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1 • INTRODUCTION 

In many fields of the theoretical physics there arises in the 
last time the notion of the one-dimensional spatially extended 
relativistic object, the relativistic string. One may mention 
here the nonlinear two-dimensional Born-Infeld type field mo­
dels/1/, the dual-resonance approach to the hadron phlsics/2/, 
the problem of the quark confinement into hadrons/3, I, the cla­
rification of the galaxy formation mechanism in cosmology/ 5•6/. 

Recently new formulations of the relativistic string model 
have been proposed which use either unfamiliar mathematical 
methods/7-9~or new physical ideasllO~It is very interesting 
also to determine the connection of this model with the well 
investigated quantum field models, for example, with two-dimen­
sional gauge models/ll/. 

It will be shown in this faJer in what way the nonlinear 
two-dimensional sigma model/ 2 with the S0(1,2)/SO(I,I) sym­
metry group appears in the theory of the relativistic string. 
For this purpose we derive equations which determine the unit 
normal nf(u1,u 2) at any point of the world sheet of the string. 
These equations are 

Vi V i m" - ( m ~i m ·~ ) m ll - 0, ( 1. 1) 

where Vi is the covariant differentiation with respect to the 
inner metric on the world sheet of the string which is the mi­
nimal surface in the three-dimensional Minkowski space. If in 
the relativistic s~rong theory the orthonormal gauge is used, 
then Eq. (1.1) is reduced to the usual n -field equationn2,13/ 
the n-field taking value on the hyperboloid of one sheet 
(xo )2 -(xl )2-(x2 )2. _ 1 • 

2. THE RELATIVISTIC STRING DYNAMICS AND THE SURFACE THEORY 

Let us recall the basic geometric ideas in.the relativistic 
string theoryi2,IV.This theory describes the one-dimensional 
spatially extended object, the action of which is proportional 
to the area of its world sheet in the Minkowski space. Let 
x1-'(u 1,u 2 ), p. •0,1,2, ••• be the parametric representation of 
this sheet. Its intrinsic geometry is defined, as is well 

/15,16/b h . known y t e metrl.c tensor r-~· ·---~-·- ,__ 
• I 11 • • • ';,'FI l 

• • : ... ~--· /J'~ ~ 
~::'.,e.. ... .J;vJ..../' .-\ I 

1 



1 2 a/" ixfl ; 
g .. (u ,U )•·- ___,......"' X;X

11 1
. , 

IJ au' auJ ' ,-> 
x~-'. 
'I 

ax~-'' -__,...,, 
au 1 

(2. I) 

i,j- 1,2, J1. - 0,1, .... 

In space-time we shall use the following metric signature (+--... ). 
From the physical point of view one demands' in the relativis­

tic string theory that one tangent vector, for example x: 1 , 

has to be a time-like vector and the second tang,ent vector xr~ 
must be space-like.~ 

ll 2 
( x, 1 ) - g u> o , ll 2 

( X , 2 ) .. g zz-< 0 , (2. 2)' 

In 'this case the parameter u 1- r is the evol1;1tion parameter 
and the second parameter u 2-a· specifies the points along the 
string. By virtue of (2. 2) g • det II g ij W< 0 and the differen­
tial element of the string world surface area is J=g du 1du 2 

The action ot the r7lativ~stic string is defined by 

2 --s- -y If d u J- g , (2 .3) 

where y is a dimensional constant. The principle of least ac­
tion~ as applied t~ the functional ·s, 

8J:::g 
----.0, 

8xp. 
(2 .4) 

leads to the problem of determining in the space-time the two­
dimensional minimal area surface, 

In addition ·to the description of the surface bJ its radius­
vector xll (u 1, u 2 ) in the differential geometr/ 15• 16 there is tl;le 
possibility to use for this p1;1rpose the basic squared differen­
tial forms of the surface •. This description of the surface ari­
ses naturally by consideration of the moving frame on the sur­
face. There are various methods of the choice of this frame. 
It is convenient to take a basis formed by two tangent vectors 
to the surface xfl and x~ and by the unit normal, 

Further we shall consider the theory of the relativistic 
string in the three-dimensional Minkowski space. By virtue of 
(2.2) the normal mil (u 1,u 2) is the unit space-like vector. 

m2- -1. (2.5) 

The motion of the basis I x~ 1 , x.~ , mIll along the surface is 
described by the well-known equation/ 15/ of Gauss 

,.. ,. v.x .• -b .. m 
1 .j 1) . (2. 6) 
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and Weingarten 

ll j ll 
m,i "'-b; x ,j , 

(2. 7) 
ll -0,1,2, i,j-1,2. 

Here V; denotes the covariant different1ation with respect to 
the metric tensor gij (2.1). This tensor is used also for rais­
ing and lowering the Latin indices. In Eq. (2.6) bij (u 1 ,u 2 ) is 
a tensor of the second squared form of the surface. Actually, 
equ~tion (2.6) can be considered as the definition of the tensor 
bij . Thus, the motion of the basis lxiL; X~l ,x~2 ,mill along the 
surface will be defined by Eqs. (2.6) and (2.7) completely if 
the first" (g ij ) and the second (b ij ) fundamental forms of the 
surface are given. These forms cannot be arbitrary but they 
have to obey the integrability conditions of the linear Eqs. 
(2.6) and (2.7). These conditions are partial nonlinear equa­
tions for gij and b ij. In the differential geometry/IS/ they are 
called the Gauss equation 

Riikf- h;r b ik - bik hir , (2. 8) 

and the Peterson-Codazzi equations 

Vkbij •Vjbik 
(2. 9) 

i,j,k -1. 2. 

Here R ijkP is the curvqture tensor for the metric g {i 151
. The 

knowledge of the basis lx~ 1,x~ 2 ,mil I at any point of the surface 
enables us to reconstruct by further integration the surface 
xll(ul,u2) itself. This reasoning is formulated in the differen­
tial geometry/16/ as the basic theorem of the surface theory that 
reads: the symmetric tensors gij and bij which satisfy the Gauss 
and Peterson-Codazzi equations (2.8), (2.9) ~etermine the sur­
fac~ up to its motion as a whole in space. Thus4 for the deter­
mination of the surface one can use instead of its radius-vec­
tor xll(u1,u2) the tensory gij and bij , which, satisfy Eqs. (2.8) 
and (2.9). 

The world sheet of the relativistic strin.g is a minimal sur­
facef2·141. In terms of the squared differential forms gij and bij 

this condition is written as 

.gii bij,.. bii- 0. (2. 10) 

This equat'ion is in fact another form of string equations of 
motion (2,.4)/14,15/, 

a 
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3. EQUATIONS FOR THE NORMAL 
TO THE WORLD SHEET OF THE STRING 

As was mentioned above a natural candidate for the field 
variable in the nonlinear sigma-model connected with the rela­
tivistic string is the normal to the world sheet of the string 
m~'(ul,u2), ll-0,1,2. This normal maps the minimal surface which 
is the world sheet of the string onto the hyperboloid of one 
sheet 

(xo)2 -(xl)2 -(x2)2 w-1. (3.1) 

Let us obtain a closed set of equations for the normal m ll (u 1,u2). 
For this purpose we act by the operator Vi on the left and 
right-hand sides of Eq. (2.6) and sum over i .. 1,2 

ill iill. ij ll iill 
Vi, V m •- V (b i X , j ) • -(V bi ) X , j • - b i V X , j (3. 2) 

Here we have used the obvious equality Vi mil,. mil. ,as the normal 
mfl(u ~u2) and the radius vector of the surface xll (~ l,u 2) are sca­
lars under the transformation of the curvilinear coordinates on 
the surface u l,u 2. We transform the first term in the right-hand 
side of (3.2) making use of Peterson-Codazzi equations (2.9) and 
the second term with the Gauss derivative·formulas (2.6). As 
a result, we get 

ill ii ll iii-' 
v.vm --(V b

1
.)x,1· +b.b.m. 

I I J (3. 3) 

As the string world sheet is a minimal surface, then by virtue 
of (2.10) b~ .. o. Eq. (3.3) becomes now 

I 

vivimll .. b! b.im~-'. 
I J 

(3. 4) \ 

Making use of the Weingarten equations, (2.7) and Eq. (2.1) 
one obtains easily 

ll i j t p. ,k i i k j i 
ill. ill' ""bibk· X .X "'b.bk g, ab.b 1 .• 

" ll ,J IL I l I 
(3.5) 

·Finally we have the following equations for the normal m~-' (u 1,u 2) 

i 1-1 ( v ,i ) 1L O vi v m - m ' i m v m - . (3. 6) 

Recall, that the covariant differentiation Vi is made here with 
respect to the inner metric on the world sheet of string (2.1). 
Therefore Eqs. (3.6) will be a closed set of equations provided 
the metric of the minimal surface (2.1) will be given. However, 
the dependence of Eqs. (3.6) on the metric tensor (2.1) is for-

" 

) 

·} 

mal because on the world sheet of the string the conformally­
flat coordinate set 

g 11 --·g22 ' gl2-g2l.o (3: 7) 

can be chosen alway/ 2•141. 
As a result, Eq. (3.6) takes the form 

J.l J.l v v . ll 
m,ll-m•22-[(m,l mv,l) -(m,2mv·2)}m .. o. (3.8) 

This is exactly the equation of motion for the n-field with 
the symmetry group S0(1,2)/S0(1,1). 

In the n-field theory Eq. (3.8) is supplemented usually by 
the conditions/tV 

ll 1-' 2 
(m,l ± m,2) • 1. (3.9) 

That can be made always by virtue of the conformal invariance 
2 

of (3.8), i.e., the invariance under the transformations u1±u= 
= f+(ul ± u2). In the relativistic string model/ 2·14/ we have other 
conditions on the first derivatives of the normal m 1-' (u l,u 2 ) 

- 2- 2-- ) 
gll. m,l --g22 --m,2' g12• g21 •(m,lm•2 ,.Q, (3. 10) 

where gi. is the metric tensor on the hyperboloid of one sheet 
m2,. -1, oA which the normal mfl(u1,u2) maps the' world sheet 'of the 
string. Conditions (3.10) follow directly from the derivative 
formulas of Weingarten (2.7) in the conformally-flat metric 
(3.7) in the string theory. 

Thus, in the theory of the relativistic string moving in 
the three-dimensional space-time there arises naturally the 
nonlinear two-dimensional sigma model with the SO(J,2)/SO(l,1)­
symmetry given by Eq. (3.8) and subsidiary conditions (3.10). 

4. SIGMA MODEL IN THE STRING THEORY 
AND THE NONLINEAR LIOUVILLE EQUATION 

The connection of the usual S0(3)/S0(2)-nonlinear sigma mo­
del with the sine-Gordon equation integrable by the inverse 
scattering method is well-knowrf 12/.The sigma model defined by 
(3.9), (3.10) encounterea in the relativistic string theory is 
related closely with another nonlinear equation, namely, with 
the nonlinear Liouville equation, the general solution of which 
is well-known/17~ Let us establish this relation. For this aim 
we turn to the Gauss equation (2.8) and to the Peterson-Codazzi 
equations (2.9) and consider them for the ~yperboloid 
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rrf m 11 - -1. (4. I) 

The coefficients of the sec'ond quadratic form b ij for t)l.e hyper­
boloid (4.1) are defined by Eqs. (2.6) that in the case under 
consideration have the form 

v.mfl. 
J • i • -b .. mfl. 

l) (4. 2) 

where vj m~ans the covariant differentiation with respect to 
the metric* 

iq • rrf, i mfl. ,j (4 .3) 

·In Eqs. (4.2) we take into account that the unit normal to the 
hyperboloid (4.1) is the vector mf itself. From (4.2) and 
(4.3) we obtain 

- -· f1. fl. fl.. -bij • (V jm,i mfl.).(m,ij mfl. )•-(m,;mfl.,j hr-g ij , (4. 4') 

where gij is the metric tensor (3.10) on the hyperboloid (4.1). 
Let us show that from~he geometrical point of view ~qs. 

(3.8) and (3. 10) defining the sigma model are equivalent to 
one nonlinear Liouville equation for a scalar function. For 
this purpose we show that the Gauss equation (2.8) and the Pe­
terson-Codazzi equations (2.9) for the hyperboloid defined by 
(3.1), (3.8) and (3.10) ar'e reduced to the Liouville equation. 

The Peterson-Cod~zzi equations (2.9) for bij'from (4.4) 

vk b.. • v ."b.k lJ J l (4. 5) 

are satisfied in virtue of the Ricci lemma, V; gkp • 0, identical­
ly. 

The only nontrivial equation in this case is the Gauss equa­
tion (2.8) 

R1212• bl2bl2-bllb22• ' (4 .6) 

where R1212 is the curvature tensor for the metric gij · Taking 
into account (4.3) and (3.10) one transforms Equation (4.6) to 
the form 

2 

RI212 --g~1g22•<iu ). 

*In differential geometr/ 16t gij is called the tensor 
the third squared form of the surface xfl. (u 1,u 2 ), i.e. , the 

~ ten~or of Gauss .. s map. 

6 

(4. 7) 

bf 
metric 

~ 

{ 1', 

,1 

I 

Introducing the notation 
~·' 

- ¢ 
g n· e (4 .8) 

and making use of the obv~· ·us e~pression for R;J·ke 
f - d . d . . . 15 181 t' f ('· . ) o gij an ~ts er~vat~ve ' we. ge rom 7 • 

ar L1ouville equation 

in terms 
the nonline-

I ¢ 
¢.n- ¢,22 • 26 • (4. 9) 

4. CONCLUSION 

The above results give rise to a natur~l question: is the 
relativistic string theory in the three-dimensional space-time 
equivalent to the nonlinear sigma model (3.8'), (3.fO)? At first 
sight this equivalence has to take place, because the string 
theory, as is well-known/7 •9/, is reduced 'in the three-dimensio­
nal space-time to the Liouville equation also. However, this 
is not so. In contrast to the sigma model (3.8) and (3.10) 
where the knowledge of solution of the Liouville equation al­
lows us t.o obtain both the quadratic forms of the hyperboloid 
(4.1) (gij and b;· ), in the string theory only the first quad­
ratic form g.. (3. h can be reconstructed by this solution. In 
the coordinatle set (2. 7) the coefficients of the second quadra~ 
tic form of the string world sheet bij are expressed in terms 
of two arbitrary functions· of one variable q+(u 1 ±u2 ). Without 
loss of generality these functions can be taken as constants/9/. 

If the string is moving in the four-dimensional space-time, 
then at any point of its world sheet there are two unit space­
like normals. These normals and two unit tangent vectors to the 
string world sheet form a moving basis. It is important that 
the string theory admits the SO(l,l)xS0(2)-rotations of this 
basis, the tangent space and the normal space being rtot mixed. 
Therefore the nonlinear two-dimensional sigma model on the sym­
metric space SO(I,3)/SO(I,J)xS0(2) has to appear here. 
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HecTepeHKO B.B. EZ-82-745 
PenHTHBHCTCKaH CTpyHa H HenHHeHHaH gBYMepHaH CHrMa-Mogenh 

lloKa3aHo, KaK B TeOpHH peiTHTHBHCTCKOH CTPYHbi, gBH~y~eHCH 
B 3-MepHOM UpOCTpaHCTBe-BpeMeHH, B03HHKaeT gBYMepHaH HenHHeil­
HaH CHrMa-Mogenb c rpynnoil CHMMeTpHH SO(I,2)/SO(J,I). 

Pa6oTa BbmonHeHa B na6opaTOPHH TeopeTH'!eCKOH ¢lH3HKH Olli.lll. 

npenpHHT 06beAHiieHHOro HHCTHTYTa fiAePHbiX 11CCJleAOBaHHH. Ay6Ha 1982 
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