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In recent years much progress has been achieved in the in-
vestigations of quark-gluon states of the matter and in the
physics of the confinement-deconfinement phase transitions.
This progress is to a great extent due to the formulation of
the lattice gauge field theories 1/,

The use of the lattice regularization in constructing the
gauge field theories enables the use of the Monte-~Carlo method
for the numerical investigation of the quark-gluon interactions
of different phases of the matter.

As is known, there exist different models of gauge field
theories on lattice.

Physical quantities, determined in different renormaliza-
tion schemes, can be compared in the case when the relation
between the coupling constants entering different models is
known.

Our paper is devoted to a direct nonperturbative comparison
of bare coupling constants by the Monte-Carlo method in the
Euclidean’! and Hamiltonian’®'%/ approaches at finite tempera-
tures. Py ]

i Recent papers have been devoted to the calculations by
the "background field" method in the limit of a weak coupling
of the partition function in these two approaches. The calcula-
tions were performed in the one-loop approximation (in the 1i-
mit a- 0, where a is the lattice spacing) and enabled the rela-
tion between the interaction constants to be established.This
method of calculation is limited by the region of small g2(a), -
whereas the most interesting phenomena occur in the region of
g®(a)~ 2. Therefore, a direct calculation of the relation bet-
ween the interaction constants is of interest. Though these
calculations check the theory up on self-consistence, they also
allow one to establish the relation between the interaction
constants beyond the weak coupling region. In what follows we
shall restrict ourselves to the case of SU(2)-symmetry with pe-
riodic boundary conditions.

In the gluon sector of the Euclidean field theory on lattice
the action is

SgU)=Bg- 3 (1= —%—SpUP)

3

am
UPx-Uij 'Ujk 'ka°Uzi .

Here Uij is the element of the SU(2) group, which corresponds
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to the link (ij), and BE(a):g;(a)‘ where g(a) is the bare coup-
%1ng constant depending on the spacing a between two neighbour-
ing sites i and j.Summation .in (1) is over all elementary 'squa-
res (plaquettes). In the Euclidean approach the spacing a is
independent of the link (i,j) direction. The partition function

Z 1s determined by the following integral

Z = [[dU].e SED),

(i,1)
and dUy; is the Haar measure on the SU(2) group. The expectati-
on values of any O(U) are equal to

<0>=2"'. [ [au]. o). e~ SED) (3)

In the Hamiltonian approach we proceed from the Hamiltonian’2'4/
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wherg 8y=8, - &, and the operators E(f;;) and Up EILUU are de-
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and the summation in (4) is OVQ; the spatial volume alone. The
average value of any operator O is determined as follows:
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Expression for the partition function (6) can be represented in
the form analogous to (2)
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where
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mula (7) defines the partition function as §4u>(af»0;as - fixed)
In this case the temperature§ = . should remain fixed. In
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the limit a,+ 0 the bare coupling constants g, ., (a) behave in
a natural way (see, for instance 5/)

gE/H (a)a_‘o ='[boo an:+b——ln IHW:+ O(gE/H )]_ (9)
E/H 0 E/H

For the SU(2) symmetry

1 34 12
. —— b A .
8n72 173 (8?

The thermal Wilson loop is used as an object of calculations
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where the sites i,,..ip, lie on one line along the time axis.
The average value of the temperature Wilson loop is an order
parameter for the global Z(2) -symmetry, which is convenient
for the description of phase transitions’®:
The expectation value of L is the partition function Z,of
the Yang-Mills gas in the presence of the rest source
1

——F
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where Fg is the free energy in the presence of the rest source
(quark) 78910/ ye have calculated the average value of L in
the Euclidean approach on lattice 3x7%and in the Hamiltonian
approach on lattice 15x73 with £=5 and different n . Figure |
shows the dependence of the Wilson loop in the Euclidean ap-
proach (solid line) and in the Hamiltonian approach of Kogut-
Susskind withn=1 (dashed line). The curve obtained in the Ha-
miltonian approach of Kogut-Susskind lies above the curve ob-
tained in the Euclidean approach, that indicates the necessity
to take into account the difference from unity of the second
Hamiltonian variable 5. In both the cases the dependence of <L>
on B (Bg and By, respectively) is well described by the for-
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<L>-r;+y=. (12)
where
B- B

The values of ¢ and y coincide within the limits of errors and
equal

a=05; y=04. (13)

At the same time the values of Beg and BcH differ from each
other

Bop = 215 ,

(14)
Bep = 2+1 .

Using expressions (12)-(14), one can easily get that the values
of By and By are related by

BE—‘BﬂzAB=BcE-:BcH° (]5)

To study the role of quantum corrections to the Hamiltonian, we
have investigated the dependence of the Wilson loop on 75 .Fi-



gure 2 shows the dependence of <L> on 5 for B8=2.4 on lattice
15x7% with ¢=5. The calculations performed in refs.’/45/ 1in

the one-loop approximation predict for 5 the values 5=0.88. With
this value of 4 we can calculate the ratio Ay/ A . Using (9),

we get

Ay/Ag =087 + 0,04

that is in agreement with refs/%:5/,
Thus, our calculations show that in the region of interme-

diate and weak coupling By, By~ 2 on lattice with nonsymmetric

spacing, one should take into account quantum corrections lead-

——
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ing to the difference of the second Hamiltonian constant U=V-—§

Eh
from unity, the difference being of 10-20%. In this case the
dependence of B and By on the lattice specific conforms with
the formulae of asymptotic freedom behaviour and the ratio of
renormalization constants Ay/Ap obtained as a result agrees
astonishingly’well with the values for Ay/ Ag which have been
calculated in the one-loop approximation in the case of weak
coupling in refs./4:5/,
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dasopble nepexon B €BKJIHZOBOM H I'aMHJIbTOHOBOM IIOAXORAX
B KaMGPOBOUYHMX TEOPHAX HA pemeTKe IPH KOHeYHOH TeMnepaType

B pa6ore HM3yYanuch TepMOOHMHAMHYECKHE CBOHCTBA IJIOOHHOIO
rasa npd KOHeUHblX TeMllepaTrypax B paMKax KaJIuGpOBOYHON TEOpHH
nons Ha pemerke c SU(R) —cumMeTpHed. Meropmom MorTe—Kapso
gcenenoBanach TeMnepaTypHas 3aBHCHMOCTH BHIIBCOHOBCKOH CTDYHbI
Ha CHMMeTPHYHOH (a,=a,) H HeCHMMeTDHMYHOH (a,#4a ) PemeTKax.
HaiimeHa cBASh MeXAY KOHCTAHTaMM B3aMMOAEHCTBHS B oboux nopg-—
XOoax, a TaKxke OTHOMEeHHe KOHCTAHT NepeHOPMHPOBKH.

Pa6ora BmmonHeHa B JlaBopaTopum TeoperHueckod ¢usmxu OUAU.
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Thermodynamic properties of the gluon gas at finite
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