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' I. As is well-known, the two-particle distribution ef identi-
cal particles emitted with nearly equal 4-momenta p1 and P2 
by a system of independent one-particle sources is described 
by the formula 

W (pl'p 2 ) = Wo.(l + cos(qf)), (I) 

where q=p 1 -p 2 ,£= (t,1) , f is the distance between any two 
of the sources, t is the time interval between the moments of 
particle. emission, qf = q 0 t _:q1. It is assumed that the one-par
ticle distributions are given by smooth enough functions of 4-
momentum P and that the probability of three or more particles 
having nearly equal momenta can be neglected. Both these condi
tions are fulfilled better for larger space-time dimensions of 
particle emission region and larger momenta p1 and p2. 

In the analysis of experimental data, eq. (I) is usually chan
ged by a more complicated expression 

W(p
1

,p
2

)=W0 (1+A<cos(qf)>) , (2) 

with the factor A f. 1. It has been shown in our papers /1,
2/ that 

the parameter A can appear due to a number of simple reasons, 
e.g., due to the presence of two or several space-time charac
teristics of the process (see also ref,/3/ ). On the other hand, 
interesting papers have been publishe'd in which the parameter A 
is connected with the hypothesis of pion emission in the so
called coherent states or in a mixture of coherent and nonco
her~nt states/4-10/. The ~ain point is that the correlations due 
to symmetrization of wave functions are absent for the pions 
in the same coherent state. Thus the role of coherent states 
could be, in principle, estimated by the measurement of para
meter'.\. 

In our opinion, there may be some doubts in practicability 
of such a program since the diff.erence of parameter A from uni
ty can be, as mentioned abo~e, connected with the more trivial 
reasons. Besides, coherent states, to a definite probability, 
contain any large number of particles. This circumstance is some
what unsatisfactory 'since the finite pion mass with the limited 
total energy of the system prev~nts from the literal use of the 
apparatus of cohe~ent states. 

At the same time it is well-known that the absence of inter
ference correlations is characteristic not only for the particles 
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in coherent states but also for any fixed number of particles 
in the same quantum state. Thus, from our point of view, another, 
more adequate, ayproach to the "A -problem" is possible. The 
corresponding remarks can be found already in our papers 11,21• 

Below we want to discuss this approach more thoroughly. It seems 
to us that it is more reliable, very simple mathematically and, 
moreover, it allows one to clarify the limiting cases when the 
corresponding correlations turn into the predictions obtaiQed 
in the framework of coherent state theory. As the possibility 
of production of several identical pions in the same quantum 
state is concerned, although it seems not to be a typical mecha
nism of multiparticle production, at least, it cannot be exclu
ded. The near threshold s -state pion production is an illust
rative example 1111. 

2. If a heavy source is at rest at the point ~ 1 and emits 
a pion at the moment t 1 and another source at the point 1 
emits a pion at the moment t 2 , the corresponding amplitud/ f9r 
the production of two pions with 4-momenta p1 andp 2 is given 
by 

A ( i (p r + P r ) i ( 
p1,p2)=u(p )u(p )(e 11 2 2 p1r2+p2r1) 

1 2 +e ). (3) 

where r1 =Cr1 ,t 1 ) andr 2 =(r2 ,t 2) 
bution u(p) is assumed ~o be the 
probability is given by 

and the one-particle distri
sam~ for both spurces. The 

W (p 
1 

, p 
2 

) = 21 u (p 
1 

) I 2 I u (p 
2 

) I 2 [ 1 + < cos (p~ -l> 2 ) ( r 1 -r 2) ~ ] , (4) 

where the averaging,, is done over r 1 and r 2. The interference term 
in eq. (4) vanishes, i.e., the two-particle distribution ~s gi
ven by the product of one-parti'cle ones W(p 1,p2) =2:u(p 1) :2 i u(p 2)! 2 

provided that the c~aracteristic interval between the points r 1 
and r 2 is large enough. In t~e opposite situation, when the points 
r 1 and r 2 are very close to each other, we have <cos(pcp 2)(rcr:J>=l, 
and the probability W(p

1
,p2) .. 4iu(p 1r 2 iu(p

2
)1 2 is again det'ermined 

by the one-particle distributions only, but it is now two times 
larger than in the previous ca&e. It should be noted th~t the 
formula (3) is valid only in the case when the distance between 
the sources is large as compared to their space-time dimensions 
and to the wave-length of emitted particles. In particular, this 
formula is not valid for the sources situated at the same point 
and emitting particles at the same moment. In such a case the 
probability W(p1 ,p 2) coincides with the one for pion emission by 
two very remote sources. 

Having in mind the above comments and wishing to stress as 
much as possible the principal peculiarities of the problem, 

8~1le)!R!i'Cf.UJ..O.it UHC'MJ'f I 
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below the one-particle amplitudes u~) are considered to be in
dependent of the 4-rnomentum p and the sources to be point-like 
in the sence that their dimensions are small as compared to dis
tances of the sources situated at different points. Besides, we 
consider some of the sources situated strictly at the same space
time point, the others at different points, as well as the situa
tion when several such groups of sources (and also unit sources) 
are connected with different points. Finally, we consider the 
probability when all sources are situated at different points 
(i.e., the distances between them are large as compared to the 
particle wave lengths), but some part of them forms one or se
veral groups with dimensions ~ smaller than the dimension R 
characterizing the total system; i.e., 

A«~«R, (5) 

and the same inequalities are supposed to be valid for the cor
responding time parameters. 

We consider correlations in pairs of particles in inclusive 
approach when the momenta of any two particles are fixed and 
averaging over the others is performed. Thus each pair of sources 
can be considered independently of all other pairs. Besides, as 
mentioned above, we consider the particle momenta to be large 
enough so that the interference maximum occupies only a very 
small part of phase space, and the rare configurations with three 
or more particles having nearly equal momenta can be neglected. 
This allows one just simply to add the probabilities correspond
ing to various pairs of sources, taking into account that the 
probability is independent of the difference q of pion 4-momenta 
for two coinciding sources; for two "near-by" sources it is two 
times larger an~ also independent of q so far as the momentum 
difference is small as compared to 1/ ~. and for pairs of "dis
tant" sources the q -dependence appears and is described by for
mula (I). 

The following is reduced to simple combinatorics, i.e., to 
calculation of the number of pairs of various types. In particu
lar, below, we consider, from this point of view, several concrete 
situations analyzed in the literature in terms of coherent or 
partly coherent states. 

3. We start with a sy'stem ofn+m one-particle sources, n of 
them situated at one and the same space point .imd emitting par
ticles simultaneously, the others at different space-time points. 
In other words, pions from the first group are in the same quan
tum state, while the others in different states. We denote by Wo 
the' probability in the "plateau" region when the momenta of all 
pions are essentially different. The question is how this proba
bility sh?uld be modified in the case when the momenta of any 
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two pions become close to 1each other without changing the mo
menta of remaining n+m-2 particles. The answer to this question 
depends on the origin of a pair (the total number of possible 
pairs is equal to(m+n)(m+n-1)/2). If the momenta of two pions 
from the first group approach close to one another (the number 
of such pairs is equal ton (n-1) /2), the probability remains 
equal toW 0 , and for pions from the second group (there are 
m(m-1)/2 such pairs) the probability changes due to appearing 
the interference term, i.e., W=Wo(l+<cosqf>). Exactly the same 
change takes place when we make close the momenta of pions from 
different groups (the number of such pairs is equal' to mn ). 
As a result, the total probability is expressed as 

w = 2Wo l n(n-1) m(m-1) 
(n+m)(n+m-1) -

2
-+ [-2- +nm] (l+<cos(qr)>)l 

=W
0

11+ m(m-l)+2nm <cos(qf)>l. 
(m+n)(m+n-1) 

Consequently, 

w = w0 (1 -'-'A< cos (qP)>). A = m(m-1) + 2mn < 1. 

(m+n) (m+n -1) 
(6) 

As could be expected, A= 0 at m = 0 , A = 1 at n = 0 and n = 1, and 
A < 1 if n_? 2. . 

Assuming that n , m >> 1 and introducing the patameter y =n/m, 
we get A=(m2+2m2y)/(m2(1+y)2)=(1+2y)/(1+y) 2 , i.e., 

W=Wo(l+ ~<cos(qf.)>). 
(1-'- y) 2 

(_7) 

In the particular case, when all n+m sources are situated at 
one and the same space point, we arrive at the formula which is 
completely equivalent to the results obtained in refs. /4,5,?/ 

in the framework of the theory of coherent and partly coherent 
states. Note, however, that this formula is valid only in the 
case of large enough n and m. 

Formula (7) has been obtained under the assumption of the 
same distributions of space-time intervals between the sources 
from the second group and the sources belonging to different 
groups. Consequently, only a single average quantity <cos q£> en
ters into formulae (6) and (7). If these distributions are dif
ferent, instead of formula (7) we have the following slightly 
more complicated expression 

W = W
0 

(1 + .!.:!:.k <cos ( qf) > a/3 + 
(l+y)2 

' 
_l_<cos(qr)>/3/3) · 
(1+y) 2 

(8) 
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Here the indices a , ~ denote the averaging over the sources 

from different groups (a~) and from the second group only (~~). 

The results obtained coincide with the formula (4.66) from 

ref,/8/. Expression (8) also leads to formulae (I3), (I4) and 
(I 8) from ref. /9/ if we make the averaging over the COI\crete 

space distributions of sources used in ref. 191. · 
We consider now the situation when n pions are emitted si

multaneously from the same point and m pions from the other 

common point also simultaneously, but, generally speaking, at 

the different moment. If we make close the momenta of pions 

from one of the two groups, the interference is absent, while 

the interference term contributes to the probability for p{ons 

coming from different groups. The number of pairs of the first 

type is equal to .!..n(n-1) +..l.m(m-1)and of the second type to nm. 

Thus the probabil~ty can be2written as 

W- 2W 0 .{n(n-1). + m(m-1) +nm(1+<cos(<i)>)J, 
- (n+ m)(n+ m-1) 2 2 

or 

W = W0 (1 + A <cos qb), A= 2nm ·<1. 
(n + m)(n + m -1) -

(9) 

The factorA=O a£n=0 orn=O; A=1 atn=m=l. In the other ca
ses A< 1. Assuming n and m large enough and introducing the 

parameter y =n/ m, we get 

w = w 0 (1 + 2 
y < cos ( q 0 >) . 

(l+y) 2 
(10) 

From the considered example it follows that the factor A< 1 can 

appear not only due to a joint contribution of multi- and one

particle sources. The interpretatio~ based on formula (IO) con

cerning the multiparticle sourc~s only is also quite possible. 

We continue our discussion with the case of N \ndependent 

multi-particle sources situated at N different points, each of 

them simultaneously emitting n identical pions in the same 

(for a given group) quantum state. The number of pion pairs 

from the same source is equal to n(n-1) N/2, while for pairs for

med by pions from different groups it is equal to N(N-1)n2/2. 

This immediately leads to the formula 

W= W
0

.(1+A<cos qf>), A= n(N-1). 
nN-1 

(I I) 

For n»1we getA=1-1/N which is in agreement with formulae 
(IO) an~ (II) from ref.110~ Allowing for fluctuations of the num-
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ber of sources N when we come from one event t'o another, ~n 

a similar way we get the formula . 
<N> ~ ) W=W 0 (1+(1-- )<cos(ql)>, 

<N2:> ' 
(I 2) 

obtained earlier in ref.181. Note that the formulae (II) and (I2) 
would change provided that the sources emit an unequal number 
of pions. 

In fact, if we add to the above system one more point-like 

source emitting m identical pions in the same quantum state, 

then the interference effect is absent for l..Nn(n-1) + }mCm -1) 

pion pairs, while ~N(N-l)n2 pairs, as befo1-e, make a contri
bution to the probability proportional to 1 + <cos(qO>aa and 

nmN pairs to 1+<cos(q0>a~·This combinatorics leads to the for-
mula 

W= W0 (1+A<cos(qe)> +!!<cos(qf)> a), 
aa at-' 

2nmN 
(I 3) 

A= N(N'-1)n 2 . _ 

n(n-1) N + m(m-1)+ N(N-1)n2+2nmN' 
IL = ~-····--··----· --. 

n(n-1) N +m(m-1) +N(N-1)n ~2nmN 

Assuming n , m » 1 and introducing the parameter y= Nn/ m, formula 

(I3) yields 

1 <cos(qf)>aa + ~<cos(qf)>a~]. 
WeWo[1+(1- N) (1+y)2 (1+y) 2 

(I 4) 

Finally, if N>>1,we come again, except for the changed notation, 

to the previous result (8) despite the absence of one-particle 

noncoherent sources (in this context see also the discussion of 
formula (10)). 

For comparison with the results of ref.llO/ we consider here 

the case when m one-particle sources situated at different 

space.:.time points, are added to N pre'{ious n -particle sources 

(i.e·., the m -partic~e source' from the above example is divided 

into m independent one-particle sources). Then, making close 

the momenta of two pions the probability is not changed for 

. ..l.Nn (n-1) pairs, the contribution of tN(N-1)n2 pairs is pro

~rtional to 1 + <oos(qf) >aa, of...l.m(m-1) pairs to 1 +<cos qb~~and 
of mnN pairs to 1 + <cos(qf)>a~·2 This leads to the total proba
bility 

W == V10 [ 1 + .\ < cos(qf)> aa +!!< cos(qf)> a~+v< cos(qf)> ~~], (IS) 

m(m-1) 
where v = . ·, 

Nn (~-1)+n2N (N-1)+ m(m-1)+ 2mnN 
and A , IL are the same 
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as ~n eq. (13). Assuming again m,n»1 and introducing y=n/m, 
/ 

we get 

Vi=W [1+ <cos(q0>{3f?~<cos(qf)>at3+N(N-1)J:'2<cos(qf)>aal. (16) 
0 (1+yN)2 (1+yN)2 (l+yN) 2 

which is equivalent to the formula (20) from ref. 110(If then -
particle and one-particle sources have the same space-time dis
tributions, formula (16) yields 

Vi=W0 [1+(-1- Ny
2 

)<cos(qf)>] 
(1+Ny)2 

~n agreement with the corresponding formula in ref ,1101. 

(17) 

4. Now we discuss the changes arising when a group of sources 
situated at different points inside small space-time region 6. 
satisfying the condition (5) is considered instead of the sources 
connected with the one and the same point. Of course, the number 
of pairs of sources of various types is not changed, but the 
weight corresponding to pairs of sources from the same compact 
group is doubled. E.g., in the situation corresponding to for
mula (6) in the previous consideration, each of n(n-1) I 2 pairs 
of sources from the compact group contributes with the weight 
equal 'to 2, m(m-1)/2 pairs formed by "distant" sources contri~ 
bute with the average weight 1 +<cos( qf) > each, and exactly the 
same weight corresponds to "mixed" pairs. Thus the probability 
is given by 

W(pl,p2 )= 2Vio [ n(n-1) 2+(J.!!.(m-1)+nm)(l+<cos(qf)>)]. 
• (n+m) (n+ m-1) 2 2 

or by 

>. = m(m-1)+2nm 
(n+m) (n+m-1) +n(n-1) 

W(p1 ,p 2 )=W0 (1+>-<cos(qf)>), (1~) 

Assuming n , m » 1 and introducing y =n/m, we get 

W(p
1

,p
2

)=W
0

(1+ 1 + 2Y <cos(q£)>). 
(1+y)2+y2 

(19) 

In an analogous way the other situations considered above can be 
easily reformulated as well (see also Appendix). 
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The change of coinciding sources by the compact group of 
near-by sources always leads to an essential change of the fi
nal result. In particular, formulae (18) and (19) do not coin
cide with (6) and (7): respectively. In order to reveal better 
the origih of this difference, we analyze in some detail the 
simplest case of three sources situated at space-time points 

r1 , r 
2 

, r 3 and emitting pions with 4-momenta P 1 , p2 and p3 
The amplitude of this process is 

A (pl ,p2 ,p3) = u(p1 )u(p2) u(ps)[e i(plr 1+p2r2+Pg r a>+ 

i(pl r1+p3r2+p2r3) i(p2r1+p1 r2+p3r3) 1'(p2rl+p3r2+p1r3) 
+ e + e + e + (20) 

i(p3rl+p1r2+p2r3) i(pgrl+p2r2+plr3)] 
+ e +e . 

The probability for emission of three identical pions conta~n~ng 
six diagonal terms and 30 nondiagonal terms (half of them comp
lex conjugated) is of the form 

Vi (pl'p2 ,p3 ) = B0 {6 + 2<cos(p1 -p2)(r1-r2) > + 

+ 2< cos(p
1
-p2) (r1-r3)> + 2 <cos(pcp 2) (r2-r3)> + 

+ 2<cos(p 1-p3) (r1-r2
)> + 2<cos(p 1-p3) (r1-r3)> + 

_,.. 2<cos(p1-p3) (r2 -r3)> + 

+2<cos(p -p )(r -r )>+2<cos(p -p )(r -r )> + 2312 2313 

+2 <cos (p2 -p3) (r2 -r3)> + 

+2<cos[p (r1-r3)+P (r -r )+p (r-r ))>+ 
1 221332 

+ 2<cos[p (r -r ) +P {r -r ) +P (r -r )]>+ 
112 22 3 331 

+2<cos[p (r -r )+P (r -r )+P (r -r )]> + 
113 232 321 

+2<cos[p (r -r)+p(r-r )+P (r -r))>+ 
112 231323 

+2<cos[p (r -r )+p (r -r )+P (r -r )]>+ 
123 212 331 

+ 2<cos[p (r -r )+P (r -r) +P (r -r )]>l, 
132 213 321 

(21) 
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where B~lu(p) 16. Averaging is made o~er the space-time points 
r

1 
, r

2 
and ra. First we assume that r 1 =r 2 =P · This allows us 

to rewrite the formula (21) in a simpler form 

W (p
1 

,p 
2 

,pa) = ~ [ 12 + 8< cos(p 
1 

--p
2
)(p-ra1> + 8< cos(pcp3)(p-S) + 

(22) 
+ 8 <cos (p

2 
-p

3
) (p -ra)>]. 

We now make the momenta p
1 

and p
2 

close to one another and also 
integrate formula (22) over the momentum p3 as required by the 
considered inclusive approach. Then in the dominating part of 
phase space the following inequalities are fulfilled* 

11> 1 -Pal R»i, 1
... ... 
P

2 
-Pal R»1 

leading to vanishing the last two terms in (22). Thus the cor
responding two-particle probability 

W(p ,p )=B [12+8<cos(p -p )(p-r )>] 
1 2 0 1 2 a 

,128 [1+ _g_<cos(p 1 -p2)(p-ra)>], 
0 3 

- a-+ B 0 =JB0 dpa 

coincides with formula (6) for n=2 and m=1. 
We now,change the situation assuming the points r 1 and r2 

not coinciding but situated in a small region ~ satisfying the 
inequalities (5). Since the quantities p

1 
~ , p 2 ~ and Ps~ are 

assumed to be large enough, the six last terms in formula (21) 
vanish and the probability is written as 

W(p
1

,p
2

,pa) = B
0

[6+ 2<cos(p
1
-p

2
) (r

1
-r

2
)> +2<cos(p 1-p2 )(r1-ra)> + 

+ 2 <oos(p
1 
-p~(r2-ra)> + (23) 

+ 2<cos(p
1

--pa) (r
1
-r

2
)+2<cos(p

1
-pa)(r

1
-ra)+2<oos(p 1--pa)(r2-r3)> + 

+ 2 < cos(p
2 
-p

3 
)(r 

1
- r

2
) + 2 < oos(p 

2 
-p a )(r 

1
-r a)> + 2< cos(p2 -p3 )(r2 -r3)>]. 

Approaching the momenta p
1 

and p
2 

close to one another and as
suming the differences p -p and p -p large abough so that the 
inequalities 1 a 2 3 

I P -p I~» 1, I P -p I~» 1 
1 3 2 3 

-+ -+ 
IP -P 1~«1. 

1 2 
IP -p I R<l. 

1 2 -
(24) 

are fulfilled, the second term in (23) yields 2, while the last 
six terms vanish. Integration over p 3 in formula (23) thus leads 

*Here and below we assume that an analogous inequality for 
time components corresponds to each inequality for space ones. 
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to the following two-particle probability 

W (p ,p ) "'B [8 + 2<C<fs(p -p )(r -r
3

)> + 2<cos(p 1-p2 )(r'2-r3 )>]. 
12 0 •121 

Since ~<<R,we can put r - r -P 1- 2-
the form 

and rewrite this formula in 

- 1 W(p
1

,p )=8B
0

[1 + -<cos(p
1
-p )(p:-r )>] 

. 2 2 2 a 

coinciding with the formula (18) for n=2 and m=l. 
If we increase the difference p1 -p2, the second term in (23) 

becomes smaller and vanishes at 11> cP 21 ~ » 1. Consequently, in 
the considered situation there appears a peculiar dependence 
on the momentum differencep 1 -p 2 • Namely, at 1'P 1-p 2 IR.$1 we 
have a narrow interference maximum with height 1aBo. then at 
-+-»I p 

1
-p

2 
I »±it turnes into a "false plateau" with height 

~B0,and after that a further decrease of the probability leads, 
at IP -p

2
ll1»1, to a "true plateau" with height 6'B 0 which is 

two tifues smaller than the height of the interference maximum. 
The discussed example is absolutely typical, similar phenome

na appear also in the case when not only two but several near
by one-particle sources or several groups of near-by sources are 
considered if only the characteristic parameters A , ~ and R 
satisfy the inequalities (5). As a result, we come to the situa
tion analyzed in our previous paperll/ where the interference 
correlations in the systems possessing two characteristic,and 
essentially different spac~~arameters have been considered. 

Therefore the appearance of parameter A< 1 in formulae of the 
type (2) certainly doesn't show evidence for simultaneous emis
sion of pions by sources situated at one point. Similar phenome
na take place also in the case when pions are emitted by two 
(or several) groups of sources. - "near-by" and "distant". On 
the other hand, both alternative differ in the value ~f parame
ter ,\ and also in the presence or absence of "false plateau". 
Thus, in principle, experiment can separate one from the other. 
However, there is a number of complications (calculation of the 
concrete form of one-particle distributions, the problem of cho
osing background distributions, etc.) preventing, at the pre
sent time, from the implementation of such a program. 

APPENDIX. 

. We consider n+m one-particle 
time points ·r 

1 
, r2 , .• •. ~ ;r + • The 

. • . n m 
~dent~cal p~ons w~th the momenta 
form 

sources situated at the space
amplitude for emission of 
p 

1 
, p2 , • ·• ·• Pn+m is of the 

ll 



, 

n+ m ip r 
A (p1,p2 ····•Pn+m) = 'Ao~ ( II e kf ~) 

f =·1 
(A. I) 

where the summation should be done over all permutations of mo
menta pk. First, we ass'ime that n sources are situated at the 
same space-time point and the other m sources, at different 
points. Since any permutation of n momenta connected with 
coinciding points r1 = r 2 =·· = r n = p does not change at all the 
correspoinding n! terms in the sum in formula (A. I), the com
mon factor n! can be taken out of the sum so that the summation 
should be done only over N=(n+m)! /n! terms with different pha
ses. Squaring this amplitude yields N diagonal terms equal to 
I :A 0 I 

2 (n!) 2 and N (N -1) nondiaginal interfer~nce terms (half of 
them complex conjugated). 

We assume now that any two momenta (we denote them by P 1 and 
p 2 ) are so close that 11> 1 -p2 I R 5 1, while for all other pairs 

jp1 -Pjl R »1. Then, after averaging over the space-time distri
bution of the sources, the probability contains only diagonal 
terms and terms corresponding to the interference of those ad
dends in (A.!) which differ from each other in the interchange 
of momenta P1 and P2 only, and both these momenta should be 
connected with the sources situated at different points. The 
number of interfering pairs in (A.I) corresponding to the momen
ta P1 andp2 connected with different one-particle sources is 
equal to fm(m-l)(m+n-2)!/n!. each contributing to the proba
bility of the process 2! A 0! 2(n!) 2<cos(p 1-p 2 ) (rk-rf) >. In our 
previous notation their total contribution is [2iA

0
1

2 (n!) 2m(m-1)x 
x (m+n-2)!/2(nt)]<cos(qf)> 13 . If one of the considered pions with 
momenta p1 and p 2 is emi!ted by the multi-particle source and the 
other by some of the one-particle sources, the number of such 
interfering pairs in (A. I) is equal to nm(n+m-2)! /n', and their 
total contribution to the probability of the process composes 
[2\Ao\ 2 (n!) 2 nm(n+m-2) /n!] <cos(qO>a/3· Summing all the terms and 
integrating over the momenta p3 , p

4 
.... ,pn+m' we obtain for the 

inclusive two-particle probability the expression 

W(p
1

,p
2

)=B0 (n!)(n+m-2)! !(n+m)(n+m-1) + 

+ m(m-1)< cos(q0> 1313 + 2nm< cos(qe)> a/3 l 

which can be rewritten in the form 

- m(m -1) 
W(p ,p )=B (n!)(n+m)! !1+ -----<cos(qf)/3~ 

1 2 o (n+m)(n+m-1) 

+ 2nm <cos(qf)> I, 
(n+ m )(n + m -1) a/3 

2 a-+ 3-+ 34 

B0 = (IA 01 d p3 d p4 ••• d Pn+m' (A.2) 
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For < cos(qf) >af3 = <cos (qf)> {3(3 the form~Jla (A. 2) coincides 
(6). Assuming n,m»1 and introducingy=n/m, the formula 
takes the form 

with 
(A.2) 

- 2 1 
W(p

1 
,p

2
) =(n!)(n+m)! B011+-Y-<cos(qf)>a/3+ --<cos(qt)>/3/31, (A. 3) 

(1+y) 2 (l+y) 2 

i.e., it coincides with the formula (8). 
We now change n coinciding sources by a compact group of 

near-by one-particle sources situated in a small region~ as
suming that the parameters A , ~ and R satisfy the inequali
ties (5). Then, in distinction from the previous case, there 
are no coinciding terms in the sum (A.!). Thus its squaring 
yields (n+m) 1 addends, equal to\ A0j2 plus the sum of· bilinear 
products of each term in (A.!) by the complex conjugated value 
of any of the other terms. After averaging over the points r 1 , 

r 
2

, •• , r , all these products vanish except those in which the 
momenta n;m and p "change sources", while each of n+m-2 remain-
. 1 . 2 b f . d . 1' h 1ng momenta 1n bot co actors 1s connecte w1t 1 t e same source-. 
We assume again as in the basic text that IP 1 -P2 1~<<1 and 
I Pi -Pj I~» 1 for i ,j .fo·1, 2. Thus after integration over the 
momenta p3 , p4 , •• ; , Pn+m and averaging over the space-time dis
tribution of the sources, the contribution to the probability 
froULeach pair of the sources from the compact group is equal 
to 280 , and their total contribution composes 2B 0 i-n(n-1)(n+m-2)J. 
If the two pions with momenta p1 and p2 are emitted by a pair of 
"distant" sources, the interference term appears equal, on ave
rage, to 2Bo<cos(qe)>/3tt Since the number of such pairs equals 
.Lm (m-l)(n+m-2)!, their total contribution composes 
2_ 1 
2B 0-z-m(m-1)(n+m-2)! <cos(q0>f3f!· Finally, the number of "mi-

xed" pairs equals nm(n+m-2)! , and their total contribution to 
the probability of the process composes 2g

0
nm(n+m-2)!<cos(qf)>af3 

Summing all these addends, we get the expression 

W(p
1

,p
2

)=B
0

(n+m-2)! {(n+m)(n+m-1) +n(n-1) + 

+ 2nm <cos(qf)>a/3+ m(m-1)<cos(qe)>/3/31 

which can be rewritten in the form 

2nm < cos(qf )> a/3 m(m-1) < cos(qf)> 1313 
w (p ,p ) = w {1 + + l ' 

1 2 0 (n+m) (n+m -1) +n(n-1) (n+mH n+rn-1) +n(n-1) 

- - 2 3-> 3-+ ~A.4) 
W

0
=(n+m-2)![(n+rn)(n+m-1)+n(n-l)]B 0 , B0 =[1A 0! d p3 d p4 ... d Pn+m 

13 



' 

coinciding with the formula (18) in the particular case when 
<cos qb at3= <cos qr > t3t3 . \ 

If we take off the limitation ip 1 -p2 i~ «1, _!hen the contri
bution of e'!_ch pair from the" compact group is 2B 0 <cos (qf)->aa 
instead of 2Bo leading to the probability 

W (p'1 ,p 2_) =.~o (n+ m-2)! I (n+m )(n+ m -1 )+n(n-1)< oos (qf)> aa+ 

+ m(m-1) < cos(qf)>pp+ 2nm < cos(q£)> at: l , 
i.e., 

n(n-1)<cos(q0> aa 

W(pl,p2)- 1+ (n+m)(n+m-1) 

m(m-1)<cos(q0> t3t3 2nm <cos(qf)>ap 
+ +----------~ 

(n+-m)(n+m-1) (n+m)(n+m-1) 

(A. 5) 

Thus for I p1 -p 2 1 R 5 1 we have a narrow interference maximu~, 

a "false plateau" at -1- « I p -p I<< .1. and a "true plateau" 
-+ -+ R 1 2 ~ 

at I P1 -p2l ~» 1. The height of the latter composes half the 
height of the interference maximum. 
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J1e,!I,UHLJ;KH P., J1106onmu; B .J1., IIo,!l,ropeu;Km1: M.H. E2-82-725 
11HTep<t>epeHLJ;HOHHble KOppeJillLJ;HH TOJK,[I,eCTBeHHbiX lJ:aCTHLJ; 
D MO,[I,eJillX C 6JIH3KO pacnOJIOJKeHHbiMH HCTOlJ:HHKaMH 

lloKa3aHO, lJ:TO lj;lopMyJibl HHTepilJepeHLJ;HOHHbiX KOppeJIHLJ;HH nap 
TOli<,[l,eCTBeHHbiX IIHOHOB C 6JIH3KHMH HMIIYJibCaMH, IIOJiylJ:eHHbie B p.H,[I,e 
pa60T C rrpHBJietJ:eHHeM arrrrapa Ta KOrepeHTHblX COCTO.fiHHH, llBJIHIOTCH 
rrpe,[l,eJibHbiMH CJiylJ:a.fiMH 6oJiee 06IllHX COOTHOWeHHH, KOTOpble K TOMY 
JKe CJie,[I,YIOT H3 CYil\eCTBeHHO 6oJiee IIpOC.TOI'O rrpe,[I,CTaBJieHH.fi 0 He-
3aBHCHMpiX O,[I,HOtJ:aCTHlJ:HbiX HCTOlJ:HHKaX. 

Pa6oTa BbiiiOJIHeHa B J1a6opaTopHH BbiCOKHX 3HeprHil O.lliUl. 

npenpHHT 06beAHHeHHOro HHCTHTyTa RAePH~X HCcneAOBaHH~. Ay6Ha 1982 

Lednicky R., Lyuboshitz V.L., Podgoretsky M.I. E2-82-725 
Interference Correlations of Identical Particles 
in Models with Closely Spaced Sources 

It is shown that the formulae for interference correla
tions in pairs of identical particles with nearly equal mo
menta, obtained in a number of papets in the framework of 
coherent state theory, turn out to be limiting cases of more 
general relations. Moreover, the latter follow from esseptial
ly simpler approach based on the model of independent one
particle sources. 

The investigation has been performed at the Laboratory 
of High Energies, JINR • 
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