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1. Introduction

Nonlinear sigma models considered in elementary particle
physics are constructed on the basis of the compact symmetry groups
/1“4/. However, recently it has been noted in some papers that
the sigma models with noncompact, in particular, with pseudo~-ortho-
gonal groups of symmetry, are seemingly interesting, PFor example,
the two-dimensional Gross-Neveu model appears to be connected with
the nonlinear sigma model on 50(1,2)/s50(2) /5’6/. In the classical
theory of the relativistic string there arise naturally the nonli-
near two-dimensional sigma models on the symmetric spaces
SO(1,n-1)/[SO(1,1)xSO(n-E)] s Where N ig a dimension of the gpace-~
time in which the string is moving /7,

The nonlinear two-dimensional sigma model with the fields
taking values on spheres S can be reduced to a set of interacting
fields, which are scalars under the S0(n)-group /9—11/. Such a treat-
ment of the sigma model appears to be convenient for the investiga-
tion of its equations of motion by the inverse scattering method,
for obtaining the infinite sets of the local and nonlocal conserva-
tion laws, etc.

In this note the procedure of reduction to the interacting
scalar fields will be carried out for nonlinear two-dimensional sigma
models on symmetric spaces 50(1,2)/80(1,1) and 50(1,3)/{s0(1,1)x
xSO(Z)]. Firat, these models will be formulated in terms of the
gauge fields interacting with the vector massless fields /12/.
Further a apecial gauge will be imposed on these fields in which
the gauge fields are related with the vector fields. It is impor-
tant thet this gauge can be chosen only in the case of the pseudo-
orthogona% symmetry groups, and in the usual sigma model on the
sphere it can not be taken. An analogous gauge was considered
in the geometrical theory of the relativistic string/13 /, and it
is this theory in which the nonlinear sigma model with the pseudo-

orthogonal symmetry group arises/7’8/. The final result of this
note is sets of nonlinear equations (2.22), (2.23) end (3.8) desc~
ribing the sigma models with the peeudo-orthogonal symmetry group.
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2. 80(1,2)/80(1,1) ~ sigma model

Following the paper/12/ we repreasent the field variables in
terms of the matrices C} (u, u ) <= 7,2 from the Lie algebra of
the S0(1,2)-group. These matrlces are splitted into the abelian
gauge field /q; with values in Lie algebra of the gauge group
50(1,1) and into the vector field J_

GA~B

=12,

(2.1)
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The gauge transformations of the field variables CF( are
carried out by means of the matrix

hxr shy o (2.2)
j[)\(u:uz)] = |shr ks o
) o 0

in the following way

éf:f’%%f—?}a =12, (2.3)

being transformed as the abelian gauge‘field
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the field A
T

and the field Za as the S0(1,1)- doublet of the messless fields
z

(2.5)
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In terms of these variables the nonlinear sigma model on the
gymmetric space SO(1,2)/50(1,1) is given by the compatibility con-
dition
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and by the equations of motlcn/12/
‘ . ’
DB*=0, 7=1,.2, (2.7)
T

where J) denotes the covariant derivative with respect to .the
gauge group 50(1,1)

—aalAt,, ao(At.(%)z[Ai,BJ]'

We choose the following metric signature in the coordinate gpace

}:(+,—-) . It is easy to verify the covariance of eqs. (2.6)
and (2.7) under the transformations (2.3) and (2.5).

Before investigating eqs. (2.6) and (2.7), we fix the gauge
in the theory. We choose tac ‘gauge condition in an unusual form.
We demand that the gauge field (ZA be equal to one of the vector
fields, for example, to Cl ¢

fyoR
a /u,’t(z) = C: (). (2.8)

Let us prove that these conditions can be always satisfie% by means
2
of the pauge transformation (2.3) with the parameter _A(u,u )

chosen in an appropriate way. For this purpose it is convenient to
introduce the matrix exterior differential forms

G:Qa’y,‘ A=Adu’, B=Bdu (2.9)
and the differential forms for the field variables
Q=a ot £= 8ot C‘:C;.&/o‘/‘
t L‘ b

and to use the exterior differentiation/15/. If the transformed
matrices (;‘ (2.3) obey the conditions (2.8), than we can write

Ca-dh=-bhy ey

(2.10)

This equation enables us to determine the function / (ﬂ a’ ) when
its integrability condition

0/A=0/A0//'\=0 (2.11)

is fulfilled, It is easy to show that this condition is satisfied

indeed if one takes into account that the linear forms a, éZC' obey



the compatibility conditions (2.6 ) which are written in terms of
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the differential forms as follows 6 = @722*‘@ (&Z —éfy )—‘:0, (2.22)
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(2.23)
8,-%,8,)=0.

So, the nonlinear SO(1,2)/SO(1,1) - sigma model is described
/ in the gauge (2.8) by two equations (2.22) and (2.23).

Thus the gauge condition (2.8) can be chosen always,

It should be noted that the integrability condition (2.11) is
fulfilled by virtue of (2.10) and (2.12) for the matrices CE. from
the Lie algebra of the pseudo-orthogonal groups only. For ortho-
gonal groups with real matrices (;% the gauge condition (2.8) can-
not be imposed.

3. 80(1,3)/[50(1,1)x30(2)] ~sigma model

1 2
In this case there are two gauge abelian fields (. and . ,
1

and the matrices A and B in (2.1) have the form ¢
In the gauge (2.8) the compatibility conditions (2.6) are §

‘ P
reduced to two equations 01 a, 0 0 2N gz‘
a. 0 0 0 0 0 ¢l ¢l
a - a : _ 2. ‘ - i - ¢ 4 (3.1)
oz s a g a’ g2> (2.13) ~ /41- 0 0 0 alz') Bi g; ‘Cz-’ 0 ol
b -5, =0 (2.14) 0 0 -ao 82 -t 0 0
where )(L— af/au n /( 12 . The equations of motion (2.7) * The gauge transformations (2,3) are carried out with the.matrix
become ;»‘ C%,\ 54) 0 Q
- (2.15) : 2 st 0 o
g ‘7 : 3[A(u,’u )=\ w059 -sing| .23
- = (2.16) : o ‘
1,4, 0,6; 23
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From (2.14) it follows that the fields 5 and 5 are expressed in 5

terms of partial derivatives of one function, 0(1/,((2)

{2 {2
5 8 =19 (2.17) As we have now two gauge functions J\(U,N ) and BO(U,L/ ),
e e then on the field variables (3.1) we can impose two gauge conditions.
We take these conditions in the form
. R f 4 2 2
Taking into account (2.7) we can write eqs, (2.13)-(2.16) in a =C. a :_5.’ (=1 2. (3.3)
the form 4 12 ’
@ @ - az_ a.')_ (2.18) Por conditions (3.3) to take place, the gauge functions /\ and p
222 1 have to obey the following equations
’ (2.19)
a a Q’ 67 C?' @ ' 7 7 . ! . 2
2 2 2.207 dhr= Q+ca5’y9(ff,7-éj-c/@]—c )+5{ﬂW(J/A'/~CZl'C2))(3.4)
> .20
a - 0’ =8 - 5 B , 2 . . 1 2
AR o/tp=-a+5m¢(o/,1 5—5/,1'0’)~co&p(c/;\-£—s/,1~c2).
The substitution ‘h -t e
(3] & r It can be verified directly that the integribility conditions of
a "—'8 'f a =g 'a) (2.21) (I these equations
gatisfies eq. (2 20) 1dentlcally. As a result, we obtaln the set l{ a/g — a/Z _
r=0, P=0 (3.4)

of two nonllnear equations for two field variables 0(&( u ) and Q'

JP(U W ) are fulfilled by virtue of (2.12) and (3.1).
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Thus, the gauge (3.3) is acceptable. In the gauge (3.3) the
compatibility conditions (2.6) are written as

o, a, = aé+co/ a b 0/

2 1 1 25
(315)
0{4,2_0/2,1’ a,¢, - QC, +gx ' 1’
where g’r? 52=f 0’ Cf 2 C? =0,

4 7 2 2 .
a=a 6' / a/ / =C° =12
1 T z7
The Euler equatlons I) é; (7 have the form

0,-a,,=q4-Cd-a,d 0,

157 2,2

— " (3.6)
0/’]/‘06,2-Q,(,f‘/€0{—67262 4{0’2,

4, - €& =(ay-(a,) -(o)«(d,);
c, —C _2(0/ -, d,).

From the 1ast two equatlons of %he’ et (3.6) it follows that

Z:éf C.=F ' (3.7)
4 7¢ ¢ 2

Finally, the nonlinear S0{(1,3)/[S0(1,1)xS0(2)] -sigma model in
the gauge (3.3) is described by the following set of nonlinear
equations

8,-€,,79, 0—0/+f/ X~
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ICT AL
a,-a, ,~a,6, 9-4/‘ 0/J’

134 (3.8)

Q.- cr ’C/O cré? C/J’ 5/,
c{,/a’ c/@ 0’6’ +cu’ @ 2
iy o, Ol 8, + 0y 0.,

Probably "Ehe substltutlons analogous to (2.21) have to be here which

reduce the last four equations in (3.8) to two equations of the
second order.

4, Conclusion

‘For the physical applications of the nonlinear sigma models

. considered here (for example, in the relativistic string theory
7’8/) it is interesting to outline what is a consequence of the
noncompact nature of the symmetry group in terms of the nonlinear
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equations (2.22), (2.23) and (3.8), and are these €quations comp-
letely integrable from the view point of the inverse scattering
methdd? For this aim the lax representations for these equations
must be found. Unfortunately, the method used in the sigma models

/1,9,11/

on spheres for this purpose cannot be applied here.
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Hecrepenxo B.B. E2-82~761

Henuueiinasn [nByMepHas curMa—-Momemns C IICeBOOOP TOT OHANILHOIT
rpynnoit CUMMeTDHH ’

Henuuefinan gsyMmepHas curMa-Mofenb Ha CHMMETPHYECKHX IPOCT-
pancrsax 50(1,2)/80(1,1) u SO(1,3) /[ SO(1,1)xSO(2)] dopmymupyercs
KaK TeopHA KaJUOPOBOUHHIX IoJiefl, B3aWMOHeilCTBYWNHMX C BeKTODHbI—~
MH OesMacconbiMH NOJIAMH. llpenmaraeTcs cleuuanbHAsS xanubpoBKa,

B KOTOpPO} KanHGpOBOUHbIE IOJIA OKA3LIBAKTCH CBASAHHBMH C BEeKTODHBH
MH DOJIIMH. B 3Tolt KanmMGpOBKe SBHO BHIIHCAHB CHCTEMbl HelHHEeHHBIX

ypaBHeHHIl, K KOTOPHM CBOOATCH ypaBHEHHs ABHXEHHS B DACCMaTpU—
BaeMOH CHI'Ma—-MOOenH.

Pa6ora Bemonxnena B JlaGopaTopuu TeopeTHYecKol dusuxu OWIH.

NpenpuHT 06veAUMHEHHOrO MHCTUTYTa RAEPHHX MccrepoBanwit. fybwa 1982

Nesterenko V.V, E2-82-761

Nonlinear Two-Dimensional Sigma Model with the Pseudoorthogonall
Symmetry Group

Nonlonear two-dimensional sigma model on the symmetric
spaces 50(1,2) /SO(1,1) and. 80(1,3)/[S0(1,1) x80(2)] is formu-
lated in terms of the gauge fields interacting with the vector
massless fields. A special gauge is proposed in which the
gauge fields are related with the vector fields. In this gauge
the equations of motion are reduced to the systems of nonlinear

equatiens on the scalar functions. These equations are written
obviously.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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