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The whole set of relations which defines (supersymmetric 
dimensional) regularization kf dimensional reduction (RDR) 111 

is known to be inconsistent1 . In the component-field forma­
lism one succeeded in finding the "redundant" relations (Fierz 
identities); giving them up makes the regularization consis­
tent/3/, still allowing one to compute diagrams. We carry out 
the same programme for a superfield formulation of the Wess­
Zumino model, where in the component-field approach the RDR is 
equivalent/ 4/ to conventional dimensional regularization. Up 
to a definite order the superfield RDR calculations using the 
contradictory set of relations give the same results, as our 
consistent formulation does. Hence, up to that order they are 
reliable. 

In terms of chiral superfields ¢(~0) the action for the 
Wess-Zumino model has the form: 
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The notation for the two-component anticomrnuting spinors 1s 
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The basic relations have the following form: 
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()A()B()C ,.O, (8) 

and the sanie for (AB andOA.Notice, that (8) follows from (5)­
(7), which in turn can be derived from (2). Below we shall see 
that (2) has to be given up, and then (3)-(7) will be the axioms 
in place of (2)-(4). 

After the reduction to a nonintegral dimension we get a pro­
jection operator ~v with the property 

g/111 - d,. 4-2 E. .• (9) 

Since there are no vector fields in the model, we shall only 
need the d-dimensional rr·-matrices (they appear together with 
momenta in the form p ) obeying (4), just as in the conventio­
nal dimensional regularization. Equations (4), (9) and the cyc­
licity of the traces lead to the following formulas for 
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Jormula (II) is specific ford dimensions. It is analogous to 
the nullification of any tr( y
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.y •.. y ) with anticornrnuting 
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y5 , ! y 5 .y l+ "'O, in the nonintegral-dimensional space. As we 
shall see 11below, noncorrespondence of (II) to the four-dimen­
sional limit is not seen in the super-invariance region. 

The set of equations (2)-(11) is contradictory. Multiply (2) 
by MA~BD' where M,. CTi-£t'''~iL 2m, N- avt ... ;·v2n.Taking into account 
a consequence of the notat~on and (6), 
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we obtain a relation, which would be an identity for the a-mat­
rices of the four-dimensional space: 

L'."' tr[M(N+NR)]- tr(M) tr(N),. 0. 

But the calculation of the traces in the left-hand side with the 
use of (10), (II) and (5), when M and Neachcontainfour a­
matrices, gives a nonzero answer: 
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To avo'id this discrepancy, we have to exclude equation (2), 
which allows only two values for spinor indices. However, 
"simple" ()-variables entering (I) should be left two-component 
in the sense of (7!, (8). It ensures the exiptenc~ of an expli­
cit 0 -fu~ction for. the e-integration (3). That function is 
necessary for a correct construction of the propagator for the 
action (1). Therefore, we postulate (3)-(7) and (9),tomake 
possible the use of (3)-(11). 

In the quasi-two-dimensional space (see ref! 31 ),where (5) 
is true but (2) is not, a sum of two simple ()-variables is not 
a simple () -variable: ( () + cp) 3 ,j 0, because (3) and (6) give 
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It implies that shifts of the ()-integration variables are not 
generally permissible, and therefore, supersyrnrnetry of the re­
gularized action (I) can be broken. 

The use of (3)-(11) on~ and the ()-shift ban in the super­
graph techniques of ref. 15 lead to a consistent regularization 
scheme. It can be shown .to be equivalent to component-field 
calculations161 with anticornrnuting y 5 . However, ~e cannot intro­
duce differentiation with respect to simple a-variables, sinc7 
it would allow one to derive (2) from (7), the above contradic­
tion following irnrnedi~tely. T]1is tact does not permit us to con­
struct a consistent version of the supergraph method with cova­
riant derivatives171 to treat vector superfields. 

Now we are to study 'the scope of the supersyrnrnetric dimensio-· 
nal regularization. compare the expressions• for supergraphs be­
fore momentum integration in the consistent fDR version with 
those obtained in four dimensions and thus possessing supersym­
metry. We only consider the qi¢ , ¢ 3 (¢3 ) and ¢ 2¢ 2 diagrams 
because other graphs are convergent due to power-c'ounting rules 
with no reference to supersyrnmetry. 

The only formula of those used which fails in four dimensi­
ons is (I 1). It is applied to compute the traces arising from 
closed cycles of lines in the diagrams. The corresponding four­
dimensional formulas, for instance, 

T (p 1 ". IL 4 ) - 4 i ~ ' (12) 
flt ... IL 4 

involve the totally antisymmetric tensor. A nonzero contributi­
on of that type after the integration over the internal momentum 
of the cycle can only be obtained if the latter has at least 
four independent external momenta. The minimal even cycle with 
such a property includes six lines and may contribute to the 
six-loop <ll¢ , five-loop ¢ 3 and four-loop ¢ 2¢ 2 graphs (or to 
the divergent parts of the five-lf .w 2ili 2. oue~, 

0 'l,i..QHiif:Jt: :Q!~. c r ·If" 1 3 

>t ""'~':" ~r.Ctl' .OBM:tV' 
.. •lA- -··---·-"A 



\ 

Consequently, up to this limit the difference between (II) 
and (12) does not tell on the' results, and our unambiguous ex­
pressions have the form which is supersymmetric in the four-di­
mensional space. However, to prove their supersymmetry proper­
ties, distinctive features of that space can turn out to be 
necessary. Namely, exactly four values for Lorentz indices and 
two for spinor aries (2). In terms of the g

11
v -tensors the for­

mer implies that antisymmetrization over five indices is impos­
sible in four dimensions: 

det(l11'''115'v1'''v5) ... o. ( 13) 

In turn, equation (2) allows additional sirrrplifications in ex­
press ions >vi th spinor-index quantities. Thus, the super symmetry­
breaking parts of the d -dimensional results may include ev.an­
escent momentum-combinations, to prove the nullification of 
which in four dimensions one would need formula (13), and a­
structures, which would be zeros if formula (2) were true. 

A detailed analysis shows that the evanescent a-structures 
cannot break supersymmetry properties of the propagators and 
triple vertices and also the finiteneas of the quartic vertices. 
Therefore, nothing but the evanescent momentum-combinations can 
break supersymmetry. Such a combination has at least tenth po­
wer in momenta. On the other hand, the maximal power of the nu­
merator of the L-loop diagram is 2L (for '<llifi and <ll 3

) or 2L+2 
(for ·<1J2(ii 2 ) • Hence, supersymmetry can be broken in the consis­
tent RDR version from five (in the ·¢·(iJ and <ll 3 graphs) or four 
loops on (in the ¢2¢ 2 ones). Since the ·<IJ 2<ii 2 diagrams have only 
logarithmic divergencies, only the evanescent combinations 
which involve no external momenta can contribute to their di­
vergent parts. Due to antisymmetry of (13), for such a combina­
tion at least fiv~ independent internal momenta are required. 
Thus, the four-loop quartic vertices remain finite. 

We now consider computations with the use of the whole set 
(2)-(9) ilnd a -shifts or by the supergraph method of ref. 171 , 
i.e., in the inconsistent RDR versions. The following order of 
manipulations is natural: First the four-dimensional a-(or D~ 7~ 
and u-algebra (2)-(8), (10), (12) are carried out, and then 
the d-dimensional momentum integration is. Here the evanescent 
a-structures and momentum-combinations become a source of am-
biguities rather than of supersymmetry breaking. For the corres­
ponding estimates one should use supergraph power-counting ru·­
les 15 • 71 . 

Calculations in contradictory versions are surely reliable 
while they have an external justification, i.e., while they ag­
ree with a consistent scheme which preserves supersymmetry up 
to a definite order. It is such a correspondence that we estab­
lished above when studying super-invariance of our unambiguous 
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Table 
The RDR in the Wess-Zumino model 

Versions Consistent Inconsistent 

Graphs 
<P4S 

<P~ c:p~ c:{)1. 
cp~ 

cp3 
cr~1 

(CIJ3) 
divergent finite 

c<P~ > parts parts 

1. Unambiguity iXJ 00 C>O 00 6 6 5 

2. Supersymmetry 5 5 5 4 0<) ~ 00 

' 

J, Four-dimen-
sional limit 6 5 5 4 00 QO 00 

4. External just~ 

1 
is unnecessary fication 5 5 4 

I ·- I 

formulation. Therefore, in its invariance region one can also 
perform a-shifts, considerably simplifying the computations, 
or employ techniques of ref. 171. These arguments justify the use 
of the RDR in actual three- and four-loop calculations 181 . 

The results of the above analysis are summarized in the 
Table. The consistent (superfield or component-field) RDR for­
mulation and the inconsistent one (with a -shifts or covariant 
derivatives) are considered. Their following properties are 
under study: I. Unambiguity. 2. Supersymmetry. 3. Correspon­
dence to the four-dimensional formulas such as (12). 4. Accor­
dance ~ith a consistent scheme. For each property the minimal 
number of loops is pointed out, when it can be broken for the 
first time. Our main conclusion is that for divergent parts of 
the diagrams the RDR can only prove incorrect from five loops 
on. Maybe, the search for an internal justification criterion 
in the contradictory RDR versions would extend their scope and 
give a satisfactory regularization for vector superfields. 

We thank A.A.Vladimirov for useful discussions. 
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Anp;een Jl.B., KaMeHI~HK A.IO. E2-82-680 
Pa3MepHan perynnpH3a~HH cynepnonenb~ p;HarpaMM 

Onpcp;enena o6nacTb npHMeHHMOCTH cynepcHMMeTpH~Holi pa3Mep­
HOH perynnpH3a~HH D MOp;enH Becca-3yMHHO, C 3TOH ~eiTbW C~OpMy­

ITHPOBaHa nenpOTHnope~HBaH nepcHH perynnpHsa~HH p;nn cynepnone­
Bb~ p;HarpaMM, 

Pa6oTa DbrnonHeiia B J1a6opaTopHH TeopeTH~ecKoli ~H3HKH OIDIH. 

OpenpHHT 0t5'I.OAHHCti110rO HHCTHTYTa RACPHbiX HCCJlCAOBaHHH. ,lly6Ha 1982 
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Dimensional Regularization of Supergraphs 
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The applicability region of the supersymmetric dimensio­
nal regularization is determined in the Wess-Zurnino model. 
To achieve it, a consistent version of the regularization for 
supergraphs is formulated. 
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