- generated by applying polynomials in gk’gk to¢o
the formal expressions (1.3a-b) become (up to inessential phase
factors) symmetric operators and form an irreducible #-represen-
tation of the algebra pB(2) & B(0,2).

¥I, PRELIMINARIES

II.1 The LSA osp(!,4) has 14 generators X.., k<£j,, Yj , k€
Yi= {-2,-1,1,2 }. The X; span the 10-dimensional everi subalgeb-
ra sp(4,R). The basis of osp(1,4) we use is an extension of the
Racah basis of sp(4,R) 8. With the help of six auxiliary quen-
tities X k<£j, defined by X .:= X. - the law of multiplicat-

kJ
ion in osp?1 4) assumes the following symmetric form:

+)Let us recall that there is essentially only one involution on
B(0,2) that corresponds to its unique real form Osp(1,4)/2/. This
involution is defined,e.g.,by Eqs.(1:4) up to equivalence trans-
formations ¢~ (pscf" generated by any automorphism ¢ of B(0,2).

p—— Ak

AN s

o mnm o s e

T .

"

L0 Xind = 851%m * 85n%1 * Ba¥in * B¥41 2 (2.1a)

ey 1 = g + gy (2.1b)

{xj,xk} =2 Xy (2.1¢)
where 85" 85+k , 8 = agn(3j).

II.2 There are two 1ndependent Casimir operators K2 and K4 in
the enveloping algebra of osp(1,4), the former being quadratic
and the latter guartic '« For the purposes of this study it is
convenient to express them via Casimir operators 02,04 of sp(4,R)
and quadratic quantities

FEEE 1% SR T Zya%s, 1% Fx
ag follows

K2 = 02 + Z(VI—I + Vz-z) (2.2a)
Vi
K, =¢C, §(K2-02) -15¢, + 4 Z 565y o (2020
J>~k
The 02 and 04 are themselves simple functions of ij H
C, = 2(W + W c, =2 E W WL . 2.
2 B2+ W, 5) , C j%g €58 5"~ 5 (2.3)

i>k

II.3 The starting point for constructing representdtions of
osp(1,4) having the properties listed in sect.l.l is a certain
class R af representations of sp(4,TR). These representations
are infinite-dimensional and their complete specification, which
is in general a non-trivial problem of functional analysis, is
not necessary for what we are considering here (cf,sect.I.3), The
following algebraic specification is sufficient for our purposes.

Consider the complex aseociative algebra Eﬂ of ordered po-
lynomials in q&,qﬁ1,gﬁ, ®=1,2,3, in which multl?hcatlon is defi-
ned with the help of ordering relations (1.2) . An involution
f;ﬂ~§ is defined on EZ by the usual extension of q§.:= Qg s
Py = ’p« » % =1,2,3.

+)Notice that E} is the so-called ring of fractions /1o/ of the
Weyl algebra Ws defined by the set of monomials
n, n
2
q] 4z q3 y Iy 7n2vn3 = 0,1,.. «



Remark: S can be realized as the algebra of formal linear diffe-
rential operators /17

on some set C of sufficiently smooth funct-
ions on RI~ $o0%

-1 - -1 Jk 1
g(qo(’qo’\ )p‘,\) = Z ijl(qdyqd\ ) P1P2P3 .
Jrk,1
Here ijl are given polynomials and the action of § on any
W €C is given by
J+k+1
0y yxpuxgdin 3 P Ge xS
( ) 1772173 ik, Jkl °\’_ 4 axaaxkax :

The involution §r» St'is realized as formal adjoint operation,
i.e., for any @,PeC it holds Y §[¢]~ @ E*[P]= aival and
'?Z= (frz1 ,'72,"23) depends linearly on ¢, and their derivatives.

Let ﬁsﬁn:=8 ®End ¢1 ; this is a complex associative al-
gebra on which involution can be introduced with the help of the
standard hermitisn conjugation "+" on End QP

(fam¥:= trer* .,
The class R can be now algebraically specified as follows: R is
2 -~ .
the set of.mapp:mgs X5t f(xjk) 2 Xy of sp(4,R) into ﬂ'n ,
n=1,2,,. given by

A

= 3.2 A = 4 A _
X2-2 5, X_42 T19419 5 X 5 T PG,

~ - + ‘ A
X2 T Ptz X gy

i 2 2 o .
= 1(Q1+ Q3) y X1 4= Q1p|+Q3p3+1’
% = g, (pp- 3a3") ~ a3 a4 - ) -iq3'q.eh
2-1 = %1 'P2” 29 92 93'P3~ P1a3/ ~1q3 q3eh ,
AL 22, ., =2 A . 11
X4 i(py + p3) *igy"8t , X, = -ip, (pg + xq, )+
;-1 -1 L -
iqp (9yPy=Pya3)Py- @ pyd h - iqiq; q5"@ t +
1 -1 -1
N T 9 a3 @(tn],

A .2 . -2
Xyo = ~ipy -iq, ((q1p3- p,q3)2- %ﬁ + zi(q|p3— Py3;)8h -

iq,qg‘s {¢.n] - (qfqu-l ot ~ %6}1 ) (2.4)

and by the condition that {h,t,w}CEnd €™ is an irreducible set
of hermitian operators satisfying [h,x]= 0,

[b,(t,03] = w + 8 - 2n% - a2, [t,[t,h]]= 2{t,nl. (2.5
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Theorem: Let ¢ be :;ny element of R .Then

(a) Pis a homomorphism of sp(4,R) into A& , i.e.,the /’?jk satis-
fy the relations (2.Va);

() ng = £, for'all j,kel;

(c) @ maps both the independent Casimir operators of sp(4,R)
to multiples of unity (Schureanity).

Proof: The statements (a),(b) can be verified directly using the
CCR. In’ the, same way one gets by substituting (2.4) into (2.3)

ple,) =t +x, ‘ (2.6)

P(Cy) = w , r X
=l 2 4 2 2 :

where x:= z[g,[g,g]] - h'-[t,h]°+ (w+4)h". Further Egs.(2.5) im-
pPly(t,w]1=0, [h,x] =(%,x] = [!,5]= 0. Now the set {h,t,w }is
irreducible and hence w =wl, x=xI . BB

IX.4 The above specificetion of R is implicit. For getting its
explicit form we have solved the problem of finding all the ir-
reducible hermitian solutions to Egqs.(2.5). It is'convenient to
introduce

ve= [th] + Sw+ 8- ap-2mhH Le=71,

Then (2.5) implies

[hyyel= 2evs , [3,.0.]= 4n(2n’-w -8),

[®,3e]= 0, (w,n]=0. (2.7
One can easily verify that 5_}_1_,3,3} is an irreducible set of
hermitian operators satisfying (2.5) iff the set {g,_y__',,v-,y_}

is irreducible, fulfilae (2.7), h,w ere hermitian and y.= -y _. .

The complete solution of thé problem is described as fol-
lows. For n=1,2,.. consider the sets

(.. R (2), (R n=1
€ {(2(n-1)2—8, +00 ) En i(_1,o)u(o,1) n=2,3,..
Let p_(r()y) ,P=1,2, be the hermitian operator on " with non-dege-~
nerate eigenvalues

/\(;)(Y)::Zk-1-n+(r-1)?" 3 k=1,2,..,n ; ¥ € !?1(12) (2.8a)
and {\P(r) lk=1 ..,n}C €™ be a fixed set of orthonormal vectors
DA (ri( (r)_ (r] r) . > (r) 4y
satisfying h'' ()P, "= W (Y . Define for each J” € En e

operators x(‘_r)(r),gfr)(‘l‘)eEnd " vy
\



(I‘) (3’) ({/(I‘)._ 0
2P0 Y= 2 (ctnor)ug “"(3‘))7 P, k=, 0m

k+1?
2@ (2P ) (2.8b)
with () (fy:= {T+10-n2+(2k—n)2 ves 7=
" U2 (2ken-2h)? ves TE2 .
Further let

Cunr:= S0 2P, w1l wisr, wy=atien®ao,
M (nk)-— {[h(r)m] [+ “‘)m] ¥ oret2, (2.9)

where [t] denotes the matrix of any given 1t ¢End €™ w.r.t the
basis {\{,1(1‘),”’ '\px(lr)} .

Proposition: ) 2
(a) Each element of the set Y:= U‘ U}{j’r(n,)” )l}’“efr(lr)} is
n=l r=

?
an irreducible solution of Eqs.(2.7) fulfilling

.l'.l.t = h, l‘!’t:: w, xta = -Yg o (+)
(b) BAny two elements of ho are non-equivalent.
{¢) Any irreducible solutiom of Egs.(2.7) which satisfies (+)

is equivalent to some element of ¥

Proof: Assertiom (a) can be verified directly and the validity
of (b) is based on the follow1ng obvious statement: iwo elements
%h YooY, ,wI SCEnd(L fh __+,v w'I }CEnd(Im of ¥ are equi-
valent iff p=m, Tr h = Tr h’ and w = w’, The proof of (c) will
be given elsewhere. 3§

Remark: Let Pr be the element of K that is obtained by sub-
stituting 3’ into Eqs.{2.4). Then:the Casimir operators pr(Cz),
Pr(C ) (see (? 6)) cen be expressed via n and w, =Y

= 2 . = =
HJ 2)’§ +2n°=~10 ) as follows: SJr(CZ) =w, ,r=1{,2

¥a r

pyicy)= —l— W (n2-1) (wy +9-n°)

pg(C )= é W + 2w, (2—112)+4(n2-1')(n2~4) .

U
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III. REDUCTION OF THE PROBLEM TO "MATRIX LEVEL"

III.1 The restrictions formulated in sect.I.2 and the specifica-

tion of the class R given 1n gect.II,3~4 determine almost com-
pletely ‘the formel operators X Gﬂ‘ that represent the even gene-
rators of osp(1,4). They are glven by Eqs.(2.4) in which the set
ih,t,w} is replaced by some (flnlte) direct sum of elements
{-s’ s’-s} belonging to the set ¥ ( see proposition IX.4) and
there only remains to speclfy which elements of ¥ enter the di-
rect sum. Accordingly, the Xjk will be briefly written as

o o~
Xy = Xy (H,T,W) fu,ow}= ?fﬂsfis’f’-s . (3.1)

As to the odd generators, Egq.(1.3b) states that they also
have to be represented by elements of . This requlrement toget-
her with (3.1) determines uniquely the dependence of Y on p,qQ.

Proposition: Let Xjk, be given by (3.1). Then the relations

A A ~ o . /\*I

[Xge0¥2]= 85,00 T * 8,2 Y50 dikE€
are satisfied by Yleﬁ iff -

~ \
Y ,=€eq,0r, ¥ =€(q0A -iq3g (1,47, €:= exp(i®/4)
~ i
Y, = -ie(p; @A -1p3®EH A+ 305 ‘o[(r,u], A])
A
Y2 = -1G(p2@A +:1q2 (q,p3 p1q3)®[H A} §q1q2 q3 e{[’r H] A] -
195'0 [W,a] (3.2)

and [T,A71=0. (3.3a)

The proof cen be performed im the seme way &s in s {proposition
4.2); however, now a stronger and more genereal assertion is ob-

tained,
I11.2 By Egs.(3,1-2) a mapping Ll of osp(t,4) into & is deri-
ned. According to what has been said in sect.I, the following
conditions are imposed on JORF

A
(L1) Q. is a homomorphism of osp(1,4) into & ,i.e.,Xjk:=_()_(Xjk)
/fl:=_Q_(Y1) satisfy the releations (2.1);

A ~ .
(£22) Xak Xjk for all j,ked (ESS property) ;

(£L3) .Q-(K2) =3€.I ..Q-(K ) —%I se2e’e € (sCH property).



Y /

As the dependence of (L on Q1P is fixed and there is a
one- to—one correspondence of D.’s and systems W := fA H,T W}C
End(L , the ({L1-3) can be reformulated to conditions for A,H,T,VW,
Some of them have just been established: requiring that H,T,W
should be hermitian is clearly equivalenmt to ({.2) snd Egs.(2.5)
(3.3a) are equivelent to a subset of relations (2.1)(see proposit-
jon III.1). Two further equivalences can easily be verified:

~ "N a3 2
fY ,,Y 8= 20 , ,<=> A" = I
-~
§2_1 rY_|] =0 <=7 EH,[H,A]]= A . (3.3¢)
This is 81l we need for the reformulation of conditions
({21)-¢Q.3) in terms of operators A,H,T,W which is given in the
next theorem.

(3.3b)

III.3 Theorem: The mapping Q.-—.Qm( ) of osp(1,4) into ﬁ; rela-
ted to #(:= {A,H,T W} C End €Y aceording to Egs.(3.1-2),i.e.,

“ .2 a . & o 1
oop 1A%, Xy 5 = iggap, Xqp =Py X p T Pt 3
N

X = i( 2 + 2) §(\ = + + 1
11 Q4 Q3 ’ 1t Py Q3p3 ’

T i = ay(pom pazh)
2.1 T 4 P~ 392 -

L g2 2 . =2
X]1 = "'1(p1 + p3) +1q3®T,

-1 . o =1
s q332 - 195 Q3®H »

e . S IR B . -2 i -1
X2‘\= '1}31 (p2+ -§q2 ) +1q2 (32P3+ 1}33@ H ’Q1Q3 QT - %Q3 @V),
o L2 .o =2..2 1 . L -1 2 -2
Xpp = =ipy -19,7(J5- —g +2ij,@H -igyq; @V+{l~gfq3 ) @T -
F@W),
A N .
Y, =€q,®A, Y, =€(q;84 -19588),
I . . i -1
Y, = -i€ (p;® A -ip; @B + 593 ®2),
Y, = -ie (p, @A +iq]' 5, @B - & q,03'a382 - $a3'8D)
2 P2 92 J2 7 N9 93 % '

with 5% QP3=PyQ3 » €1 exp(in/4)
~
v:=(r,n], B:=[0,a], 2:={(r,H),a], Z:= 15[W,Aff, (3.34)
has the following properties:

(ay €L is a homomorphism ‘of osp(i 4) into fr oifr
(#1) (v,E]= 47 -8 —w +28°, (v,m]= -4nt -2v, [w,H] =

10

*
[t,a)=0, M,Bl=4, A%=1.
(b) ) has the ESS property iff
M2) H'=m, 7=, W=v .
(e) £) is Schuredn if
(M 3) M is irreducible.

(d) The Casimir operators given by Egs.(2.2) become

Ry 204 (Ky) = w-Bz+iZs3, (3.4)
2. Fy o= (1), 2(2) !
Ky 20 lKy) = Ky T+ Ky

(1), 1 2 ) 2 2 192
K, =) (c - F(K,=Cy) =15C,) = 4HTTH4T -V 44HV+ 5K5 +

(A%~ BZ)(ZT—K +4) - (2K +2)7- K2+ 12 (3.5a)

22 40 ¢ 2: E.E V. W j_k) = AB(4HT+Z2)-2(BZ+AZ)T +

3>k
(AZ+ZZ 2AB-2 BZ)H+(3AB-AZ BZ)V+AZ(K2—2)+1 4T-BZ-
3K2-22 . (3.5b)

. /
Proof: (&,b,d) The equivalences ('3"(3)@ (Q..),3=1,2, can be ve-

rified directly. In principle one could obtain in this way also
the formulae for ﬁz and'ﬁ4t however, this would be an enormous
calculation and’we have used another approach that will be de-
scribed elsewhere (see also the Appendix).

(c) Let K e 4 commute with all the X k’Yl (in narticular
the operators K and K have this property). One easily finds

4
that the six cond:.tlons

['ﬁjk,ﬁ]= 0, k==2,-1, jel , x4jslkl
are equivalent to
Cq"aﬁ]= [pivfﬁ]: 0, &=1,2,3,
which is further equivalept to ¥ = I®K. Then
Y 4
[')?2_‘,?(\]= o= (mxl=o0, [%,X=0 =rxl=0
(R, 8 1= oA[,K]= 0N [1,k] =0 = W,x)=0

and finally [Y 2,K1 o= [A K] = 0, If 94 is irreducible, then

by Schur lemma % = 9&, e €, R

11

)




We shall denote

& :=§0 2 Q) | # satisfies (H)-(8(D)}
of=tQel | a*=a}. (3.6)

From the formulae for ?1 one finds th&tﬂﬁfo‘iff 0 is a #-re-
presentation of B(0,2) w.r.t the involution (1.4).

Remark: Notice that (3K 3).is not equivalent to (L.3): if,
e.g., M = W ONUL, where M fulfils (WMI)-(44(3), then K ‘is
reducible and yet 17.9“: is Schurean, Thus the set £ does
not contain all the representations specified by (LL1)-(LL3).
On the other hand, the representations out of éf are probably
of little interest because one can expect them reducible; how-
ever this question cannot be solved on the present formal level
(see the discussion in sect.I.3).

IV. ANALYSIS OF THE CONDITIONS (4(1) - (#(3)

IV.1 1In this section the following problem is solved: for a gi-

ven positive integer N find all the mutually nonequivglent sy-

stems §A,H,T,W}CEnd C¥ fulrilling the conditions (#U1)-(#(3).
It is convenient to reformulate tHe problem by passing

from A,T (and auxiliary operators BECH,A], v={r H] ) to

1,0 N
Agi= 5(A + €B), V.:i= V + §(W +8 4T -2B%), €= X1 (4.1)

(cf, sect.I1I.4). The inverse transformation reads

- - _ ] 2 1
A= ZE*A& , B—%fe‘.AE y T= g(W+8-2H _zezgvs), Va Ez:_v . (4.2)

Lemma: 1, If the set {A,H,T,W} fulfills (#01)= (43), then
{a) there is a real 9 such that the operators Ay ,H,Vy4 Ba-
tisfy

{Aa,A 1=6 et (H,a¢]= e, [vz ,AE] 0,[H,ve] = 2ev ,
Cv+,v 1= sn(eE®F-n-4), [V, A_¢)] = sea v, (4.3)
with w:-z EAV_ A + EZEA A_H ; (4.3a)
(b) the set {At,H,V*} is 1rreduc1ble and
(c) has the folTowing "stexr" property :

= v_, p¥=u, VE=V. (4.4)

€

12

-

e e

2, If the'set fA+,H,V+} is irreducible, satisfies (4.3)

N for some 9¢c¢ R and has the star properties (4.4), then
§A,H,T,WE, Wi= W@aﬁ—4, where A,T;W are given by (4.2) and
(4.38), fulfils (@G 1)-(#(3).

Proof: 1.(a) The first four of relations (4.3) and the equality

oV_] = aH( 2n2-w-8) (%)

follow dlrectly from {# 1) and the deflnltlons (4 1). According
to (#(3) there is a complex 9t such that K2 —aLI ; from (3.4)
one them has

W o= ot -3+B2-AZ . . (4.58)
By using the relations (#(1) one gets

% = $[W,a] = [B,V] +2BH+s
and the first and third of (4.3) now yield

W o= -4+ ng V. ghe 22 ghA_! H. (4.5b)
By substituting 1nto (%) the flfth of (4.3) is obtained. For get-

ting the last relation one first derives from (4.5b) and just pro-
ved part of (4.3)
[w,a,1= 28+ e[y,
ot
v, (Ve a_J1= [, , efw,a ] -2ea -aa ] = sen v, .
For proving séR consider the minimal eigenvalue of H. In view of
(. 2) thls is a real number, say J ; . Thus there is some non-zero
Yo & CF fulrilling H@Py=d,¥,e Now [H,a]= €A implies that
wi‘“ A (PO is an elgenvector of H, the corresponding eigenvalue
being yk +1, or (Pi—O For 4A_Y, we always get A ({4 = O because
otherw1ee .k 1s not mlnlmal. I1f W]# 0, then (H, V ] ~2V_ yields
v_Y,=0, 1.e.,always VA Y, = 0. Then

=+
"E E ({)O 0, AEA._E qjo gg” (PO y £= 21
and substltutlng into (4.5b) gives
w@o=(%—ﬂ(&f&40¢o.
Thus (PO is an eigenvector of the hermitian operator W and as Jﬂ)
is real so is 9

,A_e]+4eAEH , [wyvl=0.

‘Then

(b) Eqa.(4.1,2,5b) show that A, H,T,V are polynomial functions of
At H,V+ and vice versa. Hence fA,H,T,W} is irreducible iff
{A4,H,Ve} 18 so.

13



(e) (# 2) implies V= .y which gives V: = --V._£ . Further w¥=y
[ ~2
end x€R imply W L v,

2. The relations’ A2=1: (1,B] =4, [H,v] =W+ +4-47-28°
immediately follow from (4.2,3)., The remeining of (#HQ), di.e.s
[a,w] =0, [T,A]=0 can be verified by using the following auxi-
liary relations thet can be derived from the "basic" ones (4.3):

t ~ ~ +
{ZE,A”L}=O, [W,a.]= 20 +22, +aeh B, [H,2]=ez. [V, W]=0 ,)
where Z£:=[VE ,A_E] .

Verifying (#2) ana (3 3) is elementary (see also (b) of the
first part of the proof). B

IV.2 The above lemma makes possible the following reformulation

of the problem presented in the beginnig of this section:

(i) For a given positive integer N find J{.c®R such that N_e‘%N
iff an irreducible set {Ai,H,Vi_}C End CV exists that satis-
fies the relations (4,3) and has the star properties (4.4).

Each such set will be denoted ﬁ&E{Ai,H,Viétand called "solution"
(for the given xeffCN).

,(ii) For each 'xény find all the mutually non-equivalent golutions.

To each solution ?{.,,_ corresponds just one ESS Schurean repre-
sentatioan(.) EQ;(’L(.) of osp(1,4) (see theorem III.3), the
sets ¥, and (. being uniquely assigned to each other by Egs.(4.1),
(4.2) and by the condition that o is the value of the second-or-
der Casimir operator K, (cf.Eq.(4.Sa)):Qm(K2) =1 .

The following theorem gives the complete solution to this pro-
blem. We present it here without proof which is rather bulky and
can be found in the second part of this paper.

Theorem:
(a) If N is odd, then J'CN = @, i.e.,no solution exists.
(b) If N=4M, M=1,2,.., then 3‘CN = (2M(M-1)-4, +®) and for each
QCEJCN there is just one solution.
(¢) If N=4M-2, M=1,2,.,, then
Q
Ho= [- 5+00), K= [omu-1)- 2, 2M(i-1)-4) m=2,3.. .

The solution for a given ch-KN depends on & real parameter e

*) For getting [VE ,W] = 0 two additional “intermediate" relations
have bean derived: z§=_45(v£ +A£Z£), Ae[:ve ’Z-£]= -4£AEZ£(1+ EH).
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that is related fo 2¢ by 2¢ = (1°-9)/2 + 2M(M-1). For

&= 2M(M-1)-9/2 there is just one solution (¥ =0), where-

‘as for all the other values #6X,, there are just two non-

equivalent solutions (%= X { 20 +9-4M(M-1) ).

(d) Let n=1,2,.., #e H, endfag,H,Vs},CEnd €% ve a solution.

Then a regular Rp & End €°M exists such that the operators

-1 ~ &

487 50 y{D) ¥ gerinea by @D = QR , Quhy, vy, T )

have the followimg propérties:

(i) The set 2D);= {H(D),Vén),w(m}, VJ(D):=’W(D)+2—4, is
reduced by four mutuallly orthogonal projections F®)
onto subspaces 'V‘("‘)cd‘_zn, ainP®= n,é), n, :=E(n/2+1),

- +1
n2:=E(z-1T1), n3:=E(312-—), n,:=E(n/2) “Jsuch that

4
o)
dé“F‘ = I, .

\ s s (D) (D) (D)
(ii) (complete description of H Vs (VII)) (0 )
If nd>0, then the restriction ,fp“ = P Rﬂ'ﬁis ir-
reducible and
(D) &) -

WY = -0 1 (4.6)
whereN n — (49¢+20-n2)1{?. n=2,4,..
vy = ‘wz‘(‘o"{n_\,, ' ‘”3“"‘"4‘/"1";m0 vee m=1,3,..

Further an orthonormal basis 6;‘ CW'@) exists sucg that
the matrices of operators H&D):= H(D)["U"(q) ,~(V§. ))o(:=
V‘_s:D)r'p‘(‘l)w.r.t. 5“ satiafy
M, (n, 5, +oe ~4)
(D) (D) _{ 1402 %y
H (V =
{[ % ! : )"]} J(z(nw '15(19‘-(-1 )E(M/Z)).. n=1,3,..
(4.7)

cee N=2,4,..

the sets ‘M‘r being given by Eq.(2.9).

(111) a2 = @lDhHr |
(iv) (complete description of Af_D))
Tet A(dp) be the operator from 'I/'(P)to (0"(00 that is

obtained by restricting i’(“O(‘l. F(“)AiD)F(e) to 'V'(@)¢

MY e the polynomial (4.3sa),

&)
The function E:R-2Z={0,%1,%2 ..} is defined by

E(x):= sup {n|ne Z, néx}.

15



Then AP - p(+2,(+2), 0, «,f=1,2 and for the remaining
eight pairs (%,3) the matrices of A %) w.r.t. the bases
introduced in (ii) have the following elements agf’@),

1£kén, , 1418ng ¢

(13)_ \I—_—_— 14) ,’
a1 P= S (B e = bl aT,
(2

3 (24) ,’

oy = 8y V(@2 (8= e = =8 V211w
1. 2)_

a]g_ )= 8, V¢ fo*2-21) Ty al(:i )= “8 o AT

(41). 42 PN —
o = 8 (@D =), g -8 (2@ T,

where T,:= 21-1 +((l-] -(40)/2.

Corollary: The representation Q.?(_(:g is a %-representation of
B(0,2).

Remark: The statememt (d) can be expressed in terms of classes e,

EO (see Eq.(3.6)): to an;yﬂw_“e £ there is a regular R such

that QRK,‘R'JG £ 0 Thus the classes & , EO are equal up to equi-
valence tranafomations}{xHRﬁ(xR-’. In this context it should be
emphasized that, in view of the star properties (4.4), not each
regular R leaves £ iwnvariant, i.e.,transforms any solution Hoe
again to a asolution, If RD is the regular operator such that

QO -1¢ € ., then, using the conditions (4.4), one sees that
RD“KRD 0

Rﬁ(xR"‘is a solutiom iff Si= RDR*RR]')1 commutes with each element

of the set P(D). Now this set equals direct sum of four irredu-
cible sets {H&D) ,@ED)L ,Wo("lm+3(-4}', where W&D)= ’V\I;_In“ . Thus the
"b1soks” st = pLagp@® satiefy ('W',\—W@)S(d@)=0. It may hap-
pen that 'm?"= v?(; fora £Q3 : Eq.(4.6) shows that this occurs for
N=4M iff ®= 2M2-5,|4-{g\=2 and for n=4M-2 iff$=0,l«-3|=2, In
all such cases the condition [H(D),S] =0 implies sz 0 -
this can be verified by using Eq.(4.7) and the explicit form
(2.8a) of 1D, Thus S(dp)::&; ste=) and, by taking into account

irreducibility of {H(“D),(Vl(rn) o ﬁ;’iD)S and the fact that S is equi~
valent to.the regular positive operator R*R, one finmlly gets
4

S =¢%IS¢-IH ’ S¢> 0.

lence for & given solution #, ¢ EndC¥ the set Rﬂ,,.R—I is solution
iff there are positive 813ee38, such that
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R¥R = &2 5} s, I R
D o= [ Ny D
Similarly, irreducibility of H,implies: if ¥, CEnd @ js a solu-

tion such that Qg 6 €, thenQlpy p-16 & irs R¥= or™!, c>0.
£

APPENDIX

The following lémma is very useful for verifying assertion (&) of

theorem III,3 and also if one wants to check that Egs.(3.4,5) are
~ ~

correct: commutativity of K,, Ky with A,H,T,W is obviously a ne-

cessary condition,

H,T,W} satisfies the conditions (#(1),

Lemma: If. the set #( = ,
:=# U{V,B,2,Z} fulfils the following

then the extended set
. +)
relations H

fa
w

[r,0]= v, [v,n] = 4p-w-g+2m°, (w,u] =0,
(v,r]= -4mr-2v, [w,r] =0, [w,v]=o0, (A.1)

(n,al= B, [u,Bl= 4, (8,2] =%-a-2H, [u,Z]= z+p+2an,
0r,al= 0, (r,Bl=2, (r,2]=2z+4Br, [7,2]=o0,

(v,al= z, [v,8]= a-Z+2BH, [v,2)= 2(A-Z)+2(BV-ZH)+4(BH-AT),
v,z]= 3z+4BT42aV,

Cw,al= 22, (w,B]= 2(z+B)+4aH, [W,Z]= 62+8BT+4aV,

(w,Z]= 8Z+26A+4 (AW+ZH-BV)-8(AT+BH) , (A.2)

fa,al= 2, {B,a}=o0, {z,a}=0, {Z,A=o0,

{8,8}= -2, {z,B}= 0, {Z,B}= -4H-24B,

{z,2}= 8r-4B2, {%,2}= -4v-2az,

%,Zf= -30+8T-4W+4(BZ-AZ). (A.3)

Proof: Most of these relations are obtained directly from the ba-
sic ones (M 1) and definitioms (3.3d) with the help of the Jacobi
identity and/or of its generalized form

{Ka[L’M]} = [L,{M,K}] + {M,[K,L]}.
E.g. [*,Bl= (T,(,413 = -[H,[a,2]1- (a,[7,8]] = [v,a] = 2,
fa,BY= {a, (1,81} = [u,{a,all+ §a,Ta,H]F = -fa,BY .
+) For the sake of completeness the definitions (3.34) as well as
the relations (#{1) are repeated.
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In some cases one has to calculate two commutators simulteneous-
¥
ly. As an illustration consider CZ,H]. The substitution Z= [V,A]

e lz,8] = - {[a,u3,v] =[(#,v],a] = [B,v] - (w,a] + 2[u? 4]
(B,v] - 2% + 2a + 4BH. )
On the other hand, by using [T,Bl = Z, we get ’
(z,1] = -[08,u3,2) - [(4,1],8] = [a,7] + (¥,B] = [v,B] .

HenceCZH-] CVB]-—A+2BH-Z.!

] 1t
Jree

—

The lemma can help in calculations in which polynomial fun-.
ctlons of operators A,H,T,W occur. Im yiew of relations (JH1) not
all elements of the tensor algebra Jl(ﬁ() generated by A,H,T,W
are independent and it is important to pass to a factor algebra
with independent elements. Performing such a factorization is
difficult in the framework of & (M) since the relations (#(1),
if written in terms of A,H,T,W only, are complicated (double
commutators). On the other hand, the structure of (A.1-3) is
much simpler: after introducing ordering in w by A<B< 2<%~ H
T<V<W, one sees that (A.1-3) automatically guarantee that amy
polynomial function of A,B,..,W-of the second order can be
"brought to the ordered form",i.e., expressed as a linear combi-
nation of ordered polynomials of at most second order,

One can thus try to factorize the tensor algebra J%(%L)
along its ideal g generated by the relations (A.1-3) and check
whether in d%(?ﬁ)/g a basis formed by ordered polynomials
existas ( this would be,e.g.,the case if the Poincaré-Birkhoff-
‘Witt theorem applies). Up to now we have not solved this ques-
tion; we only can add that using (A,1-3) we wer¢ able to bring -
to the ordered form all the polynomlals up to the fourth order
that occurred in calculat1ng K and K4 .
Finally, we want to draw attention to the almost superal-
gebraic structure of (A.1-3) with A,B,Z,? odd eand H,T,V,W even
elements, the only difference from the usual LSA being that the
r.h.s are quadratic (ordered) polynomials in generators,
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