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In this paper we investigate the properties of the liN -
expansion for the arbitraryN-dimensional oscillator with a 
power anharmonici ty r2n. 

A lot of papers are devoted to the anharmonic oscillator 
which is caused both by different applications of this problem 
(e.g., in the molecular and solid state physics) and by its 
relation with some problems of quantum field theory. The utmost 
attention has been paid to the one-dimensional oscillator with 
nondegeneratc minimum and quartic anharmonici ty of the type x 4 • 

A number of results for more general oscillators are also 
obtained. One can find an ample bibliography in the review
papers by Hioe et al., Zinn-Justin, Simon '11, so we do not give 
here but some inevitable references. 

Certain advancement in the standard perturbation theory for 
the nondegenerate oscillator has been achieved by Dolgov, Elet
sky and Popov 12

•3-'. In ref. 12 ' the first 15 terms of the expan
sion o( the ground-state energy were obtained in an analltical 
form for the quartic N-dimensional oscillator. In ref. 13 the 
first 3 terms of the perturbation theory were found for the 
N-dimensional oscillator with the arbitrary anharmonicity r 2n. 
The perturbation theory at large orders has been investigated 

l . . h b . . :4 5/ . /4/ a a L1patov 1n t e papers y Zlnn-Justln et al. ' : 1n ref. 
it was discussed for the nondegenerate oscillator with arbi
trary N and n and in ref. 

15
' for the one-dimensional oscil

lator with degenerate minima. Note that the perturbation theory 
in the case of double-well potentials has been investigated 
to a less extent in comparison with the nondegenerate case. 

Among the methods beyond the perturbation theory in powers 
of the coupling constant the liN-expansion stands out. On the 
one hand, the properties of the liN-expansion permit us to re
construct the standard perturbations, on the other hand, to 
advance towards the strong coupling. Besides, the liN -expan
sion can serve for the unified description of the one-minimum 
and double-well potentials. 

The first three terms of the expansion up to the order N-l 
have been obtained by the number of authors 12•61 . The liN -
expansion at large orders has been studied in the paper by 
Brezin and Hikami 

171
• In our paper /S/ we have found the analy

tical expressions for the first seven terms of the expansion up 
to the order N-5 for the ground and first excited levels. These 
results were of help in ?bS~!~iD~also.an anal¥,. al form of the 
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first seven terms of the perturbation series for the oscillator 
with degenerate minima. 

The liN-expansion in refs. 12•6-81 has been studied for the 
quartic oscillator. In this paper we generalize the results 

' 

of re£. 181 to the case of the arbitrary isotropic oscillator 
with power anharmonicity. Note that Mlodinow and Papanicolaou 191 

found the first three terms in this general case. 

I. CONSTRUCTION OF THE liN-EXPANSION 

So, let us consider the Hamiltonian 

1 N 2 N N 
H =- I p~ + !L I X~+ ___L_ ( I x~) n 

2 1 = 1 1 2 i =1 r N n- 1 i = 1 1 
( 1. I) 

Three are two parameters in it with the dimension of energy 
(m and g 1/n+l), which define the energy scale for different 
limits of weak (g->0) and strong ('.g_ .. "") couplings. It is 
convenient to introduce such a parameter with the dimension 
of energy (we denote it by w) that would fix the energy scale 
for arbitrary values of g. Then the ratio E/w will only be a 
function of the dimensionless coupling constant A= g/w

0
+1 

.• We 
define w by the following relations: 

m2 4n 
- = 1- -A, 
w2 2n 

A"" g/UJ n+1. ( 1. 2) 

Besides, it is rather convenient for the following to introduce 
an additional parameter connected with A 

f = [ 1 +A n (n - 1)_] 'lz • (I. 3) 
2n-1 

It may seem that the relations (1.2) were introduced ad hoc, but 
they were not.Further it will become clear,that w is energy 
splitting between the ground and the first excited levels when 
N tends to infinity.So,by its physical meaning w really fixes 
the energy scale in our problem. Moreover, the relations (1.2)
arise quite naturally while constructing the liN-expansion 
by means of the path integral, being the generalization of the 
similar formulae of ref. /8/. · 

Performing the change H/(v ... H, x .... x. I y w,we obtain 
I I 

1 N 1 4 N ' N 2n 
H =- I p~ +- (1 - ...J.!A) I X~ + -1\- ( I X ) 

2 i = 1 1 2 2 n i = 1 1 N n-1 i = 1 1 

Now it is cl~ar that the parametrization (1.2) is really 
a convenience while investigating different limits in g. The 
one-minimum potential (m2 >0) corresponds to the A, varying 
from 0 (when g ... o) to 2 °/4n (when g ... "" ) . The double-well po-

2 
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tential (m2 <0) corresponds to the A, varying from 2° /4n to 
infinity (when g ... 0 ). 

As we take interest mainly in the ground-state energy, we 
shall limit ourselves to the radial part of the Hamiltonian, 
which standardly can be transferred to the form not containing 
the first derivative: 

H = _ .l. L + [ (N-l)(N-3) + _!_(1 - .!!_A) r2+ _A_r 2n] 
2 dr 2 Sr 2 2 2 n N n-1 

(1. 4) 

At largeN the asymptotics of the ground-state energy coincides 
with the minimum of the asymptotic potential of the Hamiltonian 
(I. 4): 

Eas/w = Vas<ro), dVas (r 0 )/dr = 0, 
(I . 5) 

N 2 1 4n A V (r) = -- + --(1- -A)r2 + --r 2n 
as 8r2 2 2n Nn-1 

From eq. (1.5) it is easy to find 

ro = vN/2, Ea
8

/w = N(_l-A..ll=...l). 
2 2ll 

(I • 6) 

Replacing the origin of coordinates to the mil)imum pf the asymp

totic potential (1.5) r =r 0 +x!·/2,we obtain the Hamiltonian 
in the representation which is suitable for the construction 
of the 1/N -expansion 

2 1 ___ d_ + 
H = N!- N dx 2 

(1 -1/N)(l- 3/N} + _!_ (1 ~ ...1!!.,\ )(1 + x/ y N) 2 + 
4{1 + x/ y N) 2 4 2 n ( I . 7) 

A -2 
+ --(1+x/yN) 

0 !. 
2n 

Our goal is to find coefficients fk of the expansion for the 
ground-state energy 

( 
E "'_l_ n-lA E 0 /w = Nf0 + ~ ..:JL±...L, (I. 8) 

k=O Nk 0 2 2n 

by solving the Schrodinger equation with the Hamiltonian (1.7) 

(H - E 0 /w)t/r = 0. (I. 9) 

In this case the Hamiltonian (1.7) and hence the wave function 
of eq. (1.9) expand in half-integer powers of 11N. Therefore, 
the wave function can be written as 

x (x) TJ (x) 
t/1 (x) = t/lo (x) [ 1 + ~ 1 ( rn 

11 
+ rn )] · t 1. 1 O) 

m- Nrn- 2 NID ~ 

The wave function in the first approximation takes the form 

tiro ( x) = (2£/77) 114exp(-£x2/2). 

3 



Xmand 11m are the polynomials in odd and even powers of x, 
respectively: 

3m-1 
X (x) = L as x 2s-1 

m s= 1 m ' 

3m+1 
11m (x) = L bsx2s-2 

s= 1 m 

Substituting eq. (1.10) into eq. (1.9), one can obtain there-
current system of diffe-r;ential equations for x and 11 , which 

. f . . m m 1/N should be solved to der~ve the coe f~c~ents ck of the -
expansion. 

2. 1/N-EXPANSION OF THE GROUND-STATE ENERGY 

We give here the first six coefficients of the expansion 
(1.8) computed analytically by means of SCHOONSHIP. 

c 0 = Cn + 1 - e 2 ) I 2n . 

(1 = f-1. 

The next coefficients have the form 

(2. 1) 

5k-6 .pk 
€ - L _m_ (2 2) 

k - m = k- 2 em· ' . 
where P! are the polynomials in powers of anharmonicity n. 

4 

4 p2 
c2 = L .....!!!.. ' 

m=O em 
P 5 = (-2n 2 -7n + 31)/36, 

P ~ =-(n + 1), 

P: = (13n 2 + 29n - 20)/36, 

2 P 3 = n+1, 

p 2 =-11(n + 1) 2/36 . 
4 

9 p3 
€ 3 = L -'!!., 

m=1 fiD 

P~ = (n+1)(4n 3-75n+361)l432, 

P: = {-28n2- 65n -1)118, 

p 3 = (n+ 1)(-2n3 + 153n 2+321n-914)l216, 
3 

·l 
~ 

' . 

j 
t 

~ 

I 

\ 

P f = · (l3n3 + 125n 2 + 208n + 60)/18, 

P; = (n + 1)(-41n 3 - 37ln 2 -388n + 518)/144, 

P~ =(n + 1)(-35n2-l28n- 81)/18, 

Pi = (n + 1)2 (139n2 + 497n + 34)/216 , 

P: = 11 (n + 1) 3 I 9, 

P~ = -155(n-1) 4/432. 
14 p 4 

E = L __!!! 4 
m=2 em 

Pl "' (-2 536n6 + 3 828n 6 + 78 222n 4 - 137 669n3 + 907 617n 2 + 

+ 3 128 853 n + 845 309)11 166 400, 

P~ = (n+ 1)(4n4 + 36n 3- '1 299n 2 -3 446n + 1 341)/432, 

P t = (-2 116n6 - 44 712n 6 + 525 447n4 + 2 109 481n 3 -

- 4 729 203n2 - 13 875 957n - 5 272 516)1 388 800, 

Pi= (n+ 1)(-16n4 + 1 ~54n 3 + 14 703n2 + 21 836n - 1 ,365)/432, 

P: = (13 378n6 - 600 789n 5 - 6 212 496n 4 -11021 383n 3 + 

+ 13 819 839 n 2 + 37 447 656 n + 16 260 763)/388 800. 

Pi = (n+ 1)(-67n4 - 1 322n 3 -5 129n2 - 5 556n - 914)/48, 

Pi .. (n+ 1)(106 219n 6 + 2 290 532n4 + 9 505 621 n 3 + 

+ 6 793 426n2- 11 405 218n - 9 866 456)/233 280, 

P~ = (n+ 1)2 (2 561 n3 + 21 397n2 + 40 022 n + 14 850)/432, 

P1t"' (n+ 1) 2 (-140 863n4 
- 1 323 091 n3

- 2 755 776n
2

- 498 69fn + 

+ 997 097)/77 760 • 

P1
4
1 = (n+1)3(-3 341n2 -1? 848n -7 995)/432, 

P
1
t = (n+ 1)4 (33 911 n2 + 130 723n + 20 780) I 15 552, 

P 1~ = 155 (n + 1) 5 I 48, 

P1~ =- -39 709(n + 1) 6/46 656. 

10 p 6 
c = I _!!!. 

s m=3 f m ' 

P; = (n+1)(34 832n 7 -243952n6 -14738~6n 5 + 8027440n4
-

- 1 427 183 n 3 + 80 852 451 n 2 + 341 859 515 n + 26 408 609)/55 987 200, 

Pi = (-2 536n 7 + 6 380n6 + 361 806n 6 - 2 977 463n 4 
-

5 



6 

' 
- 19 298 345n3 -·20 204 661 n 2+ 5 766 863 n + 6 504 332)1 583 200, 

P; = (n+ 1)(1i3 192n 7 + 221 516n 6 - 8 068 710n 5 + 31 594 309n 4 + 

+ 142 913 479n3 -910 497 945n2- 2 195 432 869n -

- 454 019 188)113 996 800. 

p 5 = (-10 160n 7 -474 536n6 + 9 341148n 6 + 108 582 272n 4 + 
6 

I'' 

+ 310 576 931 n3 + 279 097 257 n 2 + 12 671 773n - 42 961 301)1 583 200, 

P~ = (n + 1)(59 164n 7 + 14 593 504n 6
- 141 205 281n 

5
-

-· 1840 760 161n 4 - 1 520 102 779n 3 + 13 292 397 831n2 + 

+ 22 698 732 316 n + 6 435 969 046) I 27 993 600 , 

P; = (44 366n 7 -2 637 121n 6 - 50 697 558n 5 - 258 913 295n 4 -

- 527 721659n 3 - 441769122n 2 -103 972 585n + 18 250 502)1 Hl4 400, 

P: = (n+1)(-1 762 642n7 +52 485 065n 6 + 1188 742 542n5 + 

+ 5 027 567 779 n4 + 2 130 271 105n 3 -·17 646 398 652n 2 -

- 24 754 360 129 n - 7 974 968 ,116) I 13 996 800, 

P1~ = (n+ 1)(2 003 978n 6 + 75 025 5;36.n 5 + 596 590 :344n 
4 

+ 

+ 1749 809 572n 3 + 2 126 055 579n 2 + 954 439 686n + · 

+. 67 222 013)1583 200. 

P{
1 

= (n+1) 2 (-10 026 275n 6 -431897 298n 5 - 3 327 578 433n4-

- 6 878 325 460 n 3 + 1 993 3 19 040 n 2 +> 14 203 4 70 · 528 n + 

+ 7 102 859 518)111197 440. 

P1 ~ = (n +1) 2 (-2 537 821 n 5 - 40 856 567n 4 - 185 514 202n 3 
-· 

- 320 710 267 n 2 - 211 155 251 n - 38 962 360)1116 640, 

P~3 = (n+ 1) 3(16 725 127n 5 + 278 381 729n 4 + 1145 245 954n
3 

+ 

+ 1 098 022 729 n 2 - 848 560 .363 n - 911 828 300)12 799 360, 

Pf
4 

= (n+l) 3(344 329n4 + 3 114 040n3 + 8129 .316n
2 

+ 

+ 7. 428 676 n + 2 084 623)1 7 776, 

P 5 = (n+1)4(-13 054 217n4 -·120 010 112n3 -·263137 935n2 -· 
16 . . 

- 79 938 146n + 65 466 :358)1 1119 744, 

P 1~ = -(n + 1) 5 (888 361 n 2 + 3 504 575 n + 2 160 022)123 328, 

p 5 = (n+1)6 (5 354 477n 2 + 21375 721n + 4 269 764)1559 872, 
17 

p 5 = 277 963 ( n + 1) 7123 328, 
18 ' 

P~9 = -6 416 935(n + 1)8 12 239 488. 

3. 1/N -EXPANSION FOR THE ENERGY OF THE FIRST EXCITED LEVEL 

Taking into account the relation 
excited energies 

between the ground and first 

E1(N; g)= E 0(N +2; g(1+2/N)n-l), 

the formulae (2. I)- (2. 6) lead to the expansion for E1 : 
00 <' 

E 11w = N<o + I ~ 
k=O Nk 

( 0 = (n + 1 - e 2)12n • 

•1 = e.. 

(3. I) 

(3. 2) 

(3. 3) 

While comparing eqs. (3.3) and eqs. (2. 1), one may be convinced 
of<~ =<0 and <~=£ 1+1,so that 

(E 1- E 0 )/ w = 1 + 0 (11N) 

and w, as has been mentioned above, has really 
meaning of the level's splitting in the limit 

The other coefficients f~ have the form 
5k-6 Q k 

l'= I' 2 
k m=k-2 em 

the physical 
of large N. 

(3. 4) 

Here Q k are the polynomials in n; capital sigma primed denotes 
that s~mming is performed only over even or odd values of m 
so that parity of m and k is the same. 

4 Q2 
t' = l' ___!!!., 

2 rn=O ern 

~ = - (n + 1) (2n + 5) I 36 , 

Q ~ = (n + 1)(13n .1- 16) I 36, 

2 2 
Q4 = -ll(n + 1) 136, 

9 3 , - ~, B..w 
l - k ' 

3 rn= 1 r rn 

Q~ = (n+ 1) 2 (4n 2 - 4n -71)1432, 

Q:.., (n + 1) 2 (-2n 2 + 155n + 274)1216, 

Q: .. (n + 1) 2 (-41n 2 - 330n - 346)1 144, 

(3. 5) 

(3. 6) 

7 



Q~ = (n + 1) 8 (t39n + 358)1218, 

Q~ = -l55(n + 1) 41432, 

We omit the expressions for €4 and £6 though they are less 
complicated than (2.5), (2.6), and qui peut le plus peut le 
moins. Nevertheless we give here just the values of €~ in a payf
ticular case of the quartic anharmonicity. Forn=2, ·f=(l+A)

12
, 

and £~ can be transferred to the form 

(~ = ~ '- ~ '• 

, u 
( 1 = (1 +A) ;'Z 

' 

€'· = 
2 

.\: 

(
1 ~)2' {- !.,\ + 2) 

+ft - 4 ' 

,\2 ~-----(-·21 2 75 . 
(1 +.\.) 9/2 18 A + 4A' -9), 

(3.7) 
(3 = 

(~ = 
L-(-,~.\s+ .17Q1.\2 __ 5713 .\. +sO), 

(1 + A) 7 64 16 16 

i' = 
5 

>.4 (-_30885,\4 - ~,\3- 3274h2 -
(1+A)19/2 1024 64 4 

122 1.33 ,\ - 5 013 ) 
16 4 ' 

(~ 
~(- 91.6 731,\6 + 19 485 563,\4 - 2 606 457 >. 3 + 

(1 + .\.) 12 4 096 1 0 24 16 

+ 5299749,\2 -· 5869 337,\ + 88251 ). 
16 32 4 

The formulae (3.7) correct the error of ref. (8), which has 
been committed while calculating <', and thus affected all 

2 
the next (~. 

4. LARGE ORDERS OF THE 1/N-EXPANSION 

Studying the asymptotic behaviou·r of the coefficients of the 
1/N -expansion we use the conventional method for investigating 
the standard perturbation theory at large orders. Some of its 
peculiarities in this very problem have been discussed by 

8 

,.,., ,, 
~) 

II: ., .. ,., 

Brezin and Hikami in ref. /7/. To calculate the contribution of 
the complex saddle points, the potential must be transferred 
to the standard form V(gr)l g 2, where the parameter of the ex
pansion g in our case ~quals 11 v'N. This can be done with the 
centrifugal term in the Hamiltonian (1.4) having the form 
N2fsr2. Thus, we make the following change of variables: 

N' 2 = (N -1) (N -·3), g' = g(N'IN)n-l. (4.1) 

Finally, the large order behaviour will be described by the ex
pression 

E I w - N' l r (k + b) [a (g ')] k 6 (g ') 
o k N'k 

and we shall have to return from N' and g' to the former para
meters N and g. It can be shown that such a return leads 
to the appearance but of the additional factor, so that 

E I w- N l r(k+ b)[ a(g)] k C(g) B(g), 
o k Nk (4. 2) 

2 a B(g) = exp{-(1-,(n -1)g-lna]l 
a ag 

Being ascertain of the fact, we can perform the change (4. I) and 
omit the prime for the present. Then, it remains to include the 
main asymptotics of the energy (see (1.5), (1.6)) into the po
tential and transfer it to the standard form near the minimum 

V(r) ::: (r - r0 ) 212. 
Finally we have the Schrodinger equation 

1 d 2.t, 1 -
-- -~ + [ -:;-V(gr) -· & )lfr = 0, 

2 dr2 g2 

(2 2)2 n-1 
V(r) = r - ro [1 + ~- !, (n- m)(r21r~)m], 

Br2r 4 2° m=l 
0 

r 2 = e $ = (E -· E )I 2w £ 
0 ' 0 as ' 

where e. we would like to remind, is defined by eq. (1.3). 
The real turning point rt exists when,\ is negative: 

,\ =-A, A> 0. In this- region 
r t 

P n = 2 J dr y 2V (r) 

(4. 3) 

ro (4.4) 

1 {3 X- 1 4A n-1 m 
=- f dx--y1 -.•-· l (n- m)x 

2 x xn m= 1 
1 

9 



with ~ being the solution of the 
n n-1 2 . 

I.. ~ m(n - ~) = 4A ' m=·1 0 < A < 

equation 

2 n-•1 

n(n -1) .. 
' 

(4. 5) ' 

As is known, the quantity a(g) in the formula (4.2) is nothing 
but 1/pn, and the total factor C(g) can be represented as 

3/2 -
e = 2f ( v ~ -· 1) exp (f , 

(4. 6) 
r t 1 1 
f dr ( __ :-·---) -= 

ro y2V(r) r -· r o 
(1 

=lim 1-ln-v-~_-_l+ J1-A n(n -1) . { _d_x_[1--4_Anil (~-m)x~ -~ l. 
a ... o a 2 n 1 1+20 x-1 2n m=1 

Taking into account the connection between A and g, the factor 
B(g) of eq. (4. 2) can be written out as follows: 

B(g)= expl2p +2(n -1) opn A(l+A4n/2n) l. 
n aA 1- An(n -1)'/2n-i 

\ 

With all the integrals calculated, we must ·perform 
lytical continuation to the positive A, after which we 
the final expression 

E I w = N ( '+ I. 
0 0 k 

( k + 1 
--k-, 

N 

(k+ 1::2 Rei- _1_ f'(k + 1/2) en V•l 
2rr3/2 p k + 1/2 

n 

en = C B(g). 

(4. 7) 

the ana
obtain 

(4. 8) 

To our regret, the integrals in eqs. (4.4, 4.6) cannot be cal
culated in a general form. In particular cases, for example, we 
have 

n-2 

P2= -y l+A· 1-2.\ -·ln V l+A.+1 11 
3A vr· -·12. 

(l+A)7/4 
C2 = 4 . ·, (4. 9) 

2 +A+ 2y 1 +A 

il=3 

Pg = - .l1n A+ 2 + y' 2(aA't&_ .. + ..!.(3 + y 2/A )(1- yA./2)1n Y~.- 2_1 _ -· 
2 2A+VA(3A+2) 4 2yA+y3A+2 

16 

( 
'' 
' 
I.J 

\. 

'I ;~· 

11 1 -· -· 
-d2(1- T 0(2 -A)(3 + y2/>d (1-·y A/2)], (4. 10) 

( l + 3A/2 ) 7 I 4 t 
c 3 = 4 . 

2 + A + 2 y 1 + 3A/2 

The validity of the results obtained was verified by comparison 
with numerical calculations for different values of the coup7 
ling constant. 

5. PERTURBATION THEORY 

Knowing the 1/N -expansion coefficients, in general we can 
reconstiuct the standard perturbation series. Let us consider 
first of all the nondegenerate potential, i.e., the case when 
m 2 > 0 and g _. 0. Then, A will also tend to zero, and thus can be 
presented as a series in powers of g. An expansion parameter 
will then be the dimensionless quantity g/rnn+1.The first three 
terms/3/ of the perturbation series in our notation are as 

_ follows: 

E 
0
/rn = ~ + £ A k (n; N)(g/mn+ 1, Nn-1)k 

2 k=l 

A (n· N) = r(n + N/2). 
1 ' r(N/2) ' 

r 2(n + N/2), nil r(i + j + 1 + ~/2~ 
2F(N/2) !,jf.Q_ r(i + 1 + N/2)rU + 1 + N/2) 

A 2 (n; N) ., (5. I) 

A 3(~; N) , r 3 
(n + N/2) n };'1 

2f'(N/2) i,j,k -=0 
X 

il:j 

e .. o 

r (i + j + 1 + N/2) r (k + t + 1 + N/2) )( - ..c..;,---·. 
r(i + 1 + N/2) r U + 1 + N/2) r (k + 1 + N/2) r( £ + 1 + N/2) 

Consider as an example the first correction to the energy, 
which can be written in the form 

I 
n-1 N n-'1 

8;1=A1/N =-·II (1+21/N), 
2n i= 1 

from which it follows that all the terms of the 1/N -expansion 
beginning from E 0 up to En--1 contribute to '8; 1·. In the same 
way one can get convinced that the second correction &2 contains 
N in powers from +I up to [1-2(n-·1)], i.e., to reproduce &2 
it is necessary to know all the 1/N -expansion terms from EO 

to E 2(n-·l). And in general for the reconstructio,n of the k -th 
term of the perturbation series one ought to take into account 
all the terms of the liN-expansion beginning from Eo up to 
Ek(n-l). In the particular case of quartic oscillator 11-1=1, so 

1) 



that the knowledge of the liN -coefficients from £o to lk al
lows us to reconstruct all the & 1 , ••• , &k. But it is necessary to 
know more terms of the liN-expansion in proportion on order 
to reconstruct the perturbation series for the potentials wi~h 
a larger power of anharmonicity. 

This is not the case when we study the double-well potential 
·(that is, when m 2 < 0, g-.O).Then .\ tends to infinity and 

£ k behaves as 
1 k/2 -£k=f3k.>..- [1+0(1/y>..)] 

Such an asymptotics leads to the equality of the number of the 
1/N -expansion terms to the number of perturbation terms re
constructed with its help. In the case of degenerate oscilla
tor the perturbation series takes the form 

n-1 2° 1/(n-1)1 .., k 
E 0 /m = -N--(-) -· + I, ~(n; N)(l!./N) , 

4n 4n !!. k-=0 
(5. 2) 

!!. ., (g/rn n + 1) 1/(n -1), 

where for convenience we changed m2 to -m2.From eqs, (2.1-2.6) 
we know fk with k =0, I, ... ,5, which allows us to define the 
first term in eq. (5.2) and the next coefficients B0 , •.• ,B 4 : 

12 

1 t liz B0 (n; N) = 2 2(n -1)] , 

B1 (n;N) = ( 4~ )1/(n-1) [N 2/4- N + (-2n 2 - 7n + 31)/38], 
2 

B2 (n; N) = ( ~ )2
/(n-l) n + 1 ,,--[N 2;2- 2N + (4n 3 - 7&u361)/216}, 

2 [2(n-1)] 

4n 3/(n-1) 2 4 3 2 2 
Bs (n; N) = (-) ·[-N /8 + N + N (28n + 65n- 71)/36-

2 n [2(n -1)] 

- N(28n 2 + 65n + 1)/9 + (-2 536n 6 + 3 828nfl + 

+ 78 222n 4 -137 669n 3 + 907 617n 2 + 3 128 853n + 

+ 845 309) I 583 200] , 

4n 4/(n-1) • n 1 4 3 B (n; N) = (-) + [-N (n + 9)/4 + 2N (n + 9) + 
4 2n [2(n -l)] 3/2 

+ N 2 (-4n 4 -36n 3 +1299n 2 +2582n -9117)/216 + 

+ N (4n4 + 36n 3_ 1 29~n 2- 3 446n + 1 341)/54 + 

l 

(: 
'' 
I 

I,, 

\ 
i 
l 
{ 

+ (34 832n 7 -·243 952n 6 -·1 473 816 n5 + 8 027 440n4 -· 

-·1 427 183n3 + 80 852 4'51n2 + 341 859 515n + 

+ 26 408 609)/6 998 400] • (5. 3) 

Now one can verify that B0 (n; N) can be written as polynomials 
in even powers of (N-2), from which immediately follows the re
lation: 

B k (n; N) = ·Bk (n; 4 - N) 

and particularly 

·Bk(n; 1) = Bk(n; 3), 
(5 .4) 

B k(n; O) = B k (n; 4). 

And lastly, the relation (3. I) between the energies of the 
,ground and first excited states results in the existence of the 
expansion for E1 similar to (5.2) with the coefficients Bk, 
instead of Bk,where 

B k Gn; N) = Bk (n; N + 2) • (5 • 5) 

From eqs. (5.4, 5.5) it follows, for example~ that in the case 
of .one-dimensional degenerate oscillator Bk:(n; 1) = Bk(n; 1). In 
other words the perturbation series for Eo and E 1 coincide 'so 
far· as they do not reproduce the exponentially small splitting 
of the levels due to the q~antum-mechanical tunneling. 

Eqs. (5.3, 5.5) allow us to find the coefficients ·B~: 

B0 (n; N) = .!..[2(n -1)1 liz , 
2 

Bi (n; N) = ( ~ ) 1
/(n-1) [N 2 /4-(n + 1) (2n + 5)/36], 

2 

B2 (n; N)= ( 4~ ~ 2/(n-l) n+ 1 'II [N 2/2+ (n+ 1)(4n2 -·4n--71)/216], 
2 [2(n -·1)] z 

B s (n; N) = (~)3/(n- 1 ) 1 {-N 4 /4 + N 2 (n+ 1)(28n + 37)/18 + 
2 2(n -1) 

+ (n + 1)(-2 536n 6 + 6 364n4 + 71 858n 3 -· 209 527n 2 -

- 697 256 n -· 385 891)/291 600] , 

13 



B~ (n;N) = (~)4/(n-l) D'+- 1 [-N 4(n+9)/4-,N 2(n+1)(4n3 +32n 2-
.. 2n [2(n-1)]312 

-·1 331 n -.. 2 547)/216 + (n + 1) (34 832 n 6 _, ,5.6) 

-· 278 784n6 -· 1195 032n4 + 9 740 872n S -· 

-·6502455n 2 -·80 995494n- 51740191)/6998400]. 

For n=2 formulae (5.3) and (5.6) coincide with the similar ex
pressions of ref. (8). Remind that in the case of the quartic 
oscillator there is the relation between the perturbation coef
ficients of degenerate and nondegenerate oscillators in one 
and two dimensions 

Bk (2; 1) = (-1)k2-(k+ l)/1!Ak(2; 2), 

Bk (2; 2) = (-1)"2 (k+ 1)/2 ·Ak (2; 1), 

which allows one to obtain the asymptotics of Bk(2; 1), Bk(2; 2) 
and Bk(2; 3) at large k. The first of these remarkable coinciden
ces has been noticed by Zinn-Justin 1 101, Avron and Seiler /11/ 
11ave verified it by analytical computations up to the 11-th 
order of perturbation theory. The asymptotics of Bk(2; 0) and 
Bk(2; 4) were derived from the asymptotic formulae (4.9) for 
£k(>..). When ,\ is large 

e k (.\) .:: {3 k (n) .\ 1- k/2 

and substitution of eq. (5.7) into the liN-expansion 
to the relation between Bk and f3k: 

Bk(n; O) = {3k+l(n)(4n/2n)k(n+1)/2(n-t)-·112. 

(5. 7) 

(1-8) leads 

(5. 8) 

Taking the limit of large >.. in eq. ~4. 10) we obtain the asympto
tics of {3k(3), hence that of B k(3; 0): 

3/4 - k 
Bk(3; O) = Bk(3; 4) = 

4 • 
3 

I T(k + 'tl) ~2~ I .• ""' 

11 3 2 (5. 9) 

Taking the same limit.\~~ in the general eqs. (4.4-4.6), we 
can derive the asymptotics Bk~;O) for arbitrary n: 

Bk (n; O) =· Bk(n; 4) = 

14 

:~2 (n/2) 114 (n-1) 3/4 [2_1/(n-,1) n (n+l)/2(tH)] k 

11 -• 
1 

an=· f dx .,j(xn-,nx +ll _,1)/x 
0 

r (k + 1/2) 
a k+ 112 

n 

-----1-8 dx 
bn = lim exp{ln8 + .,j n(n -·1)/2 J :1 

8-+0 o .,jx(xn-,nx+n-1) 

1n addition to the asymptotics obtained in ref. (8): 

Bk (2; 0) = 

Bk (2; 1) = 

Bk (2; 2) = 

Bk (2; 4) = ~~;2 :(3 ..;2)'" r (k + 1/2) , 

a..;2' .....:..k 
B"(2; .3) = -· --(3/.J2) r(k+ 1). 

11 

-· 2V3 ,(3.J2)'" r(k + 112). 
173/2 

(5. 10) 

(5. II) 

There are also known the asymptotics of Bk(n; 1) in the case of 
one-dimensional double-well potential with arbitrary anharmo
nicity obtained by Brezin, Parisi and Zinn-Justin16 . In our no
tation-their result takes the form 

Bk (n; 1) = Bk(n; 3) 3 -·(-lt v'n+1(.,j2(n+p./(n-1)) 1/(n-l) x 
211 

(5. 12) 
x[ n-t-1 k 

.,j2 (n-1)(3n-1)/2(n-1)] 

r(k + n/2(n -·1)) 

r(n/2(rn- 1)) 
'• 

As long as we know, formulae (5.9-5. 12) are the complete set 
of results for degenerate oscillators, concerning the leading 
asymptotics in the large order behaviour. Some applications 
of the results obtained in the present paper will be given 
elsewhere. 
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Kyp;HHOB A. B., CMoHp;bipeB M.A. E2-82-705 
KBaHTOBoMexaHH~ecKHH oc~HnnnTop c rrpoHsBonbHOH 
~lHrapMOHH'!HOCTbiO: liN - pasno:>KeHHe !1 TeOpHR B03MYII\eHHH 

Hccnep;oBaHbi cBoikTBa liN -pasno:>KeHHfl p;mr sap;a~u oo N -
MepHOM aHrapMOHH~eCKOM OC~HnnRTOpe C ITp0!13BOnbHOH CTerreHIIOH 
aHrapMOHH~HOCTbiO, IlepBbie meCTb 'IneHOB pasno:>KeHHH 3HeprHH 
OCHOBHOI'O H rrepBOI'O B030y)!()J;eHHOI'O ypOBHeH ITOJiy'!eHbl B aHaJIHTH
'!eCKOM BHp;e, Hccnep;oBaHO acHMITTOTH~eCKOe ITOBep;eHHe K03~H~HeH
TOB rrpH oonbmHx rropnp;Kax liN -pasnoJKeHHH. Bbmep;eHHbJe ¢opMynbi 
HCTIOnb30BaHb! npH onpep;eneHHH TO'!Hb!X Bb!pa:>KeHHH )J;nH nepBbiX meCTH 
K03¢q,H~HeHTOB CTaHp;apTHOH TeOpHH B03My~eHHH ITO CTeiTeHRM KOH
CTaHTbl CBH3H B CJiy'!ae N -MepHOI'O TIOTeH~HaJia C )J;BYMH BblpO)!()J;eH
HbiMH MHHHMyMaMH, 00CYJ!<p;aeTCR aCHMITTOTH~eCKOe TIOBep;eHHe 3THX 
K03~H~HeHTOB TipH oonbillHX 110pHp;KaX TeOpHH B03My~eHHH, 

PaooTa Bwnonnena B llaoopaTopHH TeopeTH'leCKOH ¢HsHKH OHRH. 

npenpHHT 06oeAHHeHHOro HHCTHTYTa RAePH~X HccneAOB8HHH. Ay6Ha 1982 

Koudinov A.V., Smondyrev M.A. E2-82-70: 
Quantum-Mechanical Oscillator with an Arbitrary Anharmonicity: 
liN -Expansion and Perturbation Theory 

We investigate the properties of the liN-expansion for 
theN-dimensional anharmonic oscillator with the arbitrary 
power anharmonicity.. The first six terms of the expansion for 
the energy of the ground and first excited states are obtained 
in an analytical form. We study also the large-order behaviour 
of the liN-expansion. We use the formulae derived to find 
the exact analytical expressions for the first six coefficients 
of the standard perturbation theory in powers of the coupling 
constant in the case of the N-dimensional double-well potenti
al. The large-order behaviour of these coefficients is discus
sed. 
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Thcorotical Physics, JINR. 
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