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1. INTRODUCTION

In many fields of the theoretical physics there arises in the
last time the notion of the one-dimensional spatially extended
relativistic object, the relativistic etring. One may mention
here the nonlinear two-dimensional Born-Infeld type field mo-
dels/Y, the dual-resonance approach to the hadron/phzsics/2ﬂ
the problem of the quark confinement into hadrons/3:%/, the cla-
rification of the galaxy formation mechanism in cosmology/sﬁ/»

Recently new formulations of the relativistic string model
have been proposed which use either unfamiliar mathematical
methods/7—9/ or new physical ideas/19/ It is very interesting
also to determine the connection of this model with the well
investigated quantum field models, for example, with two-dimen-
sional gauge models 1/,

It will be shown in this ¥%Per in what way the nonlinear
two-dimensional sigma model’/ 1% with the 50(1,2)/50(1,1) sym-

metry group appears in the theory of the relativistic string.

" For this purpose we derive equations which determine the unit
normal m“(uauz) at any point of the world sheet of the string.
These equations are

vivim" —(mn mi ym# a0, (1.1

where y; is the covariant differentiation with respect to the
inner metric on the world sheet of the string which is the mi-
nimal surface in the three-dimensional Minkowski space. If in
the relativistic strong theory the orthonormal gauge is used,
then Eq. (1.1) is reduced to the usual n -field equation’zzl3/
the n-field taking value on the hyperboloid of one sheet
x°)2-x!)2-(x?)?a -1 .

2, THE RELATIVISTIC STRING DYNAMICS AND THE SURFACE THEORY

Let us recall the basic geometric ideas in the relativistic
string theory/214/ This theory describes the one-dimensional
spatially extended object, the action of which is proportional
to the area of its world sheet in the Minkowski space. Let
x“(ul,uz) » #=0,1,2,... be the parametric representation of
this sheet, Its intrinsic geometry is defined, as is well
known/15J6/by the metric tensor (e
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,i=1,2, g =0,1,um.

In space-time we shall use the following metriF signature (+--...).

From the physical point of view one demands in the relativis-
tic string theory that one tangent vector, for example x?l ,
has to be a time-like vector and the second tangent vector xfé
must be spaceé-like.”

2 2

(3?1) - g11>0" (xflz ) = g22‘< 0. 2.2)
In ‘this case the parameter ular  is the evolution parameter
and the second parameter u“=¢- specifies the points along the
string. By virtue of (2.2) g= det||g;j [[< 0 and the differen-
tial element of the string world surface area is V=g dulau? .
The action of the relativistic string is defined by

. 2 e

Smwy [[fdu~g , (2.3)
where y is a dimeﬁéional constant, The principle of least ac-
tion, as applied to the functional 8,

sV-g
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8xu

(2.4)

leads to the problem of determining in the space-time the two-
dimensional minimal area surface.

In addition to the description of the surface b
vector x*(ul,u?) in the differential geometry’/15:16
possibility to use for this purpose the basic squared differen-
tial forms of the surface.. This description of the surface ari-
ses naturally by consideration of the moving frame on the sur-
face. There are various methods of the choice of this frame.

It is convenient to take a basis formed by two tangent vectors
to the surface x¥ and x¥; and by the unit normal.

Further we shall consider the theory of the relativistic
string in the three-~dimensional Minkowski space. By virtue of
(2.2) the normal mH(ulu?)is the unit space-like vector.

its radius-

m? = —1, (2.5)
along the surface is

The motion of the basis {xel.{g ,m”}
/15/ of Gauss

described by the well-known equations
B
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there is the
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and Weingarten

mfia—b:xei, .

2.7)
p=01,2, i,j=1,2.
Here V; denotes the covariant differentiation with respect to
the metric tensor g;j (2.1). This tensor is used also for rais-
ing and lowering the Latin indices. In Eq. (2.6) bij(ulvuz) is
a tensor of the second squared form of the surface. Actually,
equation (2.6) can be considered as the definition of the tensor
b;: . Thus, the motion of the basis {x*; x#1 ,xy ,m# 1 along the
surface will be defined by Eqs. (2.6) and (2.7) completely if
the first’(g” ) and the second (bjj ) fundamental forms of the
surface are given. These forms cannot be arbitrary but they
have to obey the integrability conditions of the linear Egs.
(2.6) and (2.7). These conditions are partial nonlinear equa-

tions for g;; and bj;. In the differential geometry/IS/they are

called the Gauss equation v .
Rijep = Dig by — Py Pje (2.8)
and the Peterson—-Codazzi equations .
. 2.9)
ijk=1,2,
. . / 15/
Here Rjjy¢ is the curvature tensor for the metric gij - The

knowledge of the basis [xel,xﬁ2 ,mf# } at any point of the surface
enables us to reconstruct by further integration the surface
x#(u!,u2) itself. This reasoning is formulated in the differen-
tial geometry/IG/as the basic theorem of the surface theory that
reads: the symmetric tensors g;; and b;; which satisfy the Gauss
and Peterson-Codazzi equations (2.8), (2.9) determine the sur-
face up to its motion as a whole in space. Thus, for the deter-
mination of the surface one can use instead of its radius-vec-
tor x*(ulu?) the tensory gij and by which, satisfy Eqs. (2.8)
and (2.9).

The world sheet of the relativistic string is a minimal sur-
face/ 214 In terms of the squared differential forms gij and bj;
this condition is written as

j ’

gl by, = bl 0. (2.10)

This equation is in fact another form of string equations of
motion (2.4)/14:15/, :
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3. EQUATIONS FOR THE NORMAL
TO THE WORLD SHEET OF THE STRING

As was mentioned above a natural candidate for the field
variable in the nonlinear sigma-model connected with the rela-
tivistic string is the normal to the world sheet of the string
m“(u ,u2) p=0,1,2. This normal maps the minimal surface which
is the world sheet of the string onto the hyperboloid of one
sheet

(x2)? ~x1)? —(x%)? = -1. @3.1)

Let us obtain a closed set of equations for the normalxn”(u{uzy
For this purpose we act by the operator V; on the left and
right-hand sides of Eq. (2.6) and sum over i=1,2

A A IR DI A IO P L L AP (3.2)

Here we have used the obvious equality V;m -m“l as the normal
mH(uly2)and the radius vector of the surface xH (u Ku2) are sca-
lars under the transformation of the curvilinear coordinates on
the surface ulu?2.We transform the first term in the right-hand
side of (3.2) making use of Peterson—-Codazzi equations (2.9) and
the second term with the Gauss derivative formulas (2.6). As

a result, we get

. j . : .
AU MERIC A SO RN TR L (3.3)

As the string world sheet is a minimal surface, then by virtue
of (2.10) b;=0. Eq. (3.3) becomes now

Vivimﬂ zbib].im“. 3.4)°

Making use of the Weingarten equations, (2.7) and Eq.(2.1)
one obtains easily

mf mi - bib! xP xk

j.oi _k joi
i “ i D i u = b‘bk g] ’bibj' (3,5)

Finally we have the following equations for the normal m“(u{uz)
Vivim —(m ;m, )m =0, 3.6)

Recall, that the covariant differentiation V; is made here with
respect to the inner metric on the world sheet of string (2.1).
Therefore Eqs. (3.6) will be a closed set of equations provided
the metric of the minimal surface (2.1) will be ‘given. However,
the dependence of Eqs. (3.6) on the metric tensor (2.1) is for-

4

mal because on the world sheet of the string the conformally-
flat coordinate set

Byy==8yy » 81y =8gy=0 3.7)

can be chosen alwaYS/&l4A
As a result, Eq. (3.6) takes the form

mip—mlyy -}y m,, ) —(mpm ;i m” =0, (3.8)

This is exactly the equation of motion for the n-field with
the symmetry group SO(1,2)/S0(1,1).

In the n-field theory Eq. (3.8) is supplemented usually by
the conditions

P tmby a1, (3.9)

That can be made always by virtue of the conformal invariance 9
of (3.8), i.e., the invariance under the transformatlons alzd=
= f+(u1+ u?).In the relativistic string model’? 14 e have other
conditions on the first derivatives of the normal mi@Lu?)

2 - 2 - -
Byy= M, ==Bgp ==M, 5, Byp= By =(mym,5)=0, (3.10)

where 5. is the metric tensor on the hyperboloid of one sheet
m2=—1, on which the normalmi(ulu?) maps the world sheet ‘of the
string. Conditions (3.10) follow directly from the derivative
formulas of Weingarten (2.7) in the conformally-flat metric
(3.7) in the string theory.

Thus, in the theory of the relativistic string moving in
the three-dimensional space-time there arises naturally the
nonlinear two-~dimensional sigma model with the SO(1,2)/S0(1,1)~-
symmetry given by Eq. (3.8) and subsidiary conditions (3.10).

4, SIGMA MODLEL IN THE STRING THEORY
AND THE NONLINEAR LIOUVILLE EQUATION

The connection of the usual S0(3)/S0(2)-nonlinear sigma mo-
del with the sine-Gordon equatlon 1ntegrab1e by the inverse
scattering method is well-kno -The sigma model defined by
(3.9), (3.10) encountered in the relativistic string theory is
related closely with another nonlinear equation, namely, with
the nonlinear Liouville equation, the general solution of which
is well-known/17/ Let us establish this relation. For this aim
we turn to the Gauss ‘equation (2.8) and to the Peterson-Codazzi
equations (2.9) and consider them for the hyperboloid



m my, -1, “.1)

The coefficients of the second quadratic form Eij for the hyper-
boloid (4.1) are defined by Eqs. (2.6) that in the case under
consideration have the form

T mH
ij’i -—-bi]. m“ » (4.2)
where 63 means the covariant differentiation with respect to
the metric *

g-”-m#,lm“'] . (4.3)
In Eqs. (4.2) we take into account that the unit normal to the
hyperboloid (4.1) is the vector m* itself. From (4.2) and
(4.3) we obtain

by = (Vimfi m ) m(mbjm, ) mm(mfimy j Ya-Fy . (4.4)
where E;j is the metric temsor (3.10) on the hyperboloid (4.1).
Let us show that from.the geometrical point of view Eqgs.

(3.8) and (3.10) defining the sigma model are equivalent to
one nonlinear Liouville equation for a scalar function. For
this purpose we show that the Gauss equation (2.8) and the Pe-
terson-Codazzi equations (2.9) for the hyperboloid defined by
(3.1), (3.8) and (3.10) are reduced to the Liouville equatiom.
The Peterson-Codazzi equations (2.9) for Bii from (4.4)
Viby = Viby

i (4.5)

are satisfied in virtue of the Ricci lemma, V;g, ¢ =0, identical-
ly.

The only nontrivial equation in this case is the Gauss equa-
tion (2.8)

[ - - A
R g19= P1abya —byibygs, (4.6)
where iﬁ212 is the curvature tensor for the metric E;j- Taking
into account (4.3) and (3.10) one transforms Equation (4.6) to
the form

Rygyp = —8118g9= (€)1 )- 4.7)

* In differential geometry/wl Eij is called the tensor of

the third squared form of the surface x¥ 01Ru2),i.e., the metric
* tensor of Gauss”s map.

6
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Introducing the notation oL -

-g-lls e¢ ¢ ’ (4.8)

and making use of the obvifﬂf %Fpression for ﬁi&g in terms
of g;; and its derivative 18 we get from (4.7) the nonline-
ar Liouville equation ’

¢

¢.11\-¢,22-2e > 4.9)

4. CONCLUSION

The above results give rise to a naturél question: is the
relativistic string theory in the three-dimensional space-time
equivalent to the nonlinear sigma model (3.8), (3.10)? At first
sight this equivalence has to take place, because the string
theory, as is well-known’’’ is reduced in the three-dimensio-
nal space-time to the Liouville equation also. However, this
is not so. In contrast to the sigma model (3.8) and (3.10)
where the knowledge of solution of the Liouville equation al-
lows us to obtain both the quadratic forms of the hyperboloid
4.1) ( Eii and by; ), in the string theory only the first quad-
ratic form 8 (3.}) can be reconstructed by this solution. In
the coordinate set (2.7) the coefficients of the second quadra-
tic form of the string world sheet b;; are expressed in terms
of two arbitrary functions of one variable q+011 +u?), Without
loss of generality these functions can be taken as constants’/%/.

If the string is moving in the four-dimensional space-time,
then at any point of its world sheet there are two unit space-
like normals. These normals and two unit tangent vectors to the
string world sheet form a moving basis., It is important that
the string theory admits the SO0(1,1)xS0(2)-rotations of this
basis, the tangent space and the normal space being rot mixed.
Therefore the nonlinear two-dimensional sigma model on the sym-
metric space S0(1,3)/S0(1,1)xS0(2) has to appear here.
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