OGLELHHEHHb A
HHCTHTYT
ARBPHEIX

KCCAEROBANMR

RyGHa

IS e ———ee e

z %/fﬁ E2-82-725

R.Lednicky, V.L.Lyuboshitz, M.l Podgoretsky

INTERFERENCE CORRELATIONS
OF IDENTICAL PARTICLES IN MODELS
WITH CLOSELY SPACED SOURCES

Submitted to "So"




\

1. As is well-known, the two-particle distribution of identi-
cal particles emitted with nearly equal 4-momenta p; and P
by a system of independent one-particle sources is described
by the formula

w(pl'p2)= W&(1+005(q2))- (1)

N

where q=p; —Pg,f= (t,2) ,f is the distance between any two
of the sources, t is the time interval between the moments of
particle emission, qE::qot—fﬁ?. It is assumed that the one-par-
ticle distributions are given by smooth enough functions of 4-
momentum P and that the probability of three or more particles
having nearly equal momenta can be neglected. Both these condi-
tions are fulfilled better for larger space~time dimensions of
particle emission region and larger momenta p, and P,

In the analysis of experimental data, eq.(l) is usually chan-
ged by a more complicated expression

W (pl,p2)=-W0(1+)\<co's(qZ)>) , 2)

with the factor A # 1. It has been shown in our papers /1,27 that
the parameter A can appear due to a number of simple reasons,
e.g., due to the presence of two or several space-time charac-
teristics of the process (see also ref./8/). On the other hand,
interesting papers have been published in which the parameter A
is connected with the hypothesis of pion emission in the so-
called coherent states or in a mixture of coherent and nonco-
herent states’/4-10/. The main point is that the correlations due
to symmetrization of wave functions are absent for the pions
in the same coherent state. Thus the role of coherent states
could be, in principle, estimated by the measurement of para-
meter’A.

In our opinion, there may be some doubts in practicability
of such a program since the difference of parameter A from uni-
ty can be, as mentioned above, connected with the more trivial
reasons. Besides, coherent states, to a definite probability,
contain any large number of particles. This circumstance is some-
what unsatisfactory 'since the finite pion mass with the limited
total energy of the system prevents from the literal use of the
apparatus of coherent states.

At the same time it is well-known that the absence of inter-
ference correlations is characteristic not only for the particles
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in coherent states but also for any fixed number of particles

in the same quantum state. Thus, from our point of view, another,
more adequate, approach to the "M -problem" is possible. The
corresponding remarks can be found already in our papers /1:2/.
Below we want to discuss this approach more thoroughly. It seems
to us that it is more reliable, very simple mathematically and,
moreover, it allows one to clarify the limiting cases when the
corresponding correlations turn into the predictions obtained

in the framework of coherent state theory. As the possibility

of production of several identical pions in the same quantum
state is concerned, although it seems not to be a typical mecha-
nism of multiparticle production, at least, it cannot be exclu-
ded. The near threshold s -state pion production is an illust-
rative example 711/,

2. If a heavy source is at rest at the point;1 and emits
a pion at the moment t; and another source at the point T
emits a pion at the moment ty,, the corresponding amplitude for
the production of two pions with 4-momenta p, andp, is given
by

1P,y +Pgro)  1(pyrotpoty)
11 2 2 "2 'e'1
A(plnpg)=u@1)u(pg)(e + e )' (3)
where ry = (t; ,t;) and rgc(;g,tz) and the one-particle distri-
bution u(p) is assumed to be the same for both spurces. Thé
probability is given by

v

W@, py) = 2lu(,) Blu,) 211+ <cos @) -Py)(r,~c,)>], “)
where the averaging is done over t andry. The interferenceé term
in eq. (4) vanishes, i.e., the two-particle distribution is gi-
ven by the product of one-particle ones W(Drpz)=27uﬂﬁ):25U(DQ12
provided that the characteristic interval between the points Ty
and rg is large enough. In the opposite situation, when the points
ry andty are very close to each other, we have <co%prp2er4g>=L
and the probability W(p,,p,)~ 41u(p1)21u(p2)?2 is again determined
by the one-particle distributions only, but it is now two times
larger than in the previous case. It should be noted that the
formula (3) is valid only in the case when the distance between
the sources is large as compared to their space-time dimensions
and to the wave-length of emitted particles. In particular, this
formula is not valid for the sources situated at the same point
and emitting particles at the same moment. In such a case the
probability W(%jpg coincides with the one for piom emission by
two very remote sources.

Having in mind the above comments and wishing to stress as
much as possible the principal peculiarities of the problem,
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below the one~particle amplitudes u(@) are considered to be in-
dependent of the 4-momentum P and the sources to be point-like

in the sencé that their dimensions are small as compared to dis-
tances of the sources situated at different points. Besides, we
consider some of the sources situated strictly at the same space-
time point, the others at different points, as well as the situa-
tion when several such groups of sources (and also unit sources)
are connected with different points. Finally, we consider the
probability when all sources are situated at different points
(i.e., the distances between them are large as compared to the
particle wave lengths), but some part of them forms one or se-
veral groups with dimensions A smaller than the dimension R
characterizing the total system; i.e.,

A << A«<R, (5)

and the same inequalities are supposed to be valid for the cor-
responding time parameters.

We consider correlations in pairs of particles in inclusive
approach when the momenta of any two particles are fixed and
averaging over the others is performed. Thus each pair of sources
can be considered independently of all other pairs. Besides, as
mentioned above, we consider the particle momenta to be large
enough so that the interference maximum occupies only a very
small part of phase space, and the rare configurations with three
or more particles having nearly equal momenta can be neglected.
This allows one just simply to add the probabilities correspond-
ing to various pairs of sources, taking into account that the
probability is independent of the difference q of pion 4-momenta
for two coinciding sources; for two 'mear-by" sources it is two
times larger and. also independent of ¢ so far as the momentum
difference is small as compared to 1/A, and for pairs of "dis-
tant" sources the q —-dependence appears and is described by for-
mula (1).

The following is reduced to simple combinatorics, i.e., to
calculation of the number of pairs of various types. In particu-
lar, below, we consider, from this point of view, several concrete
situations analyzed in the literature in terms of coherent or
partly coherent states.

3. We start with a system ofn+m one-particle sources, n of
them situated at one and the same space point and emitting par-
ticles simultaneously, the others at different space-time points.
In other words, pions from the first group are in the same quan-
tum state, while the others in different states. We denote by Wg
the probability in the "plateau’ region when the momenta of all
pions are essentially different. The question is how this proba-
bility should be modified in the case when the momenta of any
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two pions become close to’each other without changing the mo-
menta of remainingn+m-2 particles. The answer to this question
depends on the origin of a pair (the total number of possible
pairs is equal to (m+n)(m+n-1) /2). If the momenta of two pions
from the first group approach close to one another (the number
of such pairs is equal to n(n-1) /2), the probability remains
equal toWg, and for pions from the second group (there are
m(m-1)/2 such pairs) the probability changes due to appearing
the interference term, i.e., W=Wg(1+<cos ¢>). Exactly the same
change takes place when we make close the momenta of pions from
different groups (the number of such pairs is equal ' to mn),

As a result, the total probability is expressed as

_ 2W, {n@-lh_va—D+
(n+m) (n+m—1) 2 2

< W b1 MEoDERM oo5qp)> ),

(m+n)(m+n-1)

nm) (1 +<cos(ql)>)} =

Consequently,

W=W0(1-L/\<cos(qf’)>), A:M:\l. 6)
(m+n) (m+n-1)
As could be expected, A=0 atm=0, A=1 atn=0 andn=1, and
A<l if n>2.

Assuming that n , m>1 and introducing the patameter y=n/m,
we get A=(m2+2m2y)/(m&L+y)8)=(1+2) /(1 +y)2, i.e.,

W Wo(l+ 122 ccos(al)>). 7
(1+y)2 '

In the particular case, when all n+m sources are situated at
one and the same space point, we arrive at the formula which is
completely equivalent to the results obtained in refs. 457/

in the framework of the theory of coherent and partly coherent
states. Note, however, that this formula is valid only in the
case of large enough n and m.

Formula (7) has been obtained under the assumption of the
same distributions of space~time intervals between the sources
from the second group and the sources belonging to different ‘
groups. Consequently, only a single average quantity <cos qf> en-
ters into formulae (6) and (7). If these distributions are dif-
ferent, instead of formula (7) we have the following slightly
more complicated expression

1+2 N
W=W0(1+(—1-:—;)zé-<cos(q2)>aﬁ+ (1+y)2<cos(qﬁ)>lgﬁ). (8)



Here the indices a , B denote the averaging over the sources
from different groups (af) and from the second group only (BB).
The results obtained coincide with the formula (4.66) from
ref./8/, Expression (8) also leads to formulae (13), (14) and
(18) from ref.’/? if we make the averaging over the concrete
space distributions of sources used in ref.’ .

We consider now the situation when n pions are emitted si-
multaneously from the same point and m pions from the other
common point also simultaneously, but, generally speaking, at
the different moment. If we make close the momenta of pions
from one of the two groups, the interference is absent, while
the interference term contributes to the probability for pions
coming from different groups. The number of pairs of the first
type is equal to —Ln(n—l) +4-m(m-1)and of the second type to nm.
Thus the probabil&ty can be“written as

W=(n+m‘°;zljm_1) 0D HE 1< cos e,
or

B 2nm
(m+m)(n+m-1)

W= W, (1+A<cos qf>), <1. 9)

-

The factor A=0 aim=»0 orn=0; A=1 at n=m=1 In the other ca-
ses A<1. Assumingn and m large enough and introducing the
parameter y=n/m, we get

WeWo(l+ __2.1___.<cos(q2)>). (10)
(1+7)?

From the considered example it follows that the factor A<1 can
appear not only due to a joint contribution of multi- and one-
particle sources. The interpretation based on formula (10) con-
cerning the multiparticle sources only is also quite possible.

We continue our discussion with the case of N independent
multi-particle sources situated at N different points, each of
them simultaneously emitting n identical pions in the same
(for a given group) quantum state. The number of pion pairs
from the same source is equal ton(n-1)N/2, while for pairs for-
med by pions from different groups it is equal to N(N ~1)n2/2.
This immediately leads to the formula

N-1)
WeW (L+r<cos q¢>), A= BON=1) 11
,0( + qf>) N1 an

For n>1we get A=1—-1/N which is in agreement with formulae
(10) and (11) from ref./10/, Allowing for fluctuations of the num-
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ber of sources N when we come from one event to another, in
a similar way we get the formula

WeWo+ (1= SN2y <cos (a)>),
0@+ ( <N%) (af)>), (12)
obtained earlier in ref/s/- Note that the formulae (11) and (12)
would change provided that the sources emit an unequal number

of piomns.

In fact, if we add to the above system one more point-like
source emitting m identical pions in the same quantum state,
then the interference effect is absent for -—-Nn(n—l)+-§-m(m -1)
pion pairs, while 1 N(N-1)n? pairs, as befo'?re, make a contri-
bution to the probability proportional to 1 + <cos(ql)>4q and
nmN pairs to 1+<cos (ql)>aB.This combinatorics leads to the for-
mula -

W=W, (1 +)\<cos(ql)>aa+y<cos(ql)>aﬁ) .

) N(N-1)n® . 2nmN (13)
n(n—-1) N+ m(m-1)+ N(N—l)n9+2nmN’ n(n—-1) N+m(m—-1)+N(N-1)n 2, 2nmN

Assuming n ,m>>1 and introducing the parameter y=Nn/m, formula
(13) yields '

<cos(ql)>
W=w0[1+(1__1_) (q€)>gq . 2y

<cos(ql)> 5.
N (Lr)® | (dep® ap a

Finally, if N>>1,we come again, except for the changed notationm,
to the previous result (8) despite the absence of one—particle
noncoherent sources (in this context see also the discussion of
formula (10)).

For comparison with the results of ref./10/ we consider here
the clase when m one-particle sources situated at different
space=time points, are added to N previous n -particle sources
(i.e., the m —-particle source from the above example is divided
into m independent one-particle sources). Then, making close
the momenta of two pions the probability is not changed for

. A Nn (n-1) pairs, the contribution of 4 N(N-1)n2 pairs is pro-

rtional to 1+ <008(qf)>gq» of lm(m-1) pairs to 1+ <cos qf>ggand
of manN pairs to 1+<oos(q!)>alg, This leads to the total proba-
bility
W=W0[1+A<oos(q€)>aa+u<cos(q!)>aB+u<cos(qE)>BB], (15)
m(m-1)
Nn (n-1)+n®N (N=-1)+ m (m—1)+ 2maN

where v = w and A , 4 are the same
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as in eq. (13). and introducing y=n/m,

we get

Assuming again m,n>>1

W Wl <cos(qﬂ)>§§ 2N < cos(qf)> B M<cos(qi)>aa] (16)
A+yN)2  (1+yN)® (+y

which is equivalent te the formula (20) from ref.”19 If the n -
particle and one-particle sources have the same space-time dis-
tributions, formula (16) yields

2
W=W0[1+(-1—(:§1§l-)§)<cos(qﬂ)>] (17)

in agreement with the corresponding formula in ref./10/,

4. Now we discuss the changes arising when a group of sources
situated at different points inside small space~time region A

satisfying the condition (5) is considered instead of the sources

connected with the one and the same point. Of course, the number
of pairs of sources of various types is not changed, but the
weight corresponding to pairs of sources from the same compact
group is doubled. E.g., in the situation corresponding to for-
mula (6) in the previous consideration, each of n{n-1) /R pairs
of sources from the compact group contributes with the weight
equal \to 2, m(m-1)/2 pairs formed by "distant" sources contri—
bute with the average weight 1 +<cos(¢f)> each, and exactly the
same weight corresponds to '"mixed" pairs. Thus the probability
is given by

2w

W = 0 n(n-1) o, (M(m=1) 1+<cos(qf)>)],

(p, ) vy ene—y (25 +(—5—nm) (1+ (af)>)
or by

’ -1)+2nm
W, p.)=W.(1+A<cos(ql)>), A= 2@ )
17e 0 (n+m) (n+m-1) +n(n-1) (18)
Assuming n , m>>1 and introducing y=n/m, we get
1+2y
W(p1 ,p2)= W, 1+ —I20 . <cos(ql)>). (19)

(1+y)2+y*

In an analogous way the other situations considered above can be
easily reformulated as well (see also Appendix).

The change of coinciding sources by the compact group of
near-by sources always leads to an essential change of the fi-
nal result. In partlcular, formulae (18) and (19) do not coin-
cide with (6) and (7)) respectively. In order to reveal better
the origifh of this difference, we analyze in some detail the
simplest case of three sources situated at space-time points

1, , Iy , g and emitting pions with 4-momenta p,, P, and Py
The ampiitude of this process is

Loyt Frprpthg Tg)

A, .p,p, ) =ul )ud,)uk,)le

Hpy 1yt pghytPrg)  1(PgTy+PyTp¥Pylg) I(Pory 05Ty * Py 1g)

+e + (20)

i("3‘1“’1’2“’2‘3’+(,410’3’1“1’2'a“fpﬂs)]_

+ €

The probability for emission of three identical pions containing
six diagonal terms and 30 nondiagonal terms (half of them comp-
lex conjugated) is of the form

W(p,.py by ) =B, 16+-2<cos(y ~py)(r ~15) > +
+8< cos(pl—pa) (rl—r3)> +2 <cos(p1—p2) (rg—r3)> +
+2 <cos(p1—p3) (rl—r2)> + B< cos(pl—ps) (rl—r3)> +
+* 2<cos(p1 —p3) (r2 —r3)> +

+2<cos (pz—ps) (rl-r2)> + 2<co's(p2—p3) (rl—r3)> +

+R<cos (p2 -—ps) (rz—r3)> + @n
+ 2<cos [p‘1 (ri—rs) + pz(rz—rl) +p3(r3—r2)]> +
+ 2<ocxs[p1 (rl—rz) +p2(r2—r3) +p3(r3-—r1)]>+
+ 2<cos [pl(r1 —rs) +p, (r3—r2) + pa(rg—-r1 1> +
+ 2<cos[p1(r1 —r2) +p2(r3—r1) +p3(r2-r3)] > 4
+'2<cos [p1 (rg—r3 )+ p2 (r1—~r2) + p3 (1'3 —ri)]> +

- - r —r)1>},
+2<cos[p (1 r2)+p2(r1 1'3) +D3(2 1)]

%
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r, , Iy andrg. First we assume that T;=Tg=p . This allows us

!
i
P 8 . - ‘;i
where Bo:iu(p)l . Averaging is made over the space-time points §|
i
to rewrité the formula (21) in a simpler form %E

Wb, Pypy)= 130[12 +8< cos(pl—pz)(p—ra')>+8<cos(p1—ps')(P"f3) +

,’5

8< )>] @2 i

+8<co8 (p,-p,) (p~1g)>]. ”

We now make the momenta p, and p, close to one another and also
integrate formula (22) over the momentum pg as required by the \

considered inclusive approach. Then in the dominating part of i
phase space the following inequalities are fulfilled* ;
3 - -+

D, -pgl R>>1, lp2 -psl R>>1

leading to vanishing the last two terms in (22). Thus the cor- '
responding two-particle probdbility - s

Mo T

w (Pl.pg) =‘§0[12+ 8 <cos(p1-p2)(p —r3)>] =

=128 [1+ 52—<cos(p1—p2)(p—-r3)>], B o= [By a3,

3 4 TSR

coincides with formula (6) for n=2 and m=1.

We Illow,change the situation assuming the points r, and ry ¥
not coinciding but situated in a small region A satisfying the o
inequalities (5). Since the quantities p, A , p,A and psA are
assumed to be large enough, the six last1 terms2 in formula (21)
vanish and the probability is written as

W(pl,pz,ps )= B0[6+ 2<cos(p1—-p2) (rl—-r2)> +2< oos(pl—pz)(r1~r3)> + ?
+2<cos(p, =p)(r_—r_)> + i

1 2) 2 38 23) P

+ 2<cos(p1—p3) (r1 —r2)+ 2<cos(p1—p3)(r1—r3)+2< °°s(p1‘93)('g"'3)> +

-

-

+ 2<cos(p2—p3)(r1—r2) +2 <oos(p2—p8)(r1—r 3)> +2< cos(p2 —Pg )(rg—rs)>]. *

Appt.'oaching t.:he momenta p, and p_, close to one another and as-
suming the differences p -=p andp_~p_ large abough so that the
inequalities t s g 3

-;_-) R(i' —i—-o A(, -t_-o —0_-» 1at
Ip1 pgl < lp1 pgl <«<1 Ip1 p3|A>>1. Ip, Py lA>>1  (24)

are fulfilled, the second term in (23) yields 2, while the 1ast'
six terms vanish. Integration over Pg in formula (23) thus leads ‘g*

*Jere and below we assume that an analogous inequality for
time components corresponds to each inequality for space ones.

10 .

to the following two-particle probability
W (p1 ,pg)’: B0[8 + 2<cq$(p1—p2)(t1-r3)> + 2<cos(p1-—p2)(r2—r3)>].

Since A<<R,we can putr ~r, =p and rewrite this formula in
the form

W_(pl.pz) = 8§0[1 + -%—<cors(p1 —pe)(p.—r3)>]

coinciding with the formula (18) for n=2 and m=1.

If we increase the difference pl—pz.the second term in (23)
becomes smaller and vanishes at rb1—62|A>»1. Consequently, in
the considered situation there appears a peculiar dependence
on the momentum difference P, —32. Namely, at 151:321125 1 we
have a narrow interference maximum with height 12Bg. then at

>> |8, —Bp | > it turnes into a "false plateau" with height

Bo,and after that a further decrease of the probability leads,
at iil—ﬁzlA>>1, to a "true plateau" with height 6By which is
two times smaller than the height of the interference maximum,

The discussed example is absolutely typical, similar phenome-
na appear also in the case when not only two but several near-
by one-particle sources or several groups of near-by sources are
considered if only the characteristic parameters A, A and R
satisfy the inequalities (5). As a result, we come to the situa-
tion analyzed in our previous paper’/l where the interference
correlations in the systems possessing two characteristic, and
essentially different space ‘parameters have been considered.

Therefore the appearance of parameter A<1 in formulae of the
type (2) certainly doesn”t show evidence for simultaneous emis-—
sion of pions by sources situated at one point. Similar phenome-
na take place also in the case when pions are emitted by two
(or several) groups of sources - "near-by" and "distant". On
the other hand, both alternative differ in the value of parame-
ter A and also in the presence or absence of "false plateau". _
Thus, in principle, experiment can separate one from the other.
However, there is a number of complications (calculation of the
concrete form of one-particle distributions, the problem of cho-
osing background distributionms, etc.) préventing, at the pre-
sent time, from the implementation of such a program.

APPENDIX.

. We consider n+m one-particle sources situated at the space-
time points T, 5Ty ete el 0 The amplitude for emission of
identical pions with the momenta p,;Pg+++*Ppp is of the
form

11



nt+m ipk rz

A(PyiPg seeesPpyy) =Hg2 (2916 £, (A.1)
where the summation should be done over all permutations of mo-
menta pk.First, we assyme that n sources are situated at the
same space-time point and the other m sources, at different
points. Since any permutation of n momenta connected with
coinciding points Iy=ry=. =r =p does not change at all the
correspoinding n! terms in the sum in formula (A.1), the com-
mon factor n! can be taken out of the sum so that the summation
should be done only over N=(n+m)! /n! terms with different pha-
ses. Squaring this amplitude yields N diagonal terms equal to
|A012(nv)2 and N(N-1) nondiaginal interference terms (half of
them complex conjugated).

We assume now that any two momenta (we denote them by Py and
Do ) are so close that l_f) b’le<1 while for all other pairs
[pi -—pj{ R >>1. Then, after averaglng over the space-time distri-
bution of the sources, the probability contains only diagonal
terms and terms corresponding to the interference of those ad-
dends in (A.1) which differ from each other in the interchange
of momenta P; and Py only, and both these momenta should be
connected with the sources situated at different points. The
number of interfering pairs in (A.l) corresponding to the momen-
ta p; andp, connected with different one-particle sources is
equal to 4-m(m-1)(m+n-2)!/n!, each contributing to the proba-
b111ty of the process 2/A |2(n') 2<cos(pl Py) (rp~tp)>. In our
previous notation their total contribution is [2'A 12 () 2m(m—-1) x
x (m+n—-2)1/2nt1)l<ecos(ql)> If one of the con51dered pions with
momenta p; and py is emitted by the multi-particle source and the
other by some of the one-particle sources, the number of such
interfering pairs in (A.1) is equal to nm(n+m-2)!/n!, and their
total contribution to the probability of the process composes
[2|A0|2(n')2nm (n+m-2) /n!] < eos(qﬂ)>a/3 Summing all the terms and
integrating over the momenta Pg s Pyoeeesh, . we obtain for the

n+m
inclusive two-particle probablllty the expression

W, .p,)= ﬁo(n!)(n+m—2)! {(a+m) (n+m-1) +
+m(m—1)<cos(qﬂ)>BB+2nm<cos(q2)>a’3 }

which can be rewritten in the form

m(m-1) ~<cos(qE)BB+

W(p1 ,pg): Bo(m)(n+m)! {1+ Py —"

am ) 2 3-# 3-«)
(ntm)(n+m-—-1) - HAO‘ d p3d Py .a pn+m

4 b, A2
<c°s(Q)>aB (A.2)
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the formula (A.2) coincides with

3 For <cos(ql)>, <cos (qf)>
b PA the formula (A.2)

(6). Assuming n,m>>1 and introducing y=n/m,

‘ takes the form .
!
P 2y 1
W, p)=@)@m) B 11+ <cos(ql)> n+ <cos(ql)>ppt, (A.3)
i‘ B2 © e B (1 Ba
’ i.e., it coincides with the formula (8).
We now change n coinciding sources by a compact group of
' near-by one-particle sources situated in a small reglonA as-
‘,( suming that the parameters A , A and R satisfy the inequali-
! ties (5). Then, in distinction from the previous case, there
i are no coinciding terms in the sum (A.1). Thus its squaring

yields (n+m)! addends, equal to [Ay| 2 plus the sum of bilinear
products of each term in (A.1) by the complex conjugated value
of any of the other terms. After averaging over the points T, ,
| SRR , all these products vanish except those in which the
mgmenta “Sm and P, "change sources', while each of n+m-2 remain-
4 ing momenta in both cofactors is connected with' the same source,
i We assume again as in the basic text that lpi pgiA<<1 and

[31 —pJ JA>>1 for i ,j # 1,2, Thus after integration over the
momenta Dy, P4 ey Ppyy  and averaging over the space-time dis-
tribution of the sources, the contribution to the probablllty
from, each pair of the sources from the compact group is equal

to 2By, and their total contribution composes 2B0 n(n-1) (n+m—2)!.
If the two pions with momenta p; and pp are emltted by a pair of
"distant" sources, the interference term appears equal, on ave-
rage, to 2§0<cos(q2)> Since the number of such pairs equals
.L.m(m D@+m-1!, their total contribution composes
2B0-2—m(m—1)(n +m —2)! <cos (qE)>BB Finally, the number of

"mi-

xed" pairs equals nm(n+m-2)!, and their total contribution to
; the probability of the process composes 2B mn(n+m < cos(ql)> a8
] Summing all these addends, we get the expr3331on

W(pl.p2)=«Bo(n+m—-2)! {+m) (n+m-1) +n(n-1) +
i : + 2nm <cos(al)>,g+ m(m—1)<co's(q2)>BB}
. which can be rewritten in the form

; ‘ 2nm <cos(q€)>aB m(m—1)<cos(q8)>BB

' ' _ }’
\ W(pl,pz)-.W {1+
1‘

0 (o+m) (n+m —1)+n(n~1) (n+m) (n+m—1)+n(n-1)
£ 3-(,¢A 4)

W= (n+m-2)! [ () em-D+n(-D1By, By=f14, 4% 4%, d By
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coinciding with the formula (18) in the particular case when
<cos qE>aB—~<cos qf > .

If we take off the 11m1tat10nlp —p |A <<1, then the contri-
bution of each pair from the” compact group is 2Bo‘<cos(ql)>aa
instead of 2By leading to the probability

W, Pg) ="',Bo (r+m~2)! {(n+m)(n+m-1)+n@-1)<cos (af)>, + .

+ m(m~1) <cos(ql)>gg+ 2nm <oos(q8-)>aBl ,

i.e.,

n(n—1)<cos(gql)> ., m(m—1)<cos(ql)> 8B

2nm <cos(q2)>a,3
+ .

Wip, .py)-1+

(m+m)(n+m-1) +(n+-m)(n+m—1) (n+m)(n+m-1)

(A.5)

o . .
Thus for lpl—ﬂle <1 we have a narrow interference maximum,
~

a "false plateau" at }%-<<]p -p |¢’§— and a "true plateau"

at lpl-p2|A>>1 The height of the latter composes half the
height of the interference maximum.
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Jegnuuxu P., Jho6omuny B.JI., Mogropenxus M.H. E2-82-725
HHTepdepeHnHOHHbE KODPENAUUH TOXKAeCTBEHHbX YaCTHL

B MOopeliaAx C 6JIN3KO PpPacCHoONOXeHHbBIMH HUCTOYHHKAaMH

Ilokaszado, uTo GopMyJibl HHTephepeHIHOHHBIX KOPpeJIsiiHi nap
TOXDECTBEHHbX [NHOHOB ¢ OJIM3KHMH HMIYJIbCAaMH, IIOJIyYeHHble B paAfe
pafoT c IpUBJIeYeHHEM allapaTa KOTl'epeHTHHIX COCTOAHHH, ABIISAIOTCH
npefesibHbIMM CJYYasaMH BoJjlee OONHX COOTHOWEHHH, KOTOpble K TOMY
Xe CIefyioT H3 CylecTBeHHO 6ojiee MpOCTOr'O IpeAcTaBjleHHs O He-w
34aBHCHUMpIX OOHOYACTHUHEX HCTOYHHMKAX.

PaBoTa BoIONMHeHa B JlaBopaTopuu BLICOKHX sHepruft OUIH.

NpenpuHT 06BEAMHEHHOFO MHCTUTYTa RAEPHBLIX uccnegosaHuii, flybua 1982
Lednicky R., Lyuboshitz V.L., Podgoretsky M.I. E2-82-725
Interference Correlations of Identical Particles
in Models with Closely Spaced Sources P

It is shown that the formulae for interference correla-
tions in pairs of identical particles with nearly equal mo-
menta, obtained in a number of papers in the framework of
coherent state theory, turn out to be limiting cases of more
general relations. Moreover, the latter follow from esseptial-
ly simpler approach based on the model of independent one-
particle sources.

The investigation has been performed at the Laboratory
of High Energies, JINR.
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