


1. INTRODUCTION

From the theoretical point of view the so-called nonlocal
light cone expansion (LCE) is preferred to the usual local LCE.
Whereas the nonlocal LCE is a true operator identity in the
Fock space /LC the local LCE is valid on a dense subset of the
Fock space only/g/

Moreover the renormalization group equations for the coef-
ficients of the nonlocal LCE are similar to the evolution equa-
tions derived by Altarelli and Parisi/3%/,

The application of local LCE to exclusive processes is very
restricted because the full scattering amplitude has to be
reconstructed from an infinite sum. Let us illustrate this for
the case of forward scattering: Writing the LCE for matrix
elements

. . 2n 2 2
<pITi(®MjO)p> = Z(xp)" F (x)HA ) (1.1)

2
X —’
we can reconstruct the scattering amplitude in the Bjorken re-

gion of the momentum space (up to the terms Of(p 2/ ¢®) as
T(v, @%) = [axe!®® <p|TG®IONP> =

. 2n d.2n~ 2 2
Y5l Z“Fn(q2>An(p2>~ 3 AT @860 -
diq

(1.2)
2 -
~3Cne a D"F aDa,6%)
where
- < 2
Fo(@®) = [dxe'™F %), vo2p, &=~ _é%;« ¢ --q?.
This series corresponds to the Taylor expansion of the scat-
tering amplitude
1 d
T, Q%) = I v® e () T(, QB ag =
n (2!1)' dv (1.3)
. v_\en 1 1 2 2n g2 2
- 3 (T L—l(@ T T, @7,

This series converges inside the analyticity domain of the
scattering amplitude. This means for QZ2>0, Q2/|ZQ)|>1.F0r
the usual processes as the virtual Compton scattering this re-
gion is outside the physical region. There egistjnpgwever, pro-
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cesses where this series converges inside the physical region.
An example of such a process is y*y*» M, where y* denotes
virtual photon and M is a meson (see /4/):

2 q8+ (12
s af-aqf

P=g;+q,

i ?t qf<0,q'§<0.

Here the physical channel is the s—channel whereas the LCE
has been performed in the t-channel. The convergence radius
is determined by the t-channel singularities which do not in-
fluence the coefficient functions for the s-channel processes.
We will show here that the nonlocal LCE can be applied to all
light-cone dominated processes since there are mno convergence
difficulties.

Furthermore, the anomalous dimensions of the relevant non-
local operators are simply connected with the anomalous dimen—
sions of standard local operators (essentially via Mellin
transformation, see /3/). All anomalous dimensions of the nonlo-
cal quark and gluon operators in QCD have been calculated in
the present paper in the one-loop approximation. As it should
be, they are directly related to the Altarelli-Parisi probabi-
lity functions Pj; . The nonlocal renormalization group equati-
ons are formulated in terms of physical variables in momentum
space. In principle they could also be used for the description
of physical processes, thereby of course an unknown target
function has to be taken into account.From the renormalization
group equations one can immediately obtain the evolution equa-
tions in the leading order.

The paper is organized as follows: In the next section we
derive an integral representation for the amplitude of a light-
cone dominated- process. In section 3 we elaborate on the renor-
malization group equations for the coefficients of the nonlocal
LCE. In section 4 we present an alternative derivation of the
Altarelli-Parisi equations (in the leading order) within the
framework of our formalism. In section 5 the application to
the QCD is described, together with the calculation of anoma-
lous dimensions of the relevant quark and gluon nonlocal
light-cone' operators.

2. CONVERGENCE PROPERTIES OF THE NONLOCAL
LIGHT-CONE EXPANSION

A
Here we will demonstrate that the monlocal LCE can be applied
to all light-cone dominated processes as there are no conver-
gence difficulties in contrast to the loecal LCE.
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For these general considerations we study scalar field theo-
ries and use also scalar currents. For simplicity we consider
only the most simple LCE which contains only the operators
with the lowest dimension (in the local case this corresponds
to the operators with minimal twist). With this restriction
the nonlocal.LCE. reads

RTj(x) j(0) S sofldxlgldxz F(x®, ky,x5 ) (RTO(ky, K 5)8), 2.1)

HRIT R Mag 4 ) B (ag) -

Here we have used the following notation: ¢ - scalar field,
j(® - scalar current, R, R - R-operations, 8§ - unrenormalized
S -matrix and F(x%/H}Kz ) - coefficient function. In a some-
what oversimplified way we can state: The nonlocal LCE differs
from the local expansion in two respects: Firstly, instead of
an infinite sum we have an integral over a finite interval.
Secondly, the light-cone operators O(xy,k o) are not taken at
X =0 (local) but depend on two points «,X,x,X lying on a
light ray. The coefficient functions,F(xz,Kl,xz) are defined
with the help of the x-proper functional of the product of
the two scalar currents’/1l/

CHOL RS T £ endg F PP (5,000 )enb (2,
(2.3)

O(ky, ko) = [dq.dq e (2.2)

then
F(x2, KisKg ) =
) eiquxlﬁixqzxg
—~p 10

- fa(xq,)d(xq,)FEP p(xg.qu.xq“,.qiqj)lqiqj = uy .

2.4)
B denotes the subtraction points. The coefficient function
F(xz.Kl,K } has the support ngxigjl,zwhich is a consequence
of the analyticity properties of Fy(x +XQ§, Q3 §§) w.r.t. va-
riables xq;.

For the matrix elements of the nonlocal light-cone opera-
tors <p |RTe(x §)¢(K2£)S]pz> similar statements are true.
In analogy to the Dyson—Jost-Lehmann representation (which is
now fixed at x® =0) this is an entire function of the variables
ibixj so that

- . iuini?{pj
<Py RT: @k D)l x):8lp,>= [ due X (U5 . PPy ) -
uyl<a (2.5)
The same conclusion can be drawn from the a ~representations for

the relevant graphs.

The main consequences of these facts are: Whereas the matrix
elements <p1|RT:¢Nﬁiﬁ)¢(K2§):SIp2> are entire functions

of the variables KjXDj the coefficient functions Fsz,xi) are



generalized funéilons w.r.t. ;. Thi's implies that the matrix
elements 6f currént ptoducts in its approximate form (2.1) are
well-defined " quantities in 'x -space as it should be:

<leRTJ(x)j(0)S‘p2 =

~ [dugdrg F(x%, k4, Kp) <p1|Rqu(,<1 x)¢(:<2 X)S|pp> = (2.6‘)

=[x dr, F(x2, k) [ EFCIE
II{ij < a
The main question is what happens in momentum space? In other
words, we ‘have 'to find out whether such a representation makes
alsd sensé for the Fourier tramsform of the l.h.s.' of (2.6). As
we have seen, for the local expansion this is only tfue for a
very réstricted number of processes*. Of course, also in the
nonlocdl case we have approximated the complete scattering am-
plitude in 'the neighbourhood of the light come. Therefore all
conclusions are true for the’Bjorked region of the momentum
space, which is in one — to - omne correspondence with the' x2 .0
region‘of 'thé x —space’5/ Hav1ng this in mind, we' can apply
Fourier transformation to eq. (2.6) (Omlttlng for brevity the
symbols R,R and 8)

T(k, p;) = [z <p{ | TGE §O)pg> ~ - ¥ |
(2.7)

duij X(uuv Py D¢ ).

~ [ axe™ [ dx,dr, F(x%, k) < 16 D)6 kg ) py > =

x (u ijyprps) =

) ix
[dxelkxfdkldle?(xz,xi) fduy;e

v

PU4jPj ¥

2

~ [ dxjdey [duy; F((k+ kUp)z,Ki ')g((uij,p, P,

where F denotes the Fourier transform

-

Flk? k;) = fdxe™ F(x® i) . (2.8)

In the course of the calculation we have used x-x = Q(yx?)
( (|x| so that g _ X =(x°- \/x -x2,0), [x__\/xz x2|< 1\/x2)
which is p0331b1e as the descrlptlon is correct near the 11ght
cone only. This allows the substitution

el uax_ oixugx e LK UG(X ~x) _ g lkuqx
The remaining integrals in eq. (2.7) exist. The proof is simi-—
lar to that which shows the existence of convolutions of gene-
ralized functions. An essential role pldys here the fact that
all integrals have a finite range.

s

* Especially for deep inelastic scattering the TFourier trans-
formed LCE does not converge in the physical region.
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In this way we have obtained an integral representation of
the scattering amplitude which exists in the generalized
Bjerken region. This is in contrast to the results obtained
with the help of the local} LCE where .it is in most cases not
possible to get a representation which converges in momentum

space. Our formula shows also the separation of calculable
quantities as F(xz,xi) (hard subprocesses) and uncalculable
quantities X(uﬁ' P.Pg ) which contain the target properties

in compact manner.

3. RENORMALIZATION GROUP EQUATIONS

In this section we investigate the renormalization group
equations (RGE) of the nonlocal LCE. Here we restrict ourselves
to the case of deep inelastic inclusive scattering processes
(forward scattering amplitude).

In the framework of nonlocal LCE there appear as calculable
quantities the coefficient functions F(xz,xl,xg) They are
defined according to (2.1), (2.4) with the help of the renor—
malized product of currents. In this way they are perturbative-
ly calculable. Moreover they satisfy the RGE 78/ (for simplicity
we shall consider only massless theories)

4 rd a a rd ’
fdxldxz [(p.-g;:- +B—5;)3(K1—K1)5(K2—K2) - (3.1
- yk{,x, xl,xg)]F(xz, Ky k3) =0,

where y(K ,k, ) are the anomalous dimensions of the nonlocal

If we restrict ourselves to deep inelastic inclusive

operators
scattering processes (forward scattering), the equation (3.1)
gsimplifies; if we define Ky =Kyt Kgy K_ =K2—-K1 and

F (X , K_ )=-—- de F(x . Ky ), v n_ )— fdrc+y(x1',f<é,l<1, I<2)

3.2
then (3.2)

far (et B-2)8(x" =< V=y(k” kN F, (x%, k") =0. (3:3)
= o g - - -t

Note that y(xZ,x_)#0 only for k_, K. satisfying the condition

0< —=-< 1. (3.4)
K"
Eq. (3.3) reminds one of the Altarelli-Parisi equations /8’
(see ref./3/y,
Knowing F,(x? ,k_) the complete amplitude T(x,p) can be
reconstructeé in the form
3.5
T(x,p) = [ dx_F, (£®, k _)<p |RTOk,, «,) 8|p>, (3.3
5



where

<P|RTO(k 1,k ,)8|p> = f(Ru_p) = [ due "UK-FP 5 (u) 3.6)

is an entire function with the Fourier transform ¥ (u).The phy-
sically interestihg amplitude 'f(q,p) can be obtained by the
Fourier transformation of (3.5) .

i(q+K_upix

T(qp)= [dxe ¥ T(x,p) = fdx [f dx_due. Fo % e.)x@ =

4

u

= [fax_duF (@ + «_up)?, x_)x (W) = [duQ(@? 2y (@; BT

.‘G(qz,—u"i:) = [dx_ x;r (Q®( ~ ML?.‘.‘) x_).

In. this way the target state is characterized by the function
x (u) which does not depend on other momenta*.

Now it is.possiblg to derive also a RGE for the modified
coefficient function G given by (3.7). Starting from

B

d ~ .
ua;-Ff &P, k) — [dely(k’, & _ JF, k%, k%) =0 : '

we get

4 . 2 d g K_.
p==G@% §) = po— [de_ Fp(@P (U~ ~2) k. ) =
dy dp £ \ 3.8)

= ffdx’dx_ y{x” ,x_ -)‘I?‘f (q3%1 - %),'K'_’_). ;

In (3.8) we perfofm’théféuﬁspituﬁiqn K;={&:§/n,i~é.,
R I IO Y A .
| ima Bl g L[] e * :
d’, n) 2 ' ' " a
and (3.8) -becomes

-

\77 I

K

’,

S, k) =
n

ffdc’dn |’ | -i-v(K_' , k7 —i) l?‘f(qz(i -
ne L]

s (3.9)

7, (3.4))

In arriving at (3.9) we have taken into accodht'(cf./s
g 1~ &’ . .
ylk, k%) = ———y (-’5-)0(—'5~~)0(1—~'5-—).

3 |K| K K K

* The complete ¢-depepdence is contained id 'G(q?, ¢). In

what follows we take - ¢°/2pq=&>0.
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In this way we have obtained the following RGE™*
instead of 3 for brevity)

(writing y

'oad
s+ B2y Qa2 &) - [ Sy S aa®n) = 0 (3.10)
op Jg n o on o
for the expansion coefficients of the amplitude
T@p) = fa0@% £ x@. (3.11)

For the absorptive part of the forward scattering amplitude all
the foregoing considerations remain valid, because one has
only to perform the substitution

Fr(xz,x_) » C(x% k) = mF, (x3, «_)

with the result (denoting schematically H=ImG, W=ImT and

using ImT=0 for &> 1)
1
el v gLy H@E - 2Ly &y uEh =0, (3.12)
H g & nonoo
W(g p) = [ duH(E, <)% . (3.13)

u \
These renormalization group equations are also valid for higher
order calculations (i.e., beyond the one-loop approximations).
Here the full ¢® -dependence is contained in the coefficient
functions G or H, resp., whereas y 1is an unknown (uncalculable)
function describing the target properties.

4. EVOLUTION EQUATIONS

For practical calculations the evolution equations/®/ are
better suited than RGE (for'?ractical aspects of the evolution
equations, see, e.g., ref. ’” ). From our calculations it is
now very easy to obtain evolution equations in the one - loop
approximation (leading order). If we take into account that
in the leading order (and in massless theory) the RGE (3.12)
is equivalent to the equation

4. 1)

1
2022 H(q? &) = [ . £ £y u(qe?

where in the anomalous dimension ¥y we substitute g-»g(qz) and
using the representation (3.13) we immediately obtain
2 0 2 ‘o & ¢ 2
~2Q% - W(Q", §) = [—y (=)= W(a"% ). (4.2)
aq2 £ 7 " non

*Note that the lower limit ¢ in the integral is due to (3.4).
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Thus, we 'have obtained the Altarelli-Parisi equation (in a
scalar theory) in the case when there is no mixing between
the nonlocal operators of equal dimension (equal twist in the
local LCE); this corresponds to the flavour non-singlet case
in QCD. Our derivation is clearly equivalent to that of the
original paper by Parisi 8/. ; there the differential equation
for the moments of a structure function following from RGE for
coefficient functions of the local LCE was converted into the
integro-differential evolution equation by means of the inver-
se Mellin transformation. However, this Mellin transformation
is built into our formalism from the very beginning, in view
of the comnmnection between the local and nonlocal LCE

Let us consider also the more complicated case of RGE con-
talnlng a mixing matrix, in analogy with the flavour singlet
case in QCD. In the rest of this section we shall present a
schematic derivation of the system of evolution equations in the
case when RGE contain a 2x2 mixing matrix of anomalous dimensi-
ons. Staying within the framework of scalar theories, such a
case corresponds, e.g., to the system of two interacting scalar
fields. We shall see in the next section that the relevant re-
sults carry over to the realistic case of QCD with minimal
modifications.

Thus suppose that two independent mnonlocal operators contri-
bute to the forward scattering amplitude

<DIRTJ(X)J(0)SIp> =

(4.3)

~ 2 far_FH(x® x_ )<p|RTO O )S|p> .

i=1

The RGE for the coefficient functions read (C —ImF‘ )

B*—)C (a®,x_ )-— E fd % (_’_V,K__:')Cj(q Ex’)=0 “(4.4)

and (cf. (3. 12))
1
(~—-- )H 2 F91 £ vy (@ ) e
B4-) H; (@3 &) - leg . ny“(n’HJ(q'n) 0. (4.5)

Now we look for an evolution equation for the complete absorp-
tive part of the amplltude (4.3). Repeating the foregoing con-
siderations and using (4.5) we obtain

-2, (0% 0 - A Y GV @), (4.6)
g noq =t n
where Wik(q ,£) are auxiliary quantities defined by
Wi (0% 8) = [ @l (a% Sy, @ 4.7)

with
<p|RTO,8|p> = [due' *"PXy  (u) . (4.8)

Te get the Altarelli~Parisi equations let us define first

2
LICRTIIENS L ACRY)

4.9)
Then according to (4.6) (denoting Sai(@ = xyn(x»
~22W(qR, &)=k 3 Gy, *W,) @), (4.10)
a 2 2 .. ] 1
q 1,]
where the symbol * denotes the Mellin comvolution
1
(t*g)(») = f f(——) g) .
Let us now define
= yolx y, y o lely -~y ; 11
D= Wi+ vipr Yoy *Woy +7 0 *Upe =7 ) # Wy s .10
in (4.11) ;;? is given by %
T v i 4,12
e Y12 =% ( )
where e= &(1- x); obviously
e* f=1f (4.13)

for any f{. Using (4.11)-(4.13) as well as the commutativity
and associativity of the Mellin convolution, it is easy to
rewrite (4.10) in the form

1
a2l w@2 =L 18 Ly, (Ewedn) vy, DAl 4. 14)
V5 % ¢) -2gn P L 125
Further, straightforward calculation gives

=W

2
d 2 1 = = s Sy
~0*-Z5D (% §) = ‘2*]-51 [vje *Wig+ vy *vig *7jg *Wyy +

dq
(4.15)
Y ge~vyy ) *ij *Wio 1 =

f"” £ by (MR +y gt DI .

f
Eqs. (4.14) and (4-15) are the desired evolution equations.
Let us stress again that they are valid in the leading ordgr.
Within the framework of the local LCE higher order correctioms

ENote that in the practical example of QCD discussed in the
next section the existence of y~1 is guarante%%/by the stan-
dard theorems (see, e.g., ' and cf. also ref.’?").



can be incorporated in the standard way 79/, employing the fac-
torization of the solution of RGE and calculating inverse
Mellin transforms of all relevant quantities. An analog of such
a procedure within the framework of the nonlocal LCE has not
been considered so far.

5. APPLICATION TO QCD

In this section we will show how the foregoing considerations
can be generalized to the realistic case of QCD. We shall give
the relevant nonlocal operators, their anomalous dimensions
and also describe the necessary modifications of formulae de—
rived for scalar theories.

To avoid kinematical complicatinns, we study the LCE of the
scalar product of electromagnetic currents i (x). As it has
been shown earlier, their expansion takes thd' form

RTGY (@1, 09) ~ [degduy 3 (x% xy, k) ROTQS) +

+ Jaxgdig T(x2, &y, kg JR(TQGS) + ...
with the nonlocal operators

Qg (ky, kg) =0y (X, kyX) ,
- = m g Ke
Oy (x1X, kpX) = : x/;(xzx).(y'uxu)P exp(-ig [ A, (rf)i’udr)¢(xlx3:
Ky (5.

QG(KI,K2)=OG(K1§, Kzf)uuini‘v ) (5.2)

K
- - - 2 oy -
Oglkyx, K 9X) 1 = :F;p(xgx) [Pexp(-ig [ Ay (rx)x)‘dr)]ab.F‘Bp(le):
K
1

F\a - a._ a b c . ] —. 3
o aﬂAV av Al‘- + gra.beAu'AV ; ('A[l.)bc ——AZlfbac

and the coefficient functions I, II.

In application to the forward scattering we have to consider i
- ]
<PIRTi*®j,O8(p>=~ fdx_ S, x®, k) <p|RTQ _S|p> + ]

+ Jak M, (x2, k) <p|RTQLS|p> + ...
with .

3 (22, 1) = ?} fan, T &% kq,hp ), I,(x%« )= é“_de+H(X2,K1,K2)-

10

From general principles it follows that the forward scat-
tering amplitude is a symmetric function of Xq. For coeffi~
cient functions this jmplies

Pk )=~ TP wk), (% k)= M, (x?;~x_)

Therefore the integration range can be restricted to positive

values of « _if we symmetrize or antisymmetrize the correspond-
ing operators. )

We shall now briefly describe the calculation of the anoma-
lous dimensions of the new nonlocal operators (5.1) and (5.2).
For the treatment of inclusive.scattering processes we can
restrict ourselves to the absorptive part of the forward scat-—
tering amplitude. For completeness we include also the flavour
degrees of freedom

In<p|RTj, ®i*©)8]p> ~ de__Cz (x%,k_ )<p|§m§s1p> .

+ [k 02 =%,k )<plRTQZS|p> + (-3
+ fd&_Cg(Xz.&)<p|ETQgS|p>,
where
03 (x%, k) = I 5 (x2 k)
C°(x2, k) = Imll_(x2 k)
G - f -
and Qf is the flavour octet operator
8
Valcr ce) = kg (5.4)
=;¢(K2§)y"£#a39 exp(-ig [ A, (r§)§“dr)¢(xlx): ;
Ky

C% is an appropriate coefficient function. The anomalous di-
mension of the operator Q% has been calculated earlier”/10/,
For the practical calculation we_substitute the correct sub-
traction procedure contained inR in the course of the renorma-—
lization by the treatment of the divergent quantities only.
This means we apply the dimensional regularization -and look for
the pole terms. Furthermore, our calculation is performed in
Feynman gauge whereas the important representation (5.3) is
proved for the axial gauge. For the leading operators this
brings no complications. If nonleading terms are taken into
account one has to be more careful.

In the actual calculations of the anomalous dimensions it
is most convenient to start with the Feynman rules for the
operator vertices. As an example we shall show very briefly
how these can be obtained in the case of the flavour nonsinglet

11



operator (5.4) (the relevant result has already been used
in 719/), We have

A® =R @™ ak,  yg®=[F @)ePdp,

Ko . K2 . ikr 2
[ R, ar = f iar fak A @e™ T -
Ki K1 #

ikXkg  ikXKy
— @
~ Y

ikx

Qg(Kl’ Kz) = f dpldpz:(;(pz)oqs (p11p2)¢(p1): +

it

[ dk Au(k)x“ o

+

[ G0y dp,dk:g @,)00 (0,10, 0¥ (B AL ()

y;eilel'!'iszzAS, (5'5)

it

8
0, ;. py)

. ik Xkg ikX Ky
8 . 8 ~ ~~ IPiKi+ipgKg ¢ —

ikx (5.6)
The expressions (5.5) and %5.6) represent the Feynman rules for
the operator vertices of Qq of order O(1) and 0(g), resp.

In the flavour singlet case the calculations are more in-

volved since one has to consider the mixing of @  and Qg
arising at the one—loop level. To deal with this problem it

is convenient to consider instead of (5-1) the derivative w.r.t.

Kk ¥

ﬁmgq(xl,xz). (5.7)

The corresponding Feynman rules for the operators (5.7) and
(5.2) are then (we use the notationpX=0p , K,=K{+Kg , K_ =
= ky—#y and all external momenta are taken to be outgoing):

2
For " Q’q(Kl’K2)
K1 K2 . N
1 D ) ipyrytipgky
=5YPg-Pyi€ e =
2 p2 - Dl“p
Dy Ps

* Note that in the second term of the LCE (5.3) one may per-
form a partial integration (modifying correspondingly the coef-
ficient function) which results in replacing (5.1) by (5.7);
the ""surface term" vanishes because of the symmetry properties
of the coefficient functions mentioned earlier.
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K s
igg K2 - ik k. ~
. - R ma -~ e _1 i
= -é—(—lgta)x#y(pz-pi—-k)-( = ~ie™HNy
k ik
. _L_ —~ -~ lad i -~ -~ -
P, < e ) K+(P1+P2+k)+"2“’<,\.(p2—1> 1"1‘)
k P p,+p, + k=0,
a, n 172
po=— =1
For Q. : 2TTPLTP
a
1 Ke

i;z Ky + ﬂ:le
+ €

_ —b‘ab (eikl Ky+ikgKg

) x

X(klk'sguv -—klkzu X~ 2kwx#+ ki k, x#xv)]

ky,u,a ks ,v, b
_ ikyKy+i(kgt+k
K1 Ky ——igt,, e T1rierkalice _
x [x, (K ~k,y %) - x,(k -k, X
KB ~kpx) -5 kg, KXl =
eik 1/<1+i(k2+k3)l<,2 _ e'i(k3+k1)x 1+ik2:<2
K = x
1oH k2,V ks,)\ k3
a b c -

x XA(k 1k2 guv‘~-k1k2#xv—:k2klvxﬂ+ klkexuxv) +
kiko kg

+ (x; > «k,) +cyclic permatations of (u v O

Takir'xg into account the symmetry properties of the forward
scattering amplitude it is easier to perform the calculation
with the symmetrized operator

2 K. K K K
— 0 (- ) —
aK—[ q( 2 > 2 ) Qq( 2 E] 2 )] -

In the course of the calculation we employ the dimensional
regularization and isolate the pole terms, which determine
the Z-factors. There appear integrals of the type

fdtq o =* 1 qx.
(q2+ M2)2

Be.zcause of the light-like character of x such expressions are
divergent. The divergences can be calculated with the help of
the expansion of the exponential
iKk_xq X ~
e =1+ix_Xq+ .. .




Again, because of the light—like character of ¥ only a few
first terms of the expansion contribute. Expressions of the
type ‘

. olk=) _ 4 1
[alq =
L E-T @eunR
can be treated with the help of the identity
e XtV _ 4 3 N X
e e e e I 1 P B 2___,___ € "'1
g (+yax+y2! ax2+...) -
so that
k-9
fa"q =1 1 = [d% et i (1 4 (1§ -9 +
k-q (g%+ M?)% (a%+ M?)% | 9ik
1 - 2 i;'_ i;
+—§(—-1q)2 9 2+...)3—__-—.-1_=1n2r(2_:}.‘..; e =1
IGk) ik 2

An important difference in comparison with the case of local
operators is that the nonlocal operators depend on continuous
parameters, so that

div(TOS) (x_) = g?[ dx’h(x_,«’ )O(x*)

and the Z-factors appear as generalized functions of two
variables (with finite support)

4

2711 ax? 24k ) B@A)SEN T

unren.

1PI
k2] = (@) (x,) (@) (x_),
(5.8)

In (5.8) we have generically denoted by ¢ an arbitrary exter-
nal field (quark or gluon) and Zy denotes the corresponding
Z -factor. Having calculated Z(x , «’ ) according to (5.8), we
may define the nonlacal anomalous dimension y(x4 ,k”_) as fol-
lows (cf. also ref./107y,
fdx” Z(«_, k7 )y’ ,r _) =Il'§q“z(l<__ 7).
7

Zlk_, k) =8k _~x")+g2z(k_,x").

(5.9)

In practical calculations x’ arises as k’ =x_gz, where z is
a Feynman parameter (i.e., in resulting Feynman — parametric
integrals we perform a suitable substitution /=« _2 in order
to match the definition (5.9)); z lies in the interval (0,1)
and this implies the constraint (3.4) mentioned earlier. Below
we shall list the results of the evaluation of relevant Feynman
diagrams (divergent parts are given, denoting é—r‘(z_ !.21._.)5
=ln—=):

i
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K
qa . div_ g2 A Ak’
Y I = 4,,2-CN1“—({WK z2(1-1z)

p,a
2 k= q
hie_,&’) = g CNlnA s e
R O

q . 1 . ~ 2 2
YAk ,Kk7) == _.. 8 1+z
ag =TT K yqq'( 2. Yoo Oyl

(we omit the obvious theta-functions due to

Ocz<) yd.

-,
m yb(e

2K/

—'Z+
-,
K

) '

-
+ e p

3 3 e 1D
=2z L 3501 - -
1 " 9 (1-z)yp(e s

a2 N Az,

P
—ipK__

y)

-
DK._:'_e

K

2 - “
A Td’
Cy ln-——u £ .

&%

s ' ‘ 4".2
j\ + A\ (L2~ —

. (1-2)

5(1-0)B7 e | 4

~ipk”

e )

+—32«a(1 —2)

the constraint

q K '
y o div © 2 A Cdk’ =
GG I =g “’g“~2NTl A kT8 et s kK
oy nu. ‘({ K—z'(z\+(1 7) ;))k (e T
+e“ikK-)+other kinematical structures
k,p,a k,v,b .
t % ' K « ~ f
q . 1 -~ - 2 .
Yk |, k") = i : = .B : :
L LT @5 Y@=~ Z;“zzNTz(zz*L d-2)%).
(¢l ' L *
Vaqq *
s K-—_ had -~
. _Id1v=£fc A {-fif‘:’(l PR ipk” —ipk’
4”2 N " 0 K + -—Z) )yp(e +e ,
P p
G -~ - 2
Y (x , k) = -1-- 7) - (o o . g , “ 2
gq "= 0T T Y@ Vg == oy O+ = 2)®).
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Y
Ga K..
) 2 A Tk, 3 2
® v o B o = [E=@u-2%-31-2)%+
I g’ly 4"2 2< ) o g K_
~q ﬂ:/(_: —-il:KL
+20-2)+1) k" (e + € Y+ ...
klu’a R,V,b
2 K .
div g g A dx
j I u—gﬂymzc}z(@)lnﬁ . —;:- x
) * 1+z
x(z(1+z)—-z-(-1 “_Z) ~8(1-1)) x
k,p, a kov,b  k,pa k,v,b ~9 &g »ﬁ&_
x k (e +e )+l

’ 1 -~ - 2 s
Yook &) = T Yaa(D: Vo= - -—f;-éng(G)(l ~z+2%8(1-2)+

z2 11 1 NT
B is-n(tL 1 NT .
Taoa, " -5 -3 Cz(G)))

In calculating the quantities ;qg, ;GG we look f9r the
terms proportional to g,,.As it has been shown 711/ this term
characterizes the gauge invariant counterterm.

In collecting the final results we notice that in general
G, j=4q0

P AP,

¥y (8 = 2P (@), (5.10)
where P%P are the well-known probability ("sp{}tting") func-
tions of Altarelli and Parisi’/®’/: The quantity y g,(z) for the
flavour non-singlet operator (5.4) has been already calculated
in’1%/ yith the result

7 (@ = PAY () . (5.11)
Let us remark that the relations (5.10) and (5.11) can be ea-
sily understood if one realizes the connection between the non<
local operators used here and the standard local quark and glu-
on operators (see/lof).

In the rest of this section we will show how the evolution

equations in QCD follow from the RGE (3.3), (4.4). To this end

* In the expressions given above we employ the following no-

tations for the group—theoretical factors:Cz(G)%b=fécdﬁmd ,CN5q=

=(%¢a)”,trﬁatb)=-NTBab=!éf, is the number of fla-

vours.

where f
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we must reconside; the integral representations (3.11), (3.13)
for the forward amplitude and structure function resp., in the

presence of the new nonlocal operators (5.1), (5.2) and (5.4).
Formulae (3.11) and (3.13) with G and H satisfying (3.10) and
(3.12) are strictly valid in scalar theory. To get the necessa-
ry modifications in QCD let us consider first the flavour non-
singlet case. Taking into' account that the operator Qg‘(S.ﬁ)
involves one extra factor X (multiplying the Dirac matrices)

in comparison with the scalar theory, it is clear that-the re-=
lation (3.6) is valid if we set O(xj, ky)= K Qg (x X, koX) (as
we want the matrix element to’'be a function of «.Xp only).
Then thé intégral representation (3.7) is obviously modified to

dK_~ o8 2
T(a.p) =f—K-~ Jdu 2@+ x_uwp)™, k _Ix)=~

(5.12)
~ [du 'Gz(q?.%)x(u)~, ~ ,
where
8 dx_ ~ K_ )
Q@ &) =7 = i - ). (5.13)

The convergence of the inteBral on the r.h.s. of (5.12) tay be
proved in analogy with the scalar theory. The function”cggl%gj
then satisfies ’'the-RGE (notice that the extra factor &/n ' pre-
sent in (3.10) now disdppears)
9 p. 0\ 8,2 Tidy ~8 £\ 8, 2 ‘
A i) (3 , -~ -/ 2.3 'G , =0 .
(ua# +Bag)¢q(q &~ [ . yqq(n) q (@ m) (5.13)
and similarly for the absorptive part. We thus finally obtain

the evolution équation for the non-singlet structure function
(in the leading order)

1
e M CR e Sy . LA E AL L TP
aqz 2 7 aq g5

which, in view of (5.11) is just the Altarelli-Parisi equation.
Let us now consider the singlet case. Here two operators

(5.2) and (5.7) contribute to the forward amplitude (see the

footnote on page 12); these operators involve two extra fac-

tors of X and therefore in analogy with the arguments given

above we obtain the integral representation ofithe singlet
structure function

2
W@ ) = T raH @, £, 0

with Hi(qz,f) satisfying the RGE

h Bod



1

Qg yH (e -5 (£ 2 o)
(”aﬂ+ﬁag)1’i(q'§) ff y T Y E @) =0, (5.14)
where
CEEEMOY (5.15)

Repeating all the steps which in the preceding section led to
eqs. (4.14) and (4.15) we obviously obtain an analogous system
of evolution equations which, owing to (5-15) and (5.10),
coincides with the standard Altarelli~Parisi system in the
leading order.
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