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In this paper we investigate the properties of the /N -
expansion for the arbitrary N-dimensional oscillator with a
power anharmonicity r2n,

A lot of papers are devoted to the anharmonic oscillator
which is caused both by different applications of this problem
(e.g., in the molecular and solid state physics) and by its
relation with some problems of quantum field theory. The utmost
attention has been paid to the one-dimensional oscillator with
nondegenerate minimum and quartic anharmonicity of the type x%.

A number of results for more general oscillators are also
obtained. One can find an ample bibliography in the review-
papers by Hioe et al., Zinn-Justin, Simon !, so we do not give
here but some inevitable references.

Certain advancement in the standard perturbation theory for
the nondegenerate oscillator has been achieved by Dolgov, Elet-
sky and Popov’Q'&z In ref. 2" the first 15 terms of the expan-
sion of the ground-state energy were obtained in an analytical
form for the quartic N-dimensional oscillator. In ref.’3 the
first 3 terms of the perturbation theory were found for the
N-dimensional oscillator with the arbitrary anharmonicity r2",
The perturbation theory at large orders has been investigated
a la Lipatov in the papers by Zinn~Justin et al. %% : in reff
it was discussed for the ngndegenerate oscillator with arbi-
trary N and n and in ref. ® for the one-dimensional oscil-
lator with degenerate minima. Note that the perturbation theory
in the case of double-well potentials has been investigated
to a less extent in comparison with the nondegenerate case.

Among the methods beyond the perturbation theory in powers
of the coupling constant the 1/N-expansion stands out. On the
one hand, the properties of the 1/N-expansion permit us to re-
construct the standard perturbations, on the other hand, to
advance towards the strong coupling. Besides, the 1/N ~expan-
sion can serve for the unified description of the one-minimum
and double-well potentials.

The first three terms of the expansion up to the order N1
have been obtained by the number of authors 26/, The 1/N -
expansion at large orders has been studied in the paper by
Brezin and Hikami ‘7. 1In our paper '8 we have found the analy-
tical expressions for the first seven terms of the expansion up
to the order N™® for the ground and first excited levels. These
results were of help in QQgggg;gg,alsawan—analy&éTal form of the
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first seven terms of the perturbation series for the oscillator
with degenerate minima.

The 1/N-expansion in refs.’288/ has been studied for the
quartic oscillator. In this paper we generalize the results
of ref.”® to the case of the arbitrary isotropic oscillator
with power anharmonicity. Note that Mlodinow and Papanicolaou 79/
found the first three terms in this general case.

1. CONSTRUCTION OF THE 1/N-EXPANSION
So, let us consider the Hamiltonian

N 2

N N
- 2,03 42, —B_(3 x2)n.
o2 2 pf e B3 a2y —Er (3 xf) (1.1)

1
214 1 j=1 1
Three are two parameters in it with the dimension of energy
(m and g1 n+1), which define the energy scale for different
limits of weak (g~0) and strong (g »«) couplings. It is
convenient to introduce such a parameter with the dimension
of energy (we denote it by w) that would fix the energy scale
for arbitrary values of g Then the ratio E/p will only be a
function of the dimensionless coupling constant A=g/o" L ye
define w by the following relations:

2
LA, L e glentl (1.2)
w2 n : .

Besides, it is rather convenient for the following to introduce

an additional parameter connected with A

= [1+A—£1«(j-1--'—12-] “ .

ey, (1.3)

It may seem that the relations (1.2) were introduced ad hoc, but
they were not.Further it will become clear,that o is energy
splitting between the ground and the first excited levels when
N tends to infinity.So,by its physical meaning @ really fixes
the energy scale in our problem. Moreover, the relations (1.2)-
arise quite naturally while constructing the 1/N-expansion
by means of the path integral, being the generalization of the
similar formulae of ref.’8/, _

Performing the change H/w=+ H, x ;- % /Vo,we obtain

2.n

xi) .

N N
—-39)\).2 x24 A (X

N
1 2 1

H = = 2 A +..._.(1 -
2,20 T on j=y 1 N™T1i=y

i=1
Now it is clear that the parametrization (1.2) is really
a convenience while investigating different limits in g. The
one-minimum potential (m®>0) corresponds to the A, varying
from 0 (when g-0) to 2%4n (when g-+= ). The double-well po-
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tential (m®<0) corresponds to the A,
infinity (when g-»0).

As we take interest mainly in the ground-state energy, we
shall limit ourselves to the radial part of the Hamiltonian,
which standardly can be transferred to the form not containing
the first derivative:

1 a® (N-1D(N-3) 1 4n A
H=— = : ' A 2| 2n
2 qr® C 8r2 2 C 2n )t NPT 11‘ I (1.4)

varying from 2%/4n to

At.: large N' the asymptotics of the ground-state energy coincides
with the minimum of the asymptotic potential of the Hamiltonian
(1.4):

E,./o =V, (q), av, (rg)/ar =0,

(1.5)
_N® 1 4n,, o 2
V&S(r = 'E;z—i"—é-(l——é-ﬁ")\)l' + Nﬂ_lr n-
From eq. (1.5) it is easy to find
rg = VN/2, E, /o = N(—21- _A-n;n_l). (1.6)

Replacing the origin of coordinates to the migimum of the asymp-

totic potential (1.5) r=rgy +x/v/2,we obtain the Hamiltonian
in the representation which is suitable for the construction
of the 1/N —expansion

2 —
H=Ni——r\17 a (1"1/N)(1"3/NL+——1~(1~-:—“;/\)(1+x/\/N)2+

a4 yDE 4
+ -—)-\2—;\-(1 + x/\/_ﬁ)zn} .

Our goal is to find coefficients ¢, of the expansion for the
ground-state energy

Eo/m = N€0 +k2 ..e..k.'.t_l_, € = —l-._ -n—-l)\ - (]'8)

=0 Nk 0 2 on
by solving the Schrddinger equation with the Hamiltonian (1.7)
H —’Eo/a))(/f =0, (1.9)

In this case the Hamiltonian (1.7) and hence the wave function
of eq. (1.9) expand in half-integer powers of 1/N. Therefore,
the wave function can be written as

& Xm (%) nm(®
v =y (")[1+m§1( mo173 e 3.

{1.10)

The wave function in the first approximation takes the form
Yo (%) = (0/m) Y4 exp (- 1x%/2).



Xmand 7, are the polynomials in odd and even powers of x,
respectively:
Sm—~1

Xm(x) = s=21 a‘[snx2s—1

3m+1 s 95—2
7]m(X) = 551 bmx ‘.

Substituting eq. (1.10) into eq. (1.9), one can obtain the re-
current system of differential equations foryx and 7 , which
should be solved to derive the coefficients ¢, of the 1/N -
expansion. '

2. 1/N-EXPANSION OF THE GROUND-STATE ENERGY

We give here the first six coefficients of the expansion
(1.8) computed analytically by means of SCHOONSHIP.

€ = @+1-0%)/2n, (2.1)
€ = -1,
The next coefficients have the form
5k—6 ,pé
X =3y w (2.2)

where Rﬁ are the polynomials in powers of anharmonicity n.

2
3 In

€ = —~
2 m=0 ¢m !

P2 = (-2n% - 7n + 31)/36,

2
P1
P 22 = (13n? +29n - 20)/36,
Pg = n+1,

P i =—11(n + 1)%/36 .

-3 P

3 m=1 gm

P:i - (n+1) (4“3—75[1"—361)/432'

P: = {(-28n® - 65n - 1)/18,

Pz = (n+1)(~2n% + 15302+ 321n - 914)/ 216,

\
ey, + . A

Fes

 PJ = (130% +1250 % + 2080 + 60)/18,

P2 = (n+ 1)(-410°-871n? ~388n 4 518)/144,
P§ =(n+ 1)(~-35n%-1281 - 81)/18,

PJ = (n+ D? (1390 + 497n + 34)/218,

Pg = 11@+1)3/9,

PJ = -155(n-1)%/432.

14 Pﬁa
64 = —y
m=2 ¢m

Py = (-2536n% + 3 828n° + 78 222n% - 137 66903 + 907 6170 % +
+ 3128853n + 845 309)/1 166 400,
Pi = (n+1)(4n*+ 36n3-"1 209n® —3 446n + 1 341)/432,
Pl=(-2116n° - 44 712n° + 525 447n* + 2 109 4810® -
- 4729 203n® - 13 875 967n - 5 272 516)/ 388 800,
Pf = (n+1)(-16n*+ 1854n% + 14 7030® + 21 836n - 1 365)/432,
(13 378n% — 600 789n° - 6 212 496n %~ 11 021 383n 3+
13 819 83902 + 37 447 656n + 16 260 763)/388 800,
= (n+1)(~67n* - 1 322n 3 -5129n% - 5 556n ~ 914)/48,
P = (n+1)(106 2190 °+ 2 290 532n* + 9 505 621n %+
+ 6793 42602 — 11 405 218n — 9 866 456)/233 280,
P4 - @+1)%(2 561n° + 21 3070% + 40 0220 + 14 850)/432,

o
-
+

)
'S
[

P = (n+1)2(-140 863n* — 1 323 0910° - 2 755 776n° - 498 g9tn +
+ 997 097)/ 77 760,

PA = m+1)3(-3 341n® - 12 848n - 7 995)/432,

Pl = (n+ D*(33 9110 + 130 723n + 20 780)/ 15 552,

P4=155m+1)°%/48,

P = ~39 709(n + 1) %/ 46 656.

5
. ¢ r

€
5 m=3 ¢m

PY = (n+1)(34 83207 ~ 243 952n° — 1473 818n° + 8027 440n* -
~ 1427183n% + 80 852 451 n®+ 341 859 515n + 26 408 609)/ 55 987 200,
P = (-25%n7 +6380n°%+ 361806n° 2 977 463n* -



~

)

+ 142 913 479n3 —910 497 94502~ 2 195 432 869n —
454 019 188)/13 996 800,

+

(n+1)(59 164n7 + 14 593 504n® ~ 141 205 281n° -

]

+ 22 698 732 316n + 6 435 969 046) / 27 993 600,

]

24 754 360 129n ~7 974 968 116)/ 13 996 800,

67 222 013)/583 200,

+

1

+ 7102 859 518)/11 197 440,

[

+

(m+1) 3(344 329n% + 3 114 040n% + 8 129 316n% +
7.428 6760 + 2 084 623)/ 7 776,

I

+

[

79 938 146n + 65 466 :358)/1 119 744,

= 277 963(n + 1)7/23 328,
- —6 416 935(n + 1)8/2 239 488.

.19 298 345n3 ~.20 204 661n2+ 5766 863n + 6 504 332)/ 583 200,
(n+1)(53192n7 + 221 516n® ~-8 068 71005 + 31 594 309n 4+

(=10 160n 7 —-474 5361° + 9 341 148n°+ 108 582 272n% 4+
310 576 931n% + 279 097 257n° + 12 671 773n - 42 961 301)/ 583 200,

.1 840 760 161n 4~ 1 520 102 779n3 + 13 292 397 831n? +

(44 36607 - 2 637 121n® — 50 697 558n 5~ 258 913 295n% -

527 721 659n 3 — 441 769 122n% — 103 972 585n + 18 250 502)/ 194 400,
(n+1)(=1 762 642n7 + 52 48506508 + 1 188 742 542n° +

+ 5027 567 779n% + 2 130 271 10503 ~-17 646 398 652n° ~

(n+1)(2 003 978n® + 75 025 53605 + 596 590 344n* +
1749 809 572n2 + 2 126 055 579n® + 954 439 686n +

(n+1)? (10 026 275n5 —-431 897 298n° - 3 327 578 433n* -
.6 878 325 46002+ 1993 319 040n2 + 14 203 470-528n +

(n+1) 2 (-2 537 821n5-.40 856 567n* — 185 514 202n %
1320 710 26702 - 211 155 251n —-38 962 360)/116 640,
(n+1)3(16 725 12705+ 278 381 720n% + 1 145 245 954n° +
1098 022 729n2 — 848 560 363n —-911 828 300)/2 799 360,

(n+1)4(~13 054 217n% —120 010 11203 —263 137 935n% —

~(n+1)5(888 361n? + 3504 575n + 2 160 022)/R3 328,
= (n+1)®(5 354 477n® + 21 375 721n + 4 269 764)/550 872,

3. /N -EXPANSION FOR THE ENERGY OF THE FIRST EXCITED LEVEL

Taking into account the relation between the ground and first
excited energies !

E;(N;g)=EgN +2 gl+2/N)""1y, .

(3.1)
the formulae (2.1)-(2.6) lead to the expansion for Ei: .
Ey/o = Nej + 3 —K+L
=0+ 1~ 32)/2n.
(3.3)
e{ = {..

Whil’e comparing eqs. (3.3) and eqs. (2.1), one may be convinced
of g =¢, and 6'1=€1+1,so that

E-Ey)o =1+ 0@1/N)

and @, as has been mentioned above, has really the physical
meaning of the level's splitting in the limit of large N.
The other coefficients (I{ have the form

Sk-¢  Qn -
m=k—2 gm ’ (3'4)

Kk . . . . .

Here Qm are the polynomials in B; capital sigma primed denotes
that summing is performed only over even or odd values of m
so that parity of m and k¥ is the same.

2

f’ - 4’ Qm'
2 @m=0 gm (3.5)
Q% = ~ (n+1j(2n + 5)/ 386 ,
Q% = (n+ 1)(13n - 16)/38,
Q% - —11(n + 1%/36,

9 3
e = Y g—m,
3 m=1pm
Q¥ = @+ 1)2@n® - an - 71)/432,
Q§= (n+1)%(-2n? 4+ 1550 + 274) /2186,
Q2 = @+ DZ(-41n% - 3300 - 346)/ 144, (3.6)



Q3 = (@ +1)%(139n + 358)/218,

Qg = -185(n + 1)%/432,

We omit the expressions for ¢; and ¢ though they are less
compllcated than (2.5), (2 6), and qui peut le plus peut le

moins. Nevertheless we give here just the values of € 1in a pa - iy,
ticular case of the quartic anharmonicity. For n=2, €=+ 2% ik
and e; can be transferred to the form , I
5'=—1-;—-._A...: ¢
0o 2 4"’
1
. e = @,
w39,
25+ N%- 4
3.7) M

E’ - /\2 ( 21 7_5_)\'1. _9)
(L+)) 9/2 16 4 '

3
(1+Aﬂ 84 18 16
o _.30885,4 _ 108585 ,3  32745,2
5 (1421972 1024 84 4
‘ _ie2133, 5018 ,
: 16 4
AS 916 731 .5 19485563 ,4 2606 457 , 3
€ = - AT+ AT - \ o+
8 @+MN® 40% 1024 16 .
, 5299749,2 5869337, 88 261 | )
16 32 4

The formulae (3.7) correct the error of ref.

(8), which has
been committed while calculating cé, and thus affected all
the next e/

k* {
4. LARGE ORDERS OF THE 1/N-EXPANSION s

Studying the asymptotic behaviour of the coefficients of the v
1/N -expansion we use the conventional method for investigating
the standard perturbation theory at large orders. Some of its
peculiarities in this very problem have been discussed by

8

Brezin and Hikami in ref.’?/, To calculate the contribution of
the complex saddle points, the potential must be transferred
to the standard form V(gr)/g 2 where the parameter of the ex-—
pansion g in our case equals 1/\/N This can be done with the
centrifugal term in the Hamiltonian (1.4) having the form
N2/812, Thus, we make the following change of variables:

N'%= N—1)(N-3), g =g®/N""1, (4.1)

Finally, the large order behaviour will be described by the ex-—
pression

By /o~ N3 TEED 10915
k N’k

and we shall have to return from N’ and g* to the former para-
meters N and g. It can be shown that such a return leads
to the appearance but of the additional factor, so that

Ey/w~ N3 LED L1k §@B@,
k Nk (4.2)

B(g) = exp{ia-[l —{(n ~ 1)g-é—1n alt .

Being ascertain of the fact, we can perform the change (4.1) and
omit the prime for the present. Then, it remains to include the
main asymptotics of the energy (see (1.5), (1.6)) into the po-
tential and transfer it to the standard form near the minimum
V) =@ -10)%/2.

Flnally we have the Schrddinger equation

. d_ﬁ+[ Ly~ &y =0,

2 gr2
v = & "&)) A5 s maran™, (4.3)
8r2r 4 ol m=1
1'02'-':2, ‘g':(E )/20)29
where {, we would like to remind, is defined by eq. (1. 3).
The real turning point ry; exists when A 1is negative:
A=-A, A>0. In this’ region
e -
po=2 [ ayaV( =

2, (4.4)

_1 P x-1 4h
_2 {dx x \/1—@——-—

xn

n—1
S m-mxT,
m=1



with B8 being the solution of the equation

n—1 n n—1 . N
2‘« m ~ Ll = —g——- 0 .._.?._.__.__,__, ”
ey P (n-m) W <A< YRV (4.5)

As is known, the quantity a(g) in the formula (4.2) is nothing
but 1/p,, and the total factor C(g) éan be represented as

8/2 — :
C=2 (VB-DNew(Q,

' (4.6)
@ = f[ar( ! e 1 ) =

o Jevem TTfo

-3 B n—1 .
= lin {~In ‘/’f; \}1 Angng) R . 4A 3 a-mx" T ~%
50 2 1426 x-1

Taking into account the connection between A and g, the factor
B(g) of eq. (4.2) can be written out as follows:

n
B() = expl2p, + 2 — 1) —Pn AU+ Adn/2h |
A1 An@-1y/2"? \
With all the integrals calculated, we must perform the ana-
lytical continuation to the positive A, after which we obtain
the final expression

4.7)

R+t
W = ~ 8
Eo/ Neo + Ek .

Nk
€. 1 = 2Ref- —3 r(k+1/2)—-gﬂ—i-l (4.8)
ket 27 8/2 pk+1/2
n
C, = CB(®.

To our regret, the integrals in eqs. (4.4,
culated in a general form.
have

4.6) cannot be cal-
In particular cases, for example, we

N=2 _
pom~vVIoh 1-2 . VvV I+A+1 i
3 ou 2

’

\T/4
02 = 4 ___g!_ﬂ__)_________;

——— (4.9)
2+A+ 2V 14X

fi=3

N T )\+2+\/2(3)\+2)
2)\+\/)\(3/\+2)

+ (3 4+ V21~ vx/z)ln_ﬂL_El._ -
K 2VA+V3A+2

10

et £

Ll

reconstruct the standard perturbation series.

(2 ~1)B+v2/n) -y VD],
/44

. T 1
—igll-7 (4.10)

(1+3)\/2) :
2+A+2y1+30/2

03 = 4

The validity of the results obtained was verified by comparison
with numerical calculations for different values of the coupz
ling constant.

5. PERTURBATION THEORY

Knowing the 1/N -expansion coefficients, in general we can
Let us consider
first of all the nondegenerate potential, i.e., the case when
m?>0 and g 0. Then, A will also tend to zero, and thus can be
presented as a series in powers of g. An expansion parameter
will then be the dimensionless quantity g/m?P*! The first three
terms /3 of the perturbation series in our notation are as
follows:

Eo/m=s 5 A, (N @/mtLNTYHE :
2 k=1 )
ANy = LOEN2)
'(N/2)
2 n—1 i
Mg N) = — Lo@rN/RNSE TGriris N/2) (5.1)

SF(N/2) 1iF0 D@+ 1+ N/2T(+1 + N/2?)

L PPN gt 1Y
(N/2)  idk=0 £=0

x F(i+)+l+N/2)F(k+Z+1+N/2) )
TG+ 1+N/2)F(J+1+N/2)F(k+1+N/2)F(E+1+ N/2)

Consider as an example the first correction to the energy,
which can be written in the form
\

n-1 N =nr-l
= 55 12_[_111 1+ 2i/N),
from which it follows that all the terms of the 1/N —expansion
beginning from ¢y up to ¢, contribute to %4..In the same
way one can get convinced that the second correction &g contains
N in powers from +! up to [1-2@-1)], i. e., to reproduce &g
it is necessary to know all the 1/N —expansion terms from ¢€g
O €gen_y) - And in general for the reconstruction of the k-th
term of the perturbation series one ought to take into account
all the terms of the 1/N-expansion beginning from ey up to
€x(n—-1) - 10 the particular case of quartic oscillator n-1=1, so

Ag(f}; N) X

Eq=A/N

11



that the knowledge of the VN -coefficients from €0 to € al-
lows us to reconstruct all the &,,..., gk But it is necessary to
know more terms of the 1/N-expansion in proportion on order
to reconstruct the perturbation series for the potentials with
a larger power of anharmonicity.

This is not the case when we study the double-well potential

(that is, when m2< 0, g+0).Then A tends to infinity and
€x behaves as
ey =B ME 21 o/v N

Such an asymptotics leads to the equality of the number of the
1/N -expansion terms to the number of perturbation terms re-
constructed with its help. In the case of degenerate oscilla-
tor the perturbation series takes the form

n — oa
Bo/m = -NELHVOTELL T B @mam®

4n  4n A

(5.2)
A e (g/mn+1) /(n -‘1)’

where for convenience we changed m? to —m?. From eqs, (2.1-2.6)
we know €, with k =0,1,...,5, which allows us to define the
first term in eq. (5.2) and the next coefficients BO,...,B4:

By N) = 42011 %,

4n 1/ (n

By iN) = (- D IN%/4-N+ (202 - Tn + 31)/36],

n+1

4n 2/(n—1) 2 3
= N %/2 - oN + (4n® — 76n +361)/216],
(2 ) [2(!1"1)], IN¥/ + (4n +361)/

Bo(m;N) =

(4n)3/(n—x)

2n [°(n 1}
~N(28n% + 85n + 1)/9 + (-2 536n® + 3 82805 +

+ 78222n% —137669n %+ 90761702 +3128853n +

Ba(n; N} = f~N /8+N + N® (28n 2 . 850~ 71)/36 -

+ 845 308)/583 200] ,

(4n )‘/(n"i) cnt+l

B,(mN) = Bt [-N4@+9)/4+ 2N (n+9) 4
¢ (2(n ~1)] /2

+ N%(4n*-36n3+1290n%+258n -9117)/218 +

+ N(4n* + 36n 3~ 1200n® - 3446n + 1 341)/54 +

12

— —

[

T r— S ———— e W T———

+ (34 832n7 ~243952n8 ~.1 473 8160 + 8 027 440n% -

—-1427183n% + 80 852 451n® + 341 859 516n +

+ 26 408 609)/ 6 998 400]. (5.3

Now one can verify that B (n; N} can be written as polynomials
in even powers of (N-2), from which immediately follows the re-—
lation:

B,(m; N) =B, (n; 4-N)
and particularly
Byn; 1) = B, (m; 3),

By(n; 0) = By (m;4).

(5.4)

\

And lastly, the relation (3.1) between the energies of the
ground and first excited states results in the existence of the
expansion for E; similar to (5.2) with the coefficients By
instead of B,,where

B {n; N) =B, (@ N+2). (5.5)

From eqs. (5.4, 5.5) it follows, for example, that in the case
of one-dimensional degenerate oscillator Bi(n;1) =B,(n;1). In
other words the perturbation series for Ey and E coincide 'so
far as they do not reproduce the exponentially small splitting
of the levels due to the quantum—mechanical tunneling.

Eqs. (5.3, 5.5) allow us to find the coefficients 'B{{:

By i N) = -2 -]

Bf (@ N) = (—3“;,—)‘/(“"" [N2/4~@+ 1) 0+ 5)/38],

n+1

B) (n N)—- (4[] 2/(“"’1) _prL
[2( —:1)]1/z

[N®/2+ o+ 1)(4n® —4n—-71)/216],

B3 (m; N) =

(%&)3/(n~‘1) [-N*/4 + N®(@+1)(280 + 37)/18 +

2(n ~1)
+ @+ 1)(~2 536n 5+ 6 364n% + 71 858n 3 - 209 527n% _

~ 697 256n ~-385 891)/291 600] ,

13



s ey (An 4/ @=1)  nai 4 N2 8 2
B, mN) = (—2—-5) mgz[—-l\] (n+ 9/4~ N+ 1)4n° + 32n°—

—-1331n = 2547)/216 + (n + 1) (34 8320 % ~. (5.6)

— 278 784n% — 1195 032n% + 9 740 87203 —

- 6502 455n° ~ 80 995 494n — 51 740 191)/6 998 400] .

For n=2 formulae (5.3) and (5.6) coincide with the similar ex-—
pressions of ref. (8). Remind that in the case of the quartic
oscillator there is the relation between the perturbation coef-
ficients of degenerate and nondegenerate oscillators in one
and two dimensions

B, (2: 1) = (D52 /% (o),

B, (% 2) = (kg &F 12

A @1,

which allows one to obtain the asymptotics of B (2; 1), By(2; 2)
and B,(2 3 at largek. The first of these remarkable coinciden-
ces has been noticed by Zinn—Justin/lo/, Avron and Seiler 71V
have verified it by analytical computations up to the il-th
order of perturbation theory. The asymptotics of B, (& 0) and

B, (2 4) were derived from the asymptotic formulae (4.9) for
ex(A). When A is large

ey = B At~ (5.7)

and substitution of eq. (5.7) into the 1/N-expansion (1-8) leads
to the relation between B, and B,:

B, 0) = B,,,(@(4/2"k@+1)/2@~1)~1/2 (5.8)

Te.xking the limit of large A in eq. (4.10) we obtain the asympto-
tics of B,(3), hence that of Bk(& 0):

. . 4.3%/4 , @y2) "
B (3:0) =B (34 = W-P(k + '4) (@+y3)] EF 172 (5.9)

Taking the same limit A+ o in the general eqs. (4.4-4.6), we
can derive the asymptotics B,(;0) for arbitrary n:

B\k (n; 0) = Bk(n; 4) =

14

3/4

by 1/4 1/(n—1)_(a+1y/20-1) .k t(k+ 1/2)
V) @2 @-H" 2 f ! kv 1/’
0 a n
! :
ap = § dxy & "=nx+n-1)/x, (5.10)
0
b, = lim exp{ind + Vn(@-~1)y/2 [ }

540 0 \/x(x“-=nx+n—1)‘

in addition to the asymptotics obtained in ref. (8):

. . 2V3 o vk
Bk(2, 0) = Bk 2;4) = _;?375'(3 ve) T+ 1/2),

By 1) = Bx@ 3) =~ §¥i»k3/¢§3k F+1), (5.11)

REVENNr.
- 22 ey e+ 1.

w

Bk ®;2) =

in the case of
anharmo—
. In our no-

There are also known the asymptotics of By (n; 1)
one-dimensional double-well potential with arbitrar
nicity obtained by Brezin, Parisi and Zinn-Justin’/®
tation-their result takes the form

B 1) = B,y(®; 3) = _:_'§_:é=’_§:.11‘i_\/n+ T(VEGT D/ -1

. (5.12)
n+1 k

V2 (a-1) (8n~1)/2(~1)

'k+n/2( -1))
'w/2(m-1)

x [

As 1long as we know, formulae (5.9-5.12) are the complete set
of results for degenerate oscillators, concerning the leading
asymptotics in the large order behaviour. Some applications
of the results obtained in the present paper will be given
elsewhere.

REFERENCES

1. Hioe F.T., McMillan D., Montroll E.W. Phys.Rep.,
p. 305.
Zinn-Justin J. Phys.Rev., 1981, 70, p. 109,
Simon B. Int. J.Quantum Chem., 1982, 21, p. 3; see there
also "The Proceedings of the International Workshop on Per-—
turbation Theory at Large Order", Florida, 1981.

2. Dolgov A:D., Eletsky V.L., Popov V.S. Preprint ITEP-72, M.,
1979.

3. Dolgov A.D., Popov V.S. JETP, 1978, 75, p. 2010.

1978, 43,

15



10.
1.

16

Bresin E., Le Guillou J.C., Zinn-Justin J. Phys.Rev., 1977,
D15, p. 1544, 1558, '
Brezin E., Parisi G., Zinn-Justin J. Phys.Rev., 1977,

D16, p. 408.

Ferrell R.A., Scalapino D.J. Phys.Rev., 1974, A9, p. 846.
Bray A.J. J.Phys., 1974, A7, p. 2144,

Brezin E., Hikami S. J.Phys., 1979, Al2, p. 759.

Koudinov A.V., Smondyrev M.A. JINR, E2-81-449, Dubna, 1981;
Czech.J.Phys., 1982, B32,.p. 556,

Mlodinow L.D., Papanicolaou N. Ann.Phys., 1980, 128
p. 314,

Zinn-Justin J. J.Math.Phys., 1981, 22, p. 511.
Avron J., Seiler R. Phys.Rev., 1981, D23, p. 1316.

b

Received by Publishing Department
on September 30 1982.

—pr—fa T

Kynunos A.B., CMoHgmpeB M.A. E2-82-705
KBaHTOBOMEXaHUYECKH OCLHMIUIATOP C IPOH3BOJIBHOMI

AHTAPMOHHYHOCTBI: 1/N — pasjioKeHHe K TEeODHs BOSMYIEHHIl

HccnepoBanbl cBolicTBa 1/N -—-pasmoxeHHs Ons 3ajaun o6 N —
MepHOM aHIapMOHHYECKOM OCHWHIATOPE C IPOU3BOJILHOH CTelneHHON
aHTapMOHHYHOCTBLI,. IlepBble WeCcTh UYJIEHOB PAasJIOXeHHs 3HepruH
OCHOBHOI'O M IepBOTr0 BO36YXOEeHHOTO YpOBHei# INoJiyueHs B AaHAJIMTH—
yeckoM Bupge. HccilemoBaHO ACHMITOTHYECKOE NOBeleHue KosdbuuueH—
TOB IpH Oojbmux nopsagkax 1/N —pasioxeHusi. BriBeneHHble (HhOPMYJIIbl
HCHONIb30BAaHs IIPH ONpedesjIeHHH TOYHHX BhpAXEHUH [Jisi MepBbiX WMeCTH
K03bdHILIMEeHTOB CTAHZAPTHOH TEOpHH BO3MYmMeHHIl IO CTeleHAM KOH—
CTAHTHl CBsA3W B ciiydae N-—-MepHOro NOTeHLHAla C JBYMSA BHIDOXIEH-
HEIMH MHHEMyMamMH. O6cyxpgaeTcs aCHMITOTHYeCKOe IMOBeleHHe STHX
KOSGOHUIMEeHTOB IPH GONBIHX MMOpAOKaX TEeOpHH BO3MYMEHMH,

Pabora BemonHeHna B JlabopaTopum TeopeTHueckod duzuxu OWIU.

NpenpuhT 06beAMHEHHOTO MHCTUTYTa AREPHHX uccneaosanui. [lybra 1982

Koudinov A.V., Smondyrev M.A. E2-82-705
Quantum -Mechanical Oscillator with an Arbitrary Anharmonicity:
1{/N -Expansion and Perturbation Theory

We investigate the properties of the 1/N-expansion for
the N-dimensional anharmonic oscillator with the arbitrary
power anharmonicity. The first six terms of the expansion for
the energy of the ground and first excited states are obtained
in an analytical form. We study also the large-order behaviour
of the 1/N-expansion. We use the formulae derived to find
the exact analytical expressions for the first six coefficients
of the standard perturbation theory in powers of the coupling
constant in the case of the N-dimensional double-well potenti-
al. The large-order behaviour of these coefficients is discus-
sed.

The investigation has been performed at the Laboratory of
Theoratical Physics, JINR.
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